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1 Abstract

In [4], the pressure evolution equation was used to calculate smooth pressure profiles for otherwise
oscillatory contact discontinuities. The nonconservative approach in [4] was modified to fully
conserve mass, momentum, and energy in [f]. Both [4] and 1] construct schemes valid for a
gamma law gas. In [2], we extended the work in [4] to cover general equations of state. In this
paper, we extend the ideas in [1] to cover general equations of state as well. Thus, we propose
a2 method which conserves the total mass, momentum, and energy exactly, works for general

equations of state, and avoids spurious oscillations at material interfaces.
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2  Introduction

Standard conservative schemes will admit non-physical oscillations near material interfaces,
which can be avoided by the application of a nonconservative correction to the internal energy
[4, 3, 2]. These modifications give rise to conservation errors in the total energy of the system, and
thus yield a locally nonconservative formulation. In general, nonconservative formulations give
the wrong shock speeds, although the errors in shock speeds can be reduced significantly with the
addition of a special viscosity term [6].

In standard conservative schemes, the pressure is calculated from the equation of state, and we
refer to this pressure as p.,;. While this pressure does well away from material interfaces, it may
admit erroneous pressure profiles near material interfaces. In [4], the pressure was calculated from
the pressure evolution equation, and we refer to this pressure as p.,. 1his pressure is essentially
non-oscillatory across material interfaces, but it does not satisfy the equation of state and hence
is responsible for the loss of conservation.

In contrast to the above schemes, we propose a method which conserves the total mass,
momentum, and energy and is able to avoid the spurious oscillations near material interfaces
common to other conservative shock capturing schemes. This new method appears to convege to
the correct weak solution under grid refinement as does the quasi-conservative method in i1}. In
addition, our interface sharpening procedure yields good results on coarse grids.

We note that a scheme with similar properties was proposed in [1], although that scheme was
only valid for a gammalaw gas. The authorin [1] observed that a general conservative method will
produce a perfect contact discontinuity (constant pressure and velocity) as long as the evolution
equation for the interface was advection of ;-f{—l In fact, this is equivalent to advecting -’;—f« and
bears some resemblance to the pressure evolution equation. While this method works well for a
gamma law gas, problems can occur with more general equations of state especially when one

considers that £ is not always constant across a shock as it is in the gamma law gas. Our scheme



extends the ideas in [1] to general equations of state.

Our new technique has two key ideas:

(1) The pressure 18 chosen to be a convex combination of peo. and Peep. By choosing proper
weights, the combined pressure is essentially p.., at the interfaces and p,,, away from the interfaces.
One of the advantages of the convex combination is that there is no need to track the material
interfaces. This is important in two or three dimensions, because it is quite difficult to track the
interfaces with all possible topological changes.

(2) We use a general equation of state that reduces to the single equation of state in each
different fluid region, but still applies everywhere, even at interfaces where the single equations of
state break down. It is capable of representing any combination of different fluids such as gamma
law gas, water and JWL.

We point out that this technique works in multiple dimensions and is scheme-independent,

which means it should work for typical users’ existing code with only minor modifications.



3 Equations

The 3D Euler Equations in conservation form are

P \ pu py \ pw \

pu pu? + p pUU pUL

pv + puv + | po*+p + pwv =0 0
pw puw pow pw® +p

E /. (E+pu | \ (E+p)v , (E+pw |

where p is the demsity, u = (u,v,w) is the velocity, E is the total energy per unit volume, p is
the pressure, z = (&,¥,7) is the spatial location and t is the time. We define a filter function, %,

which is initially 0 in one fluid and 1 in the other. Then 1 satisfies
P +u- v =0. (2)

Let p = pi(p, €) be the equation of state for the first fiuid and p = py(p, €) be the equation of

state for the other. The general equation of state is
p=p*pip,e)+ (1 —P)*palp, €). (3)

This system (1-3) completes the mathematical model of two phase flow.



4 Numerical Method

Given the values of p", (pu)?*, (pv)*, (pw)", E*, and ¢ at time 1%, the pressure p” is calculated

from the general equation of state (3) i.e.
pr= e p(p”, ) + (1 - 9" xpa(e” ) (4)

where we assume p”* has no oscillations at material interfaces, e.g. initial data. One can solve the
Euler equations (1) with any reasonable conservative scheme (such as Convex ENO [7]) to update
the variables in time as g**!, (pu)"*t, (pv)**, (pw)**t, and E™+. We also solve the advection
equation (2) for the filter function @7 with any reasonable upwind scheme i2]. If we use these

values to calculate the pressure from the equation of state,
P = e py (o7, )+ (1 — L) # (P M) (5)

we get a standard conservative scheme where oscillations in pressure may be generated near
material interfaces and lead to the pollution of the rest of the solution [4, 3]. Since it is unwise to
modify conservative quantities, we instead modify the filter function P,

In [4], the pressure evolution equation for a gamma law gas

p+u-vpt+ypv u=0,

was used to calculate the pressure obtaining smooth pressure profiles where the standard conser-
vative schemes oscillated wildly. The pressure evolution equation can be extended [2] to cover any

fluid with a general equation of state

P4 u-ypt pd 7 ou=0, (6)



and this equation will give similar results for a gamma law gas, while extending to more general
fluids as well.

Remark: The pc? v -u term in the pressure evolution equation is not always well-behaved at
contact discontinuities where it is needed. In general p, ¢2, and v7 - u could all be discontinuous
functions. In the simple case of a gamma law gas the discontinuities in p and ¢ blend nicely
to give yp with p continuous and v a smeared out Heaviside function. Thus there are only two
discontinuous functions for a gamma law gas, and for most contact discontinuities the velocity is
constant implying that ¥ - u is not only continuous, but identically zero. The reader is warned
that some of the harder problems will require special regularization of pc® ¥7 -u in order to obtain
good numerical results.

Using a reasonable upwind scheme [2] to solve equation {6) we obtain the pressure evolution
equation pressure, phat, which is smooth across material interfaces. Thus there are two candidates,
P+l and pitl, for p*t'. The new idea here is to use a convex combination of the two candidate

pressures.
PiHl = s plht + B pll ,f>0 and a+f=1 (7)

The goal is to weight the combined pressure ptl toward pit! at material interfaces and toward
P2t away from them. Once this is done, pi+ will not satisfy the general equation of state (3),

that is
PREL £ gl apy (o7, P (L= ) * (et €T,
and this situation can be remedied by modifying q,b;’jgl, First calculate

n+l _ Pﬁj«ﬁ - pz(pnﬁ‘}, en+1)
new Pl(P”“, en+1) — pE(pn+1,en+1)’




and then invoke a straightforward limiter

Py nte > Yur
1
P =1 Y it < U (8)
nl otherwise,

where 1y (¢, is the maximum (minimum} of filter function at its immediate neighbors at time

#_ We then recalculate the pressure p*'' as

pn+1 — ¢n+1 *P1(Pﬂ+1,6ﬂ+1) + (1 _ ¢-n+1) *pz(pn-}-l,en-ivl). (9)

This pressure, p"*?, is essentially non-oscillatory across material interfaces, since prtl o gl o
pitt there,

While this pressure construction procedure works well, it allows the interface to dissipate. In
order to obtain good solutions on a reasonably coarse mesh, we apply an interface sharpening

procedure. We sharpen the interface as follows:

(1) At each grid point, calculate the pressure p using local smoothing, i.e. setting Ap =0. In
n+1i+pn+1

one dimension, this becomes py = p@z—iﬁ—

(2) Calculate the corresponding filter function ¥y

¢ _ Py - Pz(P“H, en«i—i)
0 pl(pn+1’ 8n+1) _ pz(pn-i—i, en+1)

(3) Sharpen the interface

max{y"t, min(by, 1)) if it > 1

,¢n+1 — (10)
min(4"tt, max(vy, 0)) otherwise
(4) Recalculate the pressure
pn-§~1 - 'l,bmH *pl(p"+1,8”+1) + (1 . wni—l) *pg(pn&-l,en-l—l) (11)

Remark: The filter function in (10) is sharper than the one in (8) and the pressure in (11) is

smoother than the one in (9).



This completes the calcalation cycle from p”, (pu)", (pv)", (pw)", E", and " to L, (pu)tt,
(p,v)n+1, (p,w)n-{-I’ En+1 and ,l,bn—}-l‘

4,1 Choosing the Weights

In this section, we define the weights, o and §. The goal is to weight pif, toward ikt at a
material interface and toward pih' elsewhere. We make two observations:
(1) The filter function, ¥, is rapidly varying near material interfaces and nearly constani away
from them.
(2) The pressure, p, is rapidly varying near at shock and nearly constant at a material interface.
Define § as an undivided difference operator that gives a discrete meaning to the phrases rapidly

varying and nearly constant. For example, in one dimension, we define

;= e — 97 | U — 9 s
bp; = 128-10.5| piya — o} |/ max(pfs, p) + 05| Py — 77 | / max(p?_1, 2})]-

Then the definition of o and 3 is as follows,

IF (84 == 0) THEN

a=1,8=0;
ELSEIF (6p == 0) THEN
a=00=1
ELSE
a= gy A=1-0
ENDIF

where we set d = 8 for our numerical experiments.
Remark: (1) in constant regions of the flow §% = 0 and §p = 0, and we obtain a = 1,58=10,

and pHl = pik? which is the standard conservative solution. (2) at an isolated interfaces 61 20



and 6p = 0, and we obtain a =0, B =1, and prdl = pitl which avoids oscillations and doesn’t
affect shocks since none are in the vicinity. (3) at an isolated shock 1 = 0 and §p # 0, and we
obtain o = 1, 8 = 0, and piis = p2+t which is the standard conservative solition maintaining a
good shock speed. (4) when a shock hits an interface 69 % 0 and 6p % 0, and we obtain o ~ 1 and
B ~ 0 and hence pjify ~ P+l which is essentially the standard conservative solution maintaining

a good shock speed.



5 Numerical Experiments

We have nsed our new scheme to reproduce the numerical experiments from [4, 5, 10} with our
conservative scheme, In the following we show our results for gamma law gas, water and JWL.

For water, we use
B((p/poy -1)+A i p>p.

De otherwise,

p(p) =

where A = 10% b=3.31+10°, v = 7.15, po = 1, pe = 0.99995775 and p, = 220.272586.
For a gamma law gas, we use

p(p,e) = (7 — 1)pe,

where e = (E/p — 0.5(u? + v? + w?)) is the internal energy per unit mass.

For a JWL gas, we use

o) = A (1~ g can(~upu/r) + B (1= 2L can(=apuf) + ope

where A = 5.484+10'2, B = 0.09375% 10'%, R, = 4.94, Ry = 121, w = 0.28, and p, = 1.63.
Example 1: In this example, we redo the numerical experiments from [4]. Refer to [4] to see
the large spurious oscillations introduced when solving the following problems with a standard
conservative scheme.
A tube with length one is filled with two fluids. They are separated by an interface which is
located at the center (z = 0.5) of the tube. Except for the first case, we start with a shock at

2 = 0.25 which moves to the right and will intersect the interface at a later time. See Figure 1.
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Five sets of initial data are used for W = (p, 4, p,7):

.....................................................................................

W, = (1.0,0.0,1.0,1.4) Air
data 1: W, = (1.0,0.0,1.0,1.4) Air
W = (0.125,0.0,0.1,1.2) (Unknown)

.....................................................................................

W, = (1.3333,0.3535,1.5,14)  Alr
data 2: W, = (1.0,0.0,1.0,1.4) Air
W, = (0.1379,0.0,1.0,1.67) Helium
W, = (1.3333,0.3535,1.5,1.4)  Air
data 3: W, = (1.0,0.0,1.0,1.4) Air
W, = (3.1538,0.0,1.0,1.249)  R22
W, = (4.3333,3.2817,15.0,1.4) Air
data 4: W, = (1.0,0.0,1.0,1.4) Air
W, = (0.1379,0.0,1.0,1.67)  Helium
W, = (4.3333,3.2817,15.0,1.4) Air
data 5: W, = (1.0,0.0,1.0,1.4) Air
W, = (3.1538,0.0,1.0,1.249)  R22
We used the 3rd order accurate central Convex ENO scheme [7]. The results shown in Figure 2
to Figure 6 below avoid the oscillations at the interface while still conserving mass, momentumn,
and energy exactly.

Example 2: A tube, one unit long, contains a JWL gas and water. The left hand side of

11



the tube, z < 0.5, is a JWL gas with p = 1.63, e = 42814+ 101, p = 7.81 % 10'%, and v = 0.
The right hand side of the tube, z > 0.5, is water with p = 1, e = N/A (we chose e = 107 for
numerical implementation), p = 1 % 10°%, and u = 0. The computation is terminated before the
boundaries can be influence the solution. We used 3rd order field-by-field Convex ENO [7] for
Fuler equations, a 2nd order TVD upwind scheme for the filter function, and 2nd order central

Convex ENO [7] for the pressure evolution equation. The results are shown in Figure 7.
Example 3: A tube, one unit long and closed at both ends, is filled with a gamma law gas

with v = 1.25 and water. The initial conditions are

(0.00826605505, 48390677000, 108,294997.131) v — law gas, if z<0.096

(0.001,4 % 10°,10%,0) v —law gas, if 0.096 <z <0.5
(pre,p,u) = ,

(1, N/A,10%,0) water, if 0.6<2<0.96

(1.0041303, N/A, 108, —638.13588) water, otherwise

Reflection boundary conditions are applied at both boundaries. We used 3rd order central Convex
ENO [7] for the Euler equations, a ond order TVD upwind scheme for the filter function, and
ond order central Convex ENO [7] for the pressure evolution equation. The results are shown in
Figure 8.

FExample 4: A JWL gas fills a small bubble with a radius of 7 = 16 that is surrounded by

water. The initial conditions are:

(1.63,4.2814 + 101, 7.8039 % 101%,0)  JWL, for 7 < 16

(P: e, D, ’U.) -
(1, N/A,10°,0) water, for 16 < r < 1000.

The problem is cast in spherical coordinates. The computation is ended before the outer boundary
can influence the solution. We used 3rd order central Convex ENO [7] for the Buler equations, a
ond order TVD upwind scheme for the filter function, and ond order central Convex ENO [7] for

the pressure evolution equation. The results are shown in Figure 9.
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Figure 1: Tube
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Example 1, 400 number celis,

time=0.1644
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Example 2, 400 number celis, time=0.25
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Example 3, 409 number cells, time=0.55
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Figure 4:
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Example 4, 400 number cells, time=0.115
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Example 5, 400 number cells, time=0.16
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Exam 4, 16000 points, time=0.002 y 1¢*
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