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Abstract

A successful application of a linear controller to a two-dimensional channel flow is presented.
An optimal and robust reduced-order linear feedback controller is derived by using multi-variable
lipear-quadratic-Gaussian synthesis, or, in modern term, Mz synthesis, combined with model redne-
tion techniques. This controfler based on a reduced-model of the linearized Navier-Stokes equations
is applied to suppress finite-amplitude near-wall disturbances in a channel flow at Re=1500, The
controller efficiently reduced near-wall disturbances obtaining a substantial drag reduction and
eventually the flow is relaminarized.
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1 Introduction

Wide attention has been given to the problem of reducing wall-shear stresses generated by near-wall
turbulence, or, in other words, to the problem of reducing drag produced by skin friction. “The skin
friction constitutes about 50%, 90%, and 100% of the total drag on commercial aircraft, underwater
vehicles, and pipelines, respectively” [1]. Clonsequently, important economic and environmental benefits
will spring from the successful and reliable control of near-wall turbulence.

In the recent years, boundary layer control has been attempted by several investigators with some
success [5]-[24]. However, controllers able to analyze distributed measurements and coordinate dis-
tributed actuators are regarded by the fluid mechanics conmmunity as essential for achieving better
results. Tools for designing this class of controllers have been developed by the control community
over the past two decades [25]-[26]. Very little has been done to exploit these tools in connection with
the control of boundary layers {27]-[29] because of the belief that linear controllers are not suited for
controlling a nonlinear phenomenon, like wall turbulence.

Recently, Cortelezzi and Speyer [30] used multi-input-multi-output (MIMO) linear quadratic Gaus-
sian (LQG) synthesis, or, In modern terms, Hz synthesis, combined with model reduction techniques for
designing an optimal and robust linear feedback controller able to suppress wall-disturbances leading
to transitions in a two-dimensional laminar channel low. The present paper shows that the controller
derived by Cortelezzi and Speyer, based on a reduced-model of the linearized Navier-Stokes equations,
can be successfully applied to the control of skin-friction drag in a two-dimensional channel flow. This
is an essential intermediate step toward the derivation and application of this class of controllers to
three-dimensional boundary layers.

The intermediate step of controlling skin-friction drag in a two-dimensional channel flow will perhaps
disappoint some readers because of the fundamental differences between two and three-dimensional
turbulent channel fiows. Turbulence is essentially a three-dimensional phenomenon. Consequently,
results obtained by controlling skin-friction drag in two-dimension cannot be readily extrapolated to
the three-dimensional case. However, the derivation and testing of optimal and robust reduced-order
Linear feedback controller in a two-dimensional environment has been very valuable for understanding
the potentiality of MIMO LQG, Mo, synthesis and model reduction in relation to boundary layer
control problem.

In Section 2, we formulate the problem in terms of Navier-Stokes equations and we provide details
about the numerical scherme used to integrate them. In Section 3, we derive the state space equations
from the linearized Navier-Stokes equations. In Section 4, we reduce the order of the state space
equations and derive an optimal and robust reduce-order controller by using LQG, Ha synthesis. In
Section b we apply the controller to a turbulent channel low at Re=1500 and discuss its performance.
Conclusions will close the article.

2  Mathematical Formulation

We consider the turbulent flow of an incompressible fluid in a two-dimensional periodic channel of
length Lh and height 2h, see Figure 1. This problem is governed by the Navier-Stokes and continuity
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where A is the two-dimensional Laplacian. We made the problem dimensionless by using h as charac-
teristic length and h/U, as characteristic time, where U, is the velocity at the center of the channel.
The Reynolds number is Re = U h/fv.

We apply blowing and suction at the bottom wall to suppress near-wall turbulence within the
bottom boundary layer. To simplify the problem the actuators are assumed uniformly distributed
along the bottom wall. Near-wall turbulence within the top boundary layer is left free to evolve. The
corresponding boundary conditions are

u(z,+1,1) = v(z,1,1) = 0, v(z, —1,1) = vy (2,1). (3)

The control function v, prescribes the amount of blowing and suction at the wall. In the next Section,
we will impose that the amount of fluid removed equals the amount of fluid injected.

We measure the gradient of the streamwise velocity at given points z = @; to detect and measure
near-wall turbulence within the bottom boundary layer. In other words, we measure the first term of
the wall-shear stresses, Ty = Re™*(Ou/0y + 0v/0z}ly=-1, Le.

z(®i, 1) = g_u . (4)
Y o=z y=—1
Note that the second term of the wall-shear stresses 1s known when the actuators operate while is zero
in the uncontrolled case.

Time dependent incompressible Navier-Stokes equations (1)-(3) with the appropriate initial condi-
tion are integrated numerically using a semi-implicit fractional step method. The gecond order-implicit
Crank-Nicolson is used for the viscous terms and the nonlinear convective terms are advanced using a
3rd_order low-storage Runge-Kutta scheme.

A staggered grid is used in the computation. All spatial derivatives are discretized with a 4"~
order compact finite-difference scheme. A uniform grid is used in the streamwise direction, while a
nonuniform grid corresponding to Chebyshev collocation points is used in the wall-normal direction.
We simulate turbulent channel flows on a computational domain of 47 x 2 with a resolution of 512 x 64.
Detailed descriptions of the numerical methods used to simulate the flow under investigation are given
in Ref. [31].

3 Derivation of the State-Space Equations

In this section we outline the derivation of the state-space equations [30]. To derive the state-space
equations we first linearize equations (1) with respect to the larninar velocity field U(y) = Us(y* — b?),
see Figure 1. The linearized Navier-Stokes equations are written in terms of the stream-function 4 to
identically satisfy continuity,
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and corresponding boundary conditions are
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The measurement equation (4) becomes
O
Z(u"&',ﬁ,t) = Fy‘z— yot . (7)

The design of a controller for the LQG (H2) problem is contingent on the definition of an optimal
performance index, or cost function. A cost function shouid be constructed with the intent of simul-
taneously minimizing near-wall turbulence and the cost of the controller. 1t is crucial to minimize the
cost of the controller because the energy available to drive the controller is limited in any engineering
application. Furthermore, the system could be driven away from the region where the linear model
is valid by large control action. Because of the high correlation between near-wall turbulence and
wall-shear stresses, we choose the following cost function:
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The integrand represents the cost of the wall-shear stresses being different from zero. Moreover, the
second term of the integrand implicitly accounts for the cost of implementing the control itself.

To reduce (5)-(7) to a set of first-order ordinary differential equations, we make a few transforma-
tions as shown in Ref. [30]. Taking advantage of the linearity of the problem, we assume that the
stream-function ¥ is the sum by two parts: a modified stream-function ¢ which satisfies to the equation
(6) with homogeneous boundary condition, and a function x which satisfies to the non-homogeneous
boundary conditions forming a forcing function to (5). Subsequently, flow quantities are spectrally
decomposed by using circular functions in the streamwise direction and Chebyshev polynomials in the
vertical direction. We expand ¢ and x as follows:

N M
b, t) = D Y [aam(t) cos(en®) + bum(t) sin(cn )| Cm(¥), (9)

n=1m=0

. ,
x{z,y,t) = Z[pn(t) cos(om ) + ¢ (t) sin{omz)] D(y)- (10)

where o, = 2rn/L. Fanctions Cp, and [} are combinations of Chebyshev polynomials constructed to
satisfy the boundary conditions, 1.e.,

dC. dD
Couly==£1) = —= =0, Dy=-1)=1, Dly=1)= — =0. (11)
dy y=:£1 dy =41
We also expand the measurement function z as follows:
N
2z, 1) = Y len(t) cos{ana) + du(t) sin(@ns)]- (12)
n=1

We substitute expansions (9), (10), and (12) into the evolution and measurement equations (5)-(7) and
use Galerkin’s projection to obtain a set of ordinary differential equations. These equations are cast
by matrix transformations into the following state-space equations:

d
%;AmJ{_Bu, z=C=z +Du, (13)



with initial condition ® (0) = ®o . The vectors = , w0, and z are the internal state vector, the control
vector, and the measurement vector, respectively. The dynamics of the Poiseuille flow, actuators and
sensors, are contained into the matricee 4 , B and C | respectively, while the direct coupling between
sensors and actuators is contained into the matrix D . Note that this coupling would be eliminated if
actuators dynamics could be explicitly imposed. The cost function (8) becomes

t

J = lim /f[z Ty +uTWw Tw uldt, (14)
ty—oo fy

where the superseript T denotes transpose. The matrix W is generated by spectral decomposition of

the last term in the cost function (8).

The main advantage of this formulation is the decoupling of the problem with respect to the wave
number where all matrices in (13) and (14) are block diagonal. Consequently, the state-space gystem
(13) is equivalent to N state-space sub-systems, one for each wave number. The state-space equations
for a given wave number r are

dx,

= =A, 2. + B ts, 2p = Cp ®p +Dr up, (15)

with initial condition @, (0) = Zvo . The structure of vectors &, ,us , 2, 18 the following: @&, =
[aro, - - Grar, bro, - - BeplT s = [p,«,qr]T, Zp = [Cr, d,]*. The cost function (14) also decouples with
respect to the wave number. It is the sum of N optimal performance indexes J;. The cost function for
a given wave number 7 18 defined as follows

ir
J, = lim (2 T2p +wr TW, T Wy up Jdt. (16)
ty—oa Jy
Clonsequently, the design of an optimal and robust controller for the system (13) with (14) has been
reduced to the independent design of N optimal and robust controllers, one for each wave number, for
the sub-systems (15) with (16).

4 Model Reduction and Controller Design

The size of the controller is a crucial parameter in any engineering applications because of the amount
of hardware and computer power necessary to compute a real-time control law. Since a controller
based on the full system would have 2V (M + 1) states, where N=32 and M=64 is considered a simple
case in literature, it is crucial to reduce the order of the controller. A low-order controller for the
present problem can be derived in two steps [30]: First by constructing a lower order model of (15},
and subsequently, by designing an optimal and robust controller for the reduced-order model.

In order to obtain a lower order model for each wave number, we transform each state-space subsys-
tem (15) into Jordan Canonical form. This transformation decouples the modes of each subsystem, in
other word it reduces the subsystem matrices to 5 block diagonal form. From the transformed B, and
C, matrices the states that are equally well controllable and observable are determined. The matrices
A, B, ,é’,- , D, that describe the dynamics of the reduced-order internal state-space subsystem are
obtained from the matrices in Jordan Canonical form by removing rows and columns corresponding o
poorly controllable or observable states. Hat denotes the quantities associated with the reduced-order
model.



Although a rigorous mathematical framework for the design of disturbance attennation (He ) linear
controllers is provided by the control synthesis theory in [25]-[26], for this initial study LQG (Hz)
synthesis is quife adequate. In gencral, the the design of an optimal and robust linear feedback
controller for the LQG (Hz) problem is divided in two parts: linear-quadratic-regulator (LQR) and
minimum variance estimator (Kalman-Bucy filter). The LQR design provides an optimal control law
in terms of the internal state vector by minimizing a cost function. The internal state vector is
essential to implement the control law but, in general, it is not a physical quantity directly measurable,
but reconstructed from the measurement vector z. by the estimator. Since we have assumed no
statistics, the power spectral densities required for the minimum variance estimator are chosen as
design parameters in order to keep the eigenvalues of the estimator at the same order of magnitude
as the eigenvalues of the controller, In particular, the power spectral density of the process noise is
chosen so that the resulting loop transfer matrix approximates the loop transfer matrix of the LQR
which has significant robustness properties [32]-[33]. In this study the LQG (Hz) design of an optimal
and robust controller for each reduced-order state space subsystem (15) can be carried out in parallel.
The final result of the LQG (Hz) 1s summarized by the following equations:

wp = —Kp &y, (17)

diEp

di

with initial conditions &, (0) = 0 . Equation (17) is the control law. It predicts the optimal blowing

and suction at the bottom wall by processing the estimated reduced-order internal state vector with the
gains matrix K, . The gains matrix K, is obtained by minimizing the following optimal performance
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where 2, = C', #p — Dy wp . Although equation (18) is the the minimuin variance estimator in a sha-
tistical sense, this filter is essentially an observer that reconstructs from the measurements an estimate
of the reduced-order internal state vector. However, when the estimator is eventnally implemented in
a system where the measurements and process dynamics are corrupted by noise, the Giaussian white
noise assumption will be used to develop the filter gains. The initial condition &, (0) =0 implies that
the estimator starts with no information about &, .

Note that the numerical integration of the estimator (18), the computation of the control law (17},
and fast direct and inverse Fourier transforms can be programmed in a computer routine suited for
parallel computing. Subsequently, this routine can be embedded in any Navier-Stokes solver for the
control of simulated turbulent channel flows as shown in the next Section.

5 Results

We designed a controller for two-dimensional Poiseuille fiow in a periodic channel of length L = 4xr
at Re — 1500, We used a grid resolution of N = 32 and M = 60, consequently, the order of the
full system is 3904. Using the model reduction technique previously described, we created 32 reduced
models and derived 32 controllers of order 12, one for each state space subsystem (15). Controllers
operate in parallel. The combined order of the controllers for all 32 wave numbers is 384, it represents
a dramatic reduction, about 90%, with respect to the order of the full system.



This controller is tested on a two-dimensional turbulent channel flow at Re=1500. Since there are
no unstable modes at Re=1500, we use & combination of channel and wall modes to create a worse
scenario initial perturbation velocity field [34). The maximum rms yalue of the initial perturbation
velocity field is Urms = 0.3, i.e. 30% of the centerline velocity of the andisturbed laminar flow. We
construct the initial velocity field by superimposing a perturbation velocity field onto the laminar flow.
The corresponding initial vorticity field produces pockets of positive and negative vorticity distributed
along the center and walls of the channel. Although the initial disturbances in the two-dimensional
channel flow will eventually decay, they permit testing the capability of the controller in suppressing
near-wall turbulence that can increase drag and trigger boundary layer eruptions and flow separations
in turbulent boundary layers. Note that this initial condition includes nonlinear effects that are not
inciuded in the linear model and also stimulates modes that are not inciuded in the reduced-order
model, and consequently, cannot be directly controlled.

Figure 2 presents a comparison of the vorticity field in the controlled and uncontrolled cases at time
t=2 and 4. Figure 2 also presents the amplitude of blowing and suction applied to the bottom wall of
the channel. In the uncontrolled case, at time t=2, two large pockets of negative and positive vorticity
can be recognized on the left along the bottom wall, while minor vortical structures populate the
remaining part of the boundary layer. At time t=4, the interaction of the two pockets of vorticity with
the rest of the flow generates an eruption of fluid toward the center of the channel. A large negative
vortex entrains some of the positive vorticity from the wall increasing the separation. A similar process
takes place on a smaller scale further downstream. Flow separation also occurs at the top boundary
layer; a large eruption can be recognized on the left and two smaller eruptions further downstream.

In the controlled case, at time t=2, the vorticity field near the bottom wall is strongly modified by
the action of the controller, see Figure 9. Pockets of high positive vorticity have been removed while
pockets of high negative vorticity have been lifted away from the wall. Only low negative vorticity can
be recognized within the bottom boundary layer. The plot of v shows that the controller tends to inject
fluid underneath pockets of negative vorticity while it tends to rernove fluids in correspondence with
pockets of positive yorticity. At time t=4, the action of the controller can be more easily interpreted.
The controller breaks the pockets of negative vorticity that have been lifted up into smaller vortical
structure. These structures are made rolling along the bottom wall by injecting and removing fluid
from the rear and the front of the vortical structure, respectively. Note that at time t=2 the controller
affects only the flow near to the bottom wall leaving most of the vorticity field unaffected. At time
t=4, however, the controller action has penetrated further toward the center of the channel because of
the viscous and nonlinear effects.

Figure 3 presents a comparison of the vorticity field in the controlled and uncontrolled cases at
time t=12 and 14. Figure 3 also presents the amplitude of blowing and suction applied to the bottom
wall of the channel. The uncontrolled case shows the evolution of a major eruption along the bottom
wall that affects nearly half of the bottom boundary layer as well as part of the top boundary layer.
In particular, the pairing process of two large negative vortical structures interacts with a pocket
of positive vorticity on the bottom wall. The vortex pairing entrains parts of the positive vorticity
enhancing the separation of the flow. In the controiled case almost the entire vorticity field has been
strongly modified by the controller, high values of vorticity are confined to the top boundary layer.
Near to the bottom wall three negative vortical structures are kept rolling by the controller action
although there is no significant vorticity along the wall. As in the previous figure, the controller injects
and removes fluid from the rear and the front of the vortical structures, respectively. In this figure
is easy to see that v, changes sign at the streamwise locations corresponding with the center of the
vortical structures. The action of the controller has also reduced the interaction between top and
bottom boundary layers resulting in an mild attenuation of the near-wall turbulence at the top wall.



Figure 4 presents a comparison of the vorticity ficld in the controlled and uncontrolled cases at
time t=50. Figure 4 also presents the amplitude of blowing and suction apphied to the bottomn wall of
the channei. The uncontrollod case is dominated by the least stable modes, while all the other modes
have been subdued by viscosity. Although the flow is slowly relaxing toward the laminar regime, the
top and bottom boundary layers are still showing sign of flow separation. In the controlled case the
flow has been nearly relaminarized over the entire computational domain. Correspondingly, blowing
and suction at the bottom wail is nearly 7ero.

Figures b shows the spatial and temporal evolution of the wall-shear stresses in the uncontrolled
case. The wall-shear stresses present a rich structure because of the near-wall turbulence generated
by the initial condition. However, viscous effects eventually reduce the amplitude of the wall-shear
stresses over time; turbulence in fact cannot sustain itself in a two-dimension channel flow at Re=1500.

Figure 6 presents the spatial and temporal evolution of the wall-shear stresses and blowing and
suction in the controlled case. The controllers reduce the initial wall-shear stresses in the first few time
steps although the estimators (18} start with no ‘nformation about the reduced-order internal state
vector. Subsequently, the amplitude of blowing and suction rises to suppress the effects of near-wall
turbulence. Eventually, blowing and suction decreases as the near-wall turbulence subdues. Controlled
wall-shear stresses show some waviness due to poorly controllable Jow wave pumber modes and some
ripples at wave numbers higher than 32. Ripples quickly disappears after few time units, while low wave
numbers waviness persists for longer time. By the end of the computation, t = 50, all the perturbations
of the wall-shear stresses have been suppressed and the flow has been nearly relaminarized, see Figure
4. The wall-shear stresses have a nearly constant value 1.62. This value indicates that the average
velocity profile near the bottom wall generates about 20% less drag than the parabolic profile. However,
this more efficient profile will eventually relax to the parabolic profile due to the viscous effects.

Figures 2-6 indicates the successful performance of the 32 robust reduced-order linear controllers
operating in parallel. 1t is not clear that it is necessary to control disturbances for all 32 wave numbers
since disturbances correspondingly to high wave numbers are very quickly damped. Consequently
there is hope for further reducing the size of the controller. Any further reduction of the size of the
controller increases the potential of using the controller in engineering applications. To investigate this
jssue we ran the same simulation presented in Figures 2-6 with only 16 robust reduced-order controllers
operating in parallel. The combined order of the controllers for 16 wave numbers is 192, a substantial
reduction, 50%, with respect to the previous reduced-order controller, and about 95%, with respect to
the order of the full system.

Figure 7 presents the spatial and temporal evolution of the wall-shear stresses in the controlled case
when only the controllers corresponding to the 16 lowest wave numbers are operating. During the few
time steps, when the turbulence structures span over o]l the wave numbers, this partially controlled case
presents some noticeable differences with respect to the fully controlled case (Figure 6). The controller
compensates for its inability of controlling high wave numbers by increasing the amplitude of blowing
and suction at low wave numbers. Consequently, wall-shear stresses show some spikes corresponding
to high wave number near-wall turbulence. However, beside these events the wall-shear stresses retain
the same trend as in the fully controlled case. At later times, t > 10, the wall-shear stresses and
blowing and suction at the wall present a trend very similar to the fully controlled case. 'The wall-
shear stresses show some low amplitude waviness at wave numbers higher than 16. Blowing and suction
at the wall present a slightly higher amplitude and deformation with respect to the fully controlled
case. Nevertheless, the overall effect of the 16 wave numbers controller is a dramatic reduction of the
wall-shear stresses and a almost complete relaminarization of the entire flow.

Drag reduction is the dominant reason driving the effort of controlling near-wall turbulence. To
estimate the performance of the controller, we compute the drag by integrating the wall-shear stresses



along the bottom wall of the channel, Figure 8 compares the drag in the uncontrolled, laminar, fully
controlled and partially controlled cases. The drag for the laminar case is exact and equals 2. In
the uncontrolled and controlled cases the drag is initially 2 because the initial velocity field has been
constructed by superimposing & zero-mean perturbation velocity field onto the laminar flow. In the
uncontrolled case, the drag drops below the laminar value during the transient period followed by drag
increases above the laminar value 2.46 and with some fluctuation reaches its maximum value around
t=95. In the last half of the simulation the drag decreases toward the laminar value because turbulence
is subdued by viscosity, since turbulence cannot sustain itself in a two-dimensional channel flow at this
Reynolds number. In the fully controlled case, the drag presents some large fluctuation below the
laminar value during the first few time units at the onset of the turbulent flow. The amplitude of the
fluctuations reduces with time while the value of the drag stays at about half of the laminar value.
In the later part of the simulation the controller affects the entire computational domain and the flow
is nearly relaminarized. The drag in the partially controlled case is remarkably similar to the fully
controlled case. This results substantiates the notion that it is not necessary to control all the wave
numbers.

6 Conclusions

In this article we presented a successful application of robust reduced-order linear feedback control
to a two-dimensional channel flow whose initial condition consist of finite-amplitude disturbances. A
controller based on a reduced-model of the linearized Navier-Stokes equations, i.e. 10% of the order of
the full size system, was designed by using LQG (M) synthesis. This controller was programmed in a
computer routine whose input measurements are the gradients of the gtreamwise velocity component
and whose output controls are the blowing and suction at the wall. This routine, suited for parallel
computing, was embedded in a direct numerical simulation of the Navier-Stokes equations. As a case
study, we applied the controller to the bottom wall of a two-dimensional turbulent periodic channel
flow at Re = 1500. The controller drastically reduced near-wall turbulence preventing boundary layer
eruptions and flow separations and eventually relaminarized almost the entire flow. A dramatic drag
reduction was obtained, up to 50% with respect to the laminar flow and up to 60% with respect
to the turbulent flow. Extensions of LQG (Hz) design and applications of He design [25]-[26] to
three-dimensional channel flows and three-dimensional Blasius boundary layers are in progress.
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Figure 1: Flow geometry.
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(a)

(b)

Figure 2: Vorticity field for the uncontrolled and controlled case amplitude of vy, at time t=2 {a), 4

{b).

14



(b)

Figure 3: Vorticity field for the uncontrolled and controlled case amplitude of vy at time t=12 (a), 14

(b).
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Figure 4: Vorticity field for the uncontrolled and controlled case amplitude of v, at time t=50.
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Wall-Shear Stresses

Figure 5: Time evolution of the wall-shear stresses along the bottom wall of the channel in the uncon-

trolled case.
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(a)

Wall-Shear Stresses

(b)

Figure 6: Time evolution of the wall-shear stresses (a) and blowing and suction (b) along the bottom
wall of the channel with all the controllers operating.
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Wall-Shear Stresses
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Figure 7: Time evolution of the wall-shear stresses (a) and blowing and suction (b} along the bottom
wall of the channel with all the controllers operating only on wave numbers 1 through 16.
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Figure 8 Comparison of the total drag measured at the bottom wall of the channel: laminar flow,
uncontrolled turbulent flow, fully and partially controlled turbulent flow.
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