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Abstract

The high speed flow of complex materials can often be modeled by the
compressible Euler Equations coupled to (possibly many) additional
advection equations. Traditionally, good computational results have
been obtained by writing these systems in fully conservative form and
applying the general methodology of shock-capturing schemes for sys-
tems of hyperbolic conservation laws. In this paper, we show how to
obtain the benefits of these schemes without the usual complexity of
full characteristic decomposition or the restrictions imposed by fully
conservative differencing. Instead, under certain conditions defined in
gsection 2, the additional advection equations can be discretized indi-
vidually with a nonconservative scheme while the remaining system
is discretized using a fully conservative approach, perhaps based on
a characteristic field decomposition. A simple extension of the Lax-
Wendroff Theorem is presented to show that under certain verifiable
hypothesis, our nonconservative schemes converge to weak solutions of
the fully conservative system. Then this new technique is applied to
systems of equations from compressible multiphase flow, chemically re-
acting flow, and explosive materials modeling. In the last instance, the
flexibility introduced by this approach is exploited to change a weakly
hyperbolic system into an equivalent strictly hyperbolic system, and
to remove certain nonphysical modeling assumptions.

*Research supported in part by ONR. N00014-97-1-0027, ONR N00014-97-1-0968



1 Introduction

It is widely believed that numerical methods for discretizing the Euler equa-
tions should have discrete conservation of mass, momentum, and energy
as well as an entropy fix for low viscosity schemes. Conservative schemes
have limit solutions which are weak solutions of the Euler equations yielding
accurate representation of the shock speeds and jumps. In contrast, noncon-
servative schemes generally give limit solutions which have incorrect shock
speeds and/or jumps, e.g. see [15]. Note that the work in [13] derived and
used special viscosity terms that mimic the Navier-Stokes viscosity in order
to reduce these types of nonconservative errors.

As models become richer in physics and mathematics, more and more
equations are added. Some common examples are the addition of mass frac-
tion equations for chemically reacting flow [7] and the addition of the level set
equation for compressible gas flow [18]. Another example is the Baer Nun-
ziato (BN) two phase model for solid explosives and propellants [1], where
a second set of Euler equations is added for the solid phase, and a volume
fraction equation is added to close the system. In addition, the chemical
source terms of the BN model require the addition of many more equations,
not all of which are known or agreed upon by the community [10, 2]. As
new conservation laws are added to the Euler equations, the Jacobian matrix
required for upwind schemes grows accordingly, usually becoming large and
unwieldy.

For a given system one can often identify a minimal conservative system
that contains the truly nonlinear fields. In the chemically reacting flow
model and the level set model the Euler equations are the minimal system
containing the sound waves. It will be shown that both the mass fraction
equations and the level set equation can be written in advection form and
upwinded separately according to the particle velocity without degrading
the guality of the numerical solution. In fact, the resulting solution is as
good, if not better than the fully conservative method. In the BN model, the
minimal conservative system consists of the two sets of Euler equations which
contain the truly nonlinear fields for both the gas sound waves and the solid
sound waves. The volume fraction equation and the extra equations added
for chemical source terms will be put into advection form and upwinded
separately according to the appropriate particle velocity (gas or solid). Note



that the BN system differs from the first two examples, where the minimal
system was only the Euler equations and all added equations were put into
advection form. The reason for this difference is that the second set of Euler
equations, added to model the solid, contains quantities which have jumps
that are not advected along streamlines, e.g. shock waves in the solid.

One often adds new advection equations of the form

to the minimal system. The continuity equation is

p -+ (pu), =10 (2)

where p is the density and u is the velocity. Multiplying equation 1 by p and
adding it to Z times equation 2 results in

(pZ)y + (pZu)e =0 (3)

as a new equation in conservation form. If the correct Rankine-Hugoniot
jump conditions of the full system are such that discontinuities in Z are
advected along streamlines then the technique introduced in this paper ap-
plies. This is the case for the mass fraction equations, the level set equation,
and the volume fraction equation of the BN model, but not the case for the
second set of Euler equations in the BN model which must be added to the
minimal system. As a further illustration, cansider

where S is the entropy per unit mass. While this equation is valid away from
shocks, discontinuities in S are not necessarily advected along streamlines
and the technique introduced in this paper does not apply. The advection of
discontinuities in Z along streamlines can be made more precise by consider-
ing a discontinuity moving with speed D. The well known jump conditions
for equations 2 and 3 are

Plrefi (’Uzeﬁ - D) = Pright (uright - D) (5)
and
pleftZ!eft(u!e;ft - D)= prightzﬂght(uright - D) (6)
which can be combined to obtain

Pm:ght(zleft - Zright)(uright - D) =0 (7)

3



illustrating that Z must be continuous, unless tpighe = D = Yiest- That is,
discontinuities of Z move with the particle velocity. Moreover 7 is continuous
across shocks. Note that these statements are generally not true for the
entropy.

There are two distinct kinds of advection equations which may be added
to a minimal system. The first kind advects guantities that the minimal sys-
tem depends on, examples include dependence of the pressure on the mass
fractions, the level set function, or the volume fraction. The left and right
eigenvectors of the Jacobian matrix are needed in order to use an npwind
scheme. These types of advection equations dictate an increase in the size of
the left eigenvector, since information is needed from these variables to ac-
curately project into the characteristic fields. However, the right eigenvector
remains the length of the minimal system, since only the minimal systemn
is updated using the characteristic fields, while the advection equations are
updated individually. The second kind of advection equation advects those
quantities that the minimal system does not depend on, even though the
new equations may be dependent on the minimal system for their charac-
teristic velocity. These types of equations occur in newer models such as
the BN equations where the advected quantities have been added in order
to model the chemical source terms. These advection equations have no ef-
fect on the hyperbolic part of the minimal system and do not change the
eigensystem at all, i.e. neither the right nor left eigenvector of the assocl-
ated Jacobian matrix of the minimal system changes. Here the savings in
simplicity of scheme design and programming effort are enormous using our
technique rather than standard conservation form discretizations, because
one only needs to discretize simple additional advection equations. There
are also significant gains in execution time.

In section 5, a conservative equation that introduces a weak hyperbolic-
ity in the BN model (which implies that the problem is mildly ill-posed) is
discussed. In this instance, the identification of a quantity with discontinu-
ities that advect along streamlines is extremely useful since the congervative
equation is equivalent to advecting a quantity which blows up analytically
as the reaction proceeds to completion. This problem is easily fixed by ad-
vecting an equivalent quantity which goes to zero as the reaction proceeds
to completion. Furthermore, putting this well behaved advection equation
into conservative form and solving in the usual way removes the weak hy-
perbolicity for the full conservation form as well.

Once the advection equations are isolated from the minimal conservative
system, greater flexibility in scheme design can be exploited. If the advected
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quantity is continuous, e.g. the level set function, then one can use high
order essentially nonoscillatory (ENO) Hamilton-Jacobi methods which gain
an order of accuracy at extrema over the conservative ENO flux method and
are also somewhat easier to implement {21, 11]. If the advected quantity is
discontinuous, our theoretical and numerical results indicate that nonconger-
vative flux form is preferable. That is, we recommend that the spatial term
of

Z, +uZ, =0 (8)

be approximated as

9)

where ZH% can be viewed as a numerical flux function consistent with Z. For
discontinuous advected quantities, the contact discontinuities can be sharp-
ened with artificial compression methods [22]. In fact, isolating the advection
equations in a flux form that allows nonconservative flux differencing opens
up new research avenues such as the pursuit of a fully multidimensional ar-
tificial compression method, which could not be carried out as easily with
conservative numerical methods.



2 Theoretical Justification
The general theorem concerns the following system of equations in R*x R*

a+V - flg,2)=0 (10)

Z,+8-VZ=0 (11)

where f = (f,g,h) and @ = (u,v,w). Notethatg, f, g, and h are all £ vectors
while Z is an m vector. In regions of simoothness, we assume that equations
10 and 11 are equivalent to a conservative system having £ + m dependent
variables and that the jump conditions for the conservative system are

[/ N1=Dld] (12)

2] (ﬁ-ﬁ—D) =0 (13)

where N is the unit normal to the surface of discontinuity, and D is the local
discontinuity speed in the normal direction. For simplicity of exposition only
we consider R? x R* in the following.

We approximate the system using conservation form for the “¢” variables
and nonconservative flux based form for the “Z” variables. Thus we have

¢ =ahi - —ﬁ_i [(Eﬂk%,j - F e'n—%,j) + (G?,ﬁ% - G?;jﬂ%)] (14)

where Fi’;%j and G}, : are Lipschitz continuous numerical flux functions
’ I35
consistent with f(q, Z) and g(g, Z) respectively. We also have

At - A . .

i = 25 — o (b (25— Ziys) + ol (Zigas - Zis-y)]  (15)
where 2&%, ; and 2;"'] £y Are Lipschitz continuous flux functions consistent
with Z.

We make the following assumptions: Suppose, as At, Az, Ay — 0, a
subsequence of the approximate solutions generated by equations 14 and
15 is bounded a.e. convergent to a piecewise differentiable limit, (g, %), for
which Z has jumps only where i is differentiable. In addition we assume that
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the first divided differences in = and y of these approximations ug; and v;
are uniformly bounded by an integrable function in any compact set £ C R?
for which the limit solution (u,v) is differentiable, i.e. uf; and vj; are each
uniformly bounded in W**((2), and that similar statements are true for 27
in any compact set @ C R? for which the limit solution Z is differentiable.
Then we have the following result:

Theorem 1. The piccewise differentiable limit (q,Z) 15 a weak solution
of equations 10 and 11, i.e. it 13 a classical solution when it is differentiable
and it satisfies equations 12 and 13 at jumps.

Remark 1. Our assumptions are considerably stronger than those of
the classical Lax-Wendroff theorem [14] which requires only bounded a.e.
convergence. Nevertheless, in our calculations in this paper (and elsewhere)
using this method, we have observed that our assumptions were valid. In
fact the divided differences of the approximations to 2 were always uniformly
bounded away from the discontinuities of the limiting % in our calculations,
and similarly for Z.

Remark 2. The content of our Theorem is along the lines: convergence
plus consistency implies the limit solution satisfies the original differential
equation. Here, this amounts to showing that the jump conditions in equa-
tions 12 and 13 are satisfied and that equations 10 and 11 are true in regions
of smoothness.

Remark 3. The Lax-Wendroff Theorem states that a converged solution
is a weak solution. Thus one has to believe their results have or will con-
verge with further grid refinement. Our Theorem requires this as well as
the requirement that Z has jumps only where 1 is differentiable and that
the approximations to % are uniformly bounded in Wit wherever 4 is differ-
entiable, with similar requirements on Z and its approximations. One has
to believe that no singularities will appear and violate these hypothesis as
the grid is refined. This is in the spirit of the Lax-Wendroff Theorem, ie.
if it has not happened on the finest computational grid (lack of apparent
convergence, or in our case, singularities in the wrong places), then one can
quote the appropriate theorem to justify convergence.

Remark 4. For an arbitrary system of conservation laws to have the
decomposition in equations 10 to 13, it is necessary that one of the eigenval-
ues of the Jacobian matrix in each dimension be (u, v, w) Tespectively, each
repeated at least m times. This is, of course, only a necessary condition.

Remark 5. Our main theorem may appear to contradict some prevailing
wisdom. For example in [16] the authors state that the advection equation
11 “does not hold & priori across a shock”. This is, of course, generally true,
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but we have proven that it does hold in our sense if Z remains continuous

there.
Proof. Let (x,y,t) be a C3(R? x RY) function. We multiply equations

14 and 15 by ¢{(z;,y;,t") and use the summation-by-parts idea in the proof
of the LW theorem, arriving at

(‘P(‘TH yjatn) B (P(E'H Yis tn_l))

Z AtAzAy [q};’fj At

i‘j)n

n (P(:Ei—i—hyjatn) T Qo(m‘hyj?tn)
R Az

" (P(g;i?y’-!—l)tn) - (p(wi:y'atn) _
+Giaa ( : Ay ! ] =0 (16)

and

olzs, 5, 1") — o(Ts, Y 1)
At

S AtAsdy| 7L

i,4,m

Az

+ n (u?+1,jtp($i+1#yj:tn) - “?,j‘ﬂ(??hyj,tn))
i+l

St
+Zi.j+%

07541 P{Zs, Y1, 1) — VEP(E0 yj:tn)) B
( Ag |=0 (17)

We let At, Az, Ay — 0 for the converging subsequence. From equation
16, exactly as in the proof of the Lax-Wendroff theorem (which uses the
Lebesgue dominated convergence theorem, the Lipschitz continuity of the

flux functions, consistency, and the fact that

lim (z + h) = v(z) (18)

a.e. for bounded measurable functions v}, we have

f gps + fi, + g0, =0 (19)
RZx Rt



for any such test function . This, of course, implies that ¢ is a classical
solution of equation 10 wherever g and Z are smooth and that ¢ and Z satisty
equation 12 at jumps.

Next we use the identity

ulyy (@i, ¥y 1) — ulp(i,95,8") _
Az

Tit1y ')tn - iy ':tn u‘? ’-—’LL?,- n
i (tp( 1,95 /)_\m (i, Y; ))+(Mi§4) oz yst™)  (20)

and the analogous identity involving “y” divided differences. Choose ¢ to
have support in a region £ in which i is differentiable. We let Az, Ay, At —
0 along the converging subsequence. Using equations 17 and 20, the Lebesgue
dominated convergence theorem and the usual Lax-Wendroff argument we
arrive at

[ Tt B Vo) + 2T Dp=0 (21)

R2x Rt

If 7 is differentiable in §2, a simple integration by parts gives us:
f(p(Zrl-’EE-VZ):{) (22)
a

for any such ¢, hence Z 18 a classical solution of 11 in §2. If Z has a jump we
take Q to be a sphere centered at a point of discontinuity. We then let the
radius of the sphere go to zero in equation 21 and obtain the jump conditions
in equation 13 in a standard fashion.

We may prove Z is a classical solution when u jumps with the help of the
dominated convergence theorem arriving at equation 22 in a straightforward
fashion.



3 Level Set Equation for Compressible Flow

Consider the one dimensional Euler equations with the level set equation in
conservation form

P .g'”'
pu pu” +p

= 23
E + (E + pu 0 (23)
P/, pud /),

where p is the density, u is the velocity, E is the total energy per unit
volume, p is the pressure, and ¢ is the level set function. Another alternative,
as suggested in {18], is to replace the conservative level set equation (4th
equation) with the level set equation in quasilinear or advection form

noting that ¢ is valid in advection form since the values of ¢ are meant to
advect with the particle velocity u, i.e. along streamlines.

3.1 Projection into Characteristic Fields

Modern shock capturing schemes are often based on projection into char-
acteristic fields. Usually the value of the left eigenvector of the Jacobian
matrix is frozen and used to locally decompose the system. Consider the
Euler equations with the level set equation in advection form. Projection by
a left eigenvector, L = (11,15, 13,14), leads to

p ”
(11,0, 15, 1) %t + | (1, 15) put +p +Lug, =0 (25)
! (E + p)u
¢

where it is obvious that the spatial part of this equation cannot be written
in conservation form. In order to obtain conservation form for the projected
equation one needs to use the conservative version of the level set equation
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so that projection by a left eigenvector leads to

p pu
+
Gbtl) | o || + |Gl | G || =0 @
o ] 1, pue .

in conservation form. For this reason, the level set equation is written in
conservation form when formulating the Jacobian matrix and the associated
eigensystem.

3.2 Conservative Eigensystem

The total energy is the sum of the internal energy and the kinetic energy,

2
U
E =pe+ 82— (27)
where e is the internal energy per unit mass. The pressure can be written
as p = p(p, e, $) with partial derivatives p,, ., and ps. Alternatively, con-
sidering the pressure as p == plp, pu, E, p¢) allows one to write the partial
derivatives of the pressure with respect to the conserved variables as

dp B @_ o 2 2
%MHA . H=c -T(H-ub) (28)
9 _ _ op _
3w = , 5E =T (29)
op Py
P 30
ops) p (30)

where the Gruneisen coefficient, the sound speed, and the total mixture

enthalpy are defined by
e Y
F = —, = -+ — 31
P Py P ( )

H=2TP (32)



The partial derivatives of the pressure are used to obtain the Jacobian

matrix
0 1 0
—u? + H- ¢—ﬂ‘9* 2u—Tu T
—uH—{-uﬁ—%f—" H-Tu? u+
—ugp ¢

and the associated eigensystem

=

1 1

"1_ U —cC "2_ U
k= H-uc |’ | H-%

¢ ¢

1 0

3= utc 21 _ 0
1 HAue |’ —F

¢ 1

=5 _ (b2 o o7 —b1u+i _b_l P )
2 2c  2pc®’ 2 2¢’ 27 2pc?

It =(—¢,0,0,1)
where

b= e by=1+bu’—bH

pc?’

12

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)



3.3 Numerical Method

When discretizing along the lines of [22], the left eigenvectors are used to
project into the characteristic fields, the scalar flux in each characteristic
field is discretized baged on the associated eigenvalue in that field, and the
right eigenvectors are used 0 project out of the characteristic fields. Then
the contributions from each characteristic field are added together to produce
the total vector flux at a cell interface. These vector fluxes are differenced
in the usual manner resulting in a fully conservative numerical method.

In order to correctly project into the characteristic fields, the full left
eigenvector is always used. However, since conservation form is not required
for the last equation, t.e. the level set equation, only the first three compo-
nents of the right eigenvectors are used to project out of the characteristic
fields. The level set equation is discretized independently in advection form,
noting that its characteristic information is determined by » and that noth-
ing about it need be conserved.

Consider the Ghost Fluid Method, developed in [5], where p; is identi-
cally zero. The minimal system no longer depends on the level set equa-
tion and only the first three components of the first three left and right
eigenvectors are needed to update the minimal system. That is, the one
dimensional Euler equations can be discretized with a standard conservative
scheme while the level set equation 18 independently discretized in advection
form. For both one and two dimensional computational results along with
comparisons to the exact solutions, see i5]-
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4 Chemically Reacting Flow

Consider the two dimensional thermally perfect Euler Equations for multi-
species flow with a total of N species,

g, + [FO)). + [G@), =0, (41)
[ o p
pu pu? +p puv
pv puv pv: +p
g=| B | BFah=| B+enu |, GO)=| E+rv [42)
Yy puty puYi
\ pYn_1 / \ pu¥y_y / \ pv¥y_1, /

2 2 N T
E=—p+ P(i.;_”l +p (Z Yihi) . (T =hi+ f ¢,(s)ds (43)
i=1 ¢

where £ is time, z and y are the spatial dimensions, p is the density, u and
v are the velocities, F is the energy per unit volume, Y, is the mass fraction
of species 4, h; is the enthalpy per unit mass of species 1, R is the heat of
formation of species ¢ {enthalpy at 0K), ¢,; is the specific heat at constant
pressure of species 4, and p is the pressure [7]. Note that Yy =1— YN
The pressure is a function of the density, internal energy per unit mass, and
the mass fractions, p = p(p, e, Y1, -, Yy_1), with partial derivatives p,,Pe
and py, where E = pe + L’ﬁ;ﬁl defines the internal energy per unit mass.
The eigenvalues and eigenvectors for the Jacobian matrix of 15"([7) are
obtained by setting A = 1 and B = 0 in the following formulas, while those
for the Jacobian matrix of G(U) are obtained by setting A =0 and B = 1.
The eigenvalues are

M=d-—¢ M =d+c (44)
A== 2V =g (45)
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where % is repeated (N + 1) times.

The standard construction of upwind difference schemes requires the full
eigensystem of the Jacobian matrix of F evaluated as some intermediate
value of {f. When this Jacobian matrix has a repeated eigenvalue, this in-
volves finding a basis for the associated eigenspace which can be complicated
for systems with high multiplicity. The Complementary Projection Method
(CPM) is an alternative approach where full upwinding is accomplished with-
out the use of the eigenvectors in the repeated eigenvalue field. Suppose the
first p eigenvalues are repeated, then the corresponding p dimensional char-
acteristic subspace is the span of (f:l, e ,ﬁp). The remaining left and right
eigenvectors can be used to define

fE=L[%.F (46)
and write
F=F+ ¥ f*gB¥ (47)
h=p+i

where the vector F can be upwinded according to the sign of the repeated
eigenvalue A' = A%... = AP, and no basis need be chosen for F. For more
details on the CPM, see [6].

The CPM requires the first and (N + 3)-rd left and right eigenvectors for
the chemically reacting flow example congidered here. In addition, since the
minimal conservative system is the two dimensional Euler equations, only
the frst four entries of the right eigenvectors are needed. The necessary left
and right eigenvectors are

o b 4 b, bu A by B b —bz bz
L (b @ by bw A b B b Zha TN
L‘(z seto Ty a2 T2 2 T 2 )(48)
; b 4 b bu A by B b —bz bz
nes (b @ b bw A b B b —Zha TN
L '“(2 wte 3 Tae Ty T2 T 2 )(49)
1 1
= u — Ac N4 u+ Ae
R = v — Be , R | v+ Be (50)
H — e H+dc
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where the unnecessary terms in the right eigenvectors have been omitted for
brevity and

@ =ul+0°, t=Au+ By (51)
PP. E+p
c= L e Hoe=— 52
ot 5 (52)
po= P py=1+bg -bH (53)
1 PCz’ 2 1 144,
N-1 —p
by=by > Yizi, = p“. (54)
i=1 €

4.1 Numerical Method

The two left eigenvectors are used to project into the two nonlinear fields,
while only the first four entries of the right eigenvectors are used to project
out of these fietlds. The CPM is used to construct the complementary sub-
space

pu

— 2 —_ =, = — P T

F= P”puf; P | - ROHR - IVPFO)RYY (55)
(E+plu

where 7 has length four and each of its component can be upwind differenced
in the upwind direction determined by u. The resulting flux is combined
with the flux contributions from the two nonlinear fields to yield the net
numerical flux for the first four entries of F(ff) These fluxes are differenced
in the usual manner to get the proper upwind conservative discretization for
the first four equations, i.e. for the minimal system. For a dimension by
dimension discretization, the same procedure is applied to the flux in the
other spatial dimension, and then the total spatial contribution can be used
with a TVD Runge Kutta method to update the first four equations of the
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gystem, i.e. to update the minimal system. The advection equations for the
mass fractions

Y Y Y
: +u : +w : =0 (56)

YN-—l YN—l z YN-wl;

t ¥

are discretized independently in an equation by equation fashion noting that
the characteristic information for the x and y derivatives is determined by v
and v respectively and that nothing need be conserved.

4.2 Examples

Several of the examples from [4] and [7] were recomputed using the noncon-
servative flux based method outlined in this paper. Overall, the calculations
using the new technique agreed well with the old calculations. One particu-
larly difficult example from [7] is repeated here.

Consider a .12m domain with a shock wave located & £ = .06m traveling
from tight to left in a 2/1/7 molar ratio of H, /O, /Ar where all gases are
assumed to be thermally perfect and a full chemical reaction mechanism is
employed as discussed in [7]. The initial data for the shock wave consists
of p= 0725 4 = 02 and p = 7173Pc on the left with p = .180752%,
uw = —487.342, and p = 35594Fa on the right. A solid wall boundary
condition is applied at x = Om and the shock wave reflects off this wall
changing its direction of travel. As this shock wave passes over the gas a
second time, the gas is heated enough to initiate chemical reactions. After a
suitable induction time, a chemical combustion wave forms at the wall and
travels to the right eventually overtaking the shock wave resulting in the
formation of three waves. From left to right, there is a rarefaction wave, a
contact discontinuity, and a detonation wave.

Figure 1 shows the solution at 230us with 400 uniform grid cells and 2300
equal time steps using the fully conservative ENO-RF method outlined in
[7]. Figure 2 shows the same calculation using the nonconservative flux based
ENO method (outlined in the appendix) for the mass fraction equations. The
CPM [6] was used in both calculations. In [7], this was shown to be a very
sensitive problem, and the good agreement of the two methods is promising.
The only major difference is in the height of the HO, peak, although this
seemns to have no effect on the rest of the solution.
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A grid refinement study was carried out with 100, 200, 400, 800, and
1600 grid cells using 575, 1150, 2300, 4600, and 9200 time steps respectively.
Figure 3 shows the results with the fully conservative scheme while figure 4
shows the results with the nonconservative flux based method for the mass
fraction equations. The position of the lead detonation wave converges with
first order accuracy for both numerical algorithms. In addition, the peaks in
the HO, mass fraction seem to converge more uniformly (i.e. monotonically)
for the nonconservative flux based method. Figures 3, 6, and 7 compare the
two methods with 100, 400, and 1600 grid points respectively. The fully
conservative method is plotted with z's while the nonconservative flux based
method is plotted with o's.
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Figure 1: Fully conservative method
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Figure 2: Nonconservative flux based algorithm
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Figure 3: Fully conservative method
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Figure 4: Nonconservative flux based algorithm

22



0.65

0.6

0.55

.06

0.05

0.04

0.03

0.02

0.01

0

den OH mf

i : : 0.016
0.0t}
» %'\j

o.01}
0.008 |
0.006 1
] 0.004}

x o.002

Ca

0 0.02 004 006 0.08

107 HO2 mi

x

Ox

o]

002 004 0068 008 0.1 0 0.02 004 0.06 008
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5 BN Two Phase Explosives Model

Consider a simplified version of the one-dimensional Baer-Nunziato (BN) two
phase explosives model [1, 3, 10, 2] that ignores nozzling and gource terms

PePy \ Pyttg Py \
PgligPy (pyuf +Pg)y

qusg (Eg +pg)uy¢9

psts | t+ Psts® =0 (57)
JRIN (pstis + Py )bs

E,, (B, 4 peo)usts

Ps .\ Psths /.

where ¢ is time, x is the spatial dimension, p,, Uy, E,, p,, and ¢, are the
density, velocity, energy per unif volume, pressure, and volume fraction of
the gas, and p,, U, H;; Pas and ¢, are the density, velocity, energy per unit
volume, pressure, and volume fraction of the solid. The seventh equation is
the compaction equation which is used to close the system along with the
saturation condition, ¢, + ¢, = 1. Assuming that neither phase has any
material strength, the pressure of each phase is a function of the density
and internal energy per unit mass of that phase, p, = po(py, e,) and pg =
p,(ps,€,), With partial derivatives (Ds)p,s (Ds)ess (Pg)pys BDM (py)e, Where
E, =p,e, + P-‘i;; and F, = p,e, + %i define the internal energies per unit
mass. In addition, assume that the equations of state are defined in a manner
consistent with (p,),, = 3% and (pu)p, = B+ as identities. A more detailed
version of the model is considered in [8].

Under the above assumptions, the eigenvalues are u; — €, Ug, Uy + ¢y,
Us — Cg, Us,y Uy + C4y and g, with corresponding left and right eigenvectors

- b w, —by,u 1 b
1_ (P2 Y TMeve - g
L _(2 e T ,o,o,o,o) (58)
L% = (1= by, bygttg, —b14,0,0,0,0) (59)
- b w,  —by,u i b
s_ (D29 Mg "Ulg7e , ° lo
= ( 3 "5 2 + 502 ,0,0,0,0) (60)
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- b uy —bisu 1 b
. bay Uy bt 1 bis
It = (0,0,0, R i Bt e ,0)
ES = (O:O:(}a 1 — bog, b1sths, _blsao)
= b u, —bsu 1 b
6 _ Y3 s 1slvs e Ns
L= (0’0’0’ 2 2’ 2 2¢,” 2 ’D)
ET = (0,0,0, _110}0:¢s)
1) (1) 1
Ug — Gy Uy, . Uy + Cy
. H, —ugc, . Hy— 5 . H, +u,c,
Rl = 0 ] R2 = 0 H R3 = 0
0 0 0
0 0 0
\ 0 \ 0 \ 0
[0 ) (0 ) (0
0 0 0
. 0 a 0
= 1 , Re= 1 , R = 1
g = Cs U, L
H, —u,c, H,— 5= H, 4+ u,c,
\ % \ \ %

(61)

(62)

(63)

(64)

65)

(66)

(67)

(68)



(Ps)e Lsps
L= =, Ce = a)pa T 69
0, {f ), + = (69)

T TN B, +p, (70)
Pg Ps
T
blg = '"é:g_: b2g =1+ b}yug - bigH.‘J (71)
r
by, = c_:’ by, =1+ by,us — by, H, (72)

5.1 Numerical Method

The seven left eigenvectors are used to project into the characteristic fields,
while only the first six entries of the seven right eigenvectors are used to
project out of these fields, since the minimal system consists of the first six
equations. This avoids the common division by zero problem introduced by
the seventh term in the right eigenvectors, i.e. the l term. This term blows
up when a chemical reaction depletes ¢, to zero and has forced unphysical
modeling, e.g. solid cores [10], to avoid the problem. {Another method used
to avoid this problem involves the use of central schemes [17, 19].) In [8],
a priori knowledge that the seventh entry of the right eigenvectors could
be discarded motivated manipulation of the eigensystem in a manner that
forces this division by zero problem into that location eliminating it entirely.
The volume fraction evolution equation

(¢s)t + us(qbs)m =0 (73)

is an advection equation, and it can be discretized independently noting that
the characteristic information is determined by u, and that nothing need be
congerved.
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5.2 Examples

In [10], a conservation law for the number of particles per unit volume
n, + (u,n), =0 (74)

was added to the one dimensional BN model. Inclusion of equation 74 leads
to a new weak hyperbolicity when ¢, = 0 due to the “blow-up” of the
resulting %~ term in the eigensystem. See [10] for details.

£a
Using the continuity equation for the solid, equation 74 can be rewritten

in advection form
) n
— | (—-) =0 75
(ps(yba)t ps¢s x* ( )

where the advected quantity is the number or particles per unit mass. This
quantity blows up as the chemical reaction proceeds to completion, i.e. as
¢, — 0. Since n 18 defined as the volume fraction divided by the particle
volume

n=te (76)

equation 75 is equivalent to

) +u(53)
_+..us :0 77
(pSV; RV (77

which blows up when V, — 0.

The problem with equations 74, 75, and 77 is that they are all derived
by advecting a quantity that blows up as the reaction proceeds to comple-
tion. This can trivially be avoided by advecting an equivalent quantity that
vanishes as the reaction proceeds to completion. As the number of particles
per unit mass blows up, the mass per particle vanishes. Replacing equation
75 with

(s V), + s (psV3), =0 (78)

and solving this equation in advection form removes the weak hyperbolicity.
All that remains are some decoding errors that occur when computing n
from equation 76, although n is no longer needed to solve the system. [f
conservation form is preferred, then equation 78 can be combined with the
continuity equation of the solid to obtain

(020 V,) + (wopsths V), = 0 (79)
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which can be substituted in place of equation 74 resulting in an eigensystem
that contains a well behaved p,V, term instead of a poorly behaved 575
term.

In figure 8 we repeat a simple shock tube calculation from [10] using
equation 78 for the mass per particle to replace the conservation equation

for n. We use a 10m domain with 200 grid cells and a final time of .006

seconds. Initially, p, = p, = 1024 and p, = p, = 1.0 X 10%Pa on the left,
while p, = p, = 1%‘;% and p, = p, = 1.OX 105Pa on the right. In addition,
u, = u, = 0%, ¢, = .7, and n = 1.19 X 1otiperticles everywhere. Both

the solid and the gas phase are assumerd to obey p = pRT and e = ¢, T
with R, = R, = BTk, (€u)y = 718@, and {c,), = 2391;;—K. The resulis
compare well with those from [10] where the conservation equation for n was
used. Note that the solution for the mass per particle variable only contains
a simple contact discontinuity propagating to the right, while the solutions
for the particle volume variable and the number of particle per unit volume
variable both contain shocks and rarefactions.
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Figure 8: BN calculation
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A Central Schemes

The examples in this paper were discussed based on an upwind discretization
with eigenvector projections. In this appendix, a central discretization is
briefly discussed. See [17] and [19] for examples of central schemes.

Consider the one dimensional Euler equations with Z satisfying the fol-
lowing advection equation

Z, +uZy =0 (80)

which can be placed into conservation form along with the Euler equations

P ém
pu pu’ +p
= 81
E || Brpu | =0 (81)
pZ puZ

t @

and discretized equation by equation with a central scheme. The new tech-
nique presented in this paper would not alter the central discretization of
the Buler equations, but equation 80 would be discretized in nonconserva-
tive form instead of

(p2), + (puZ), =0 (2)

in conservation form. Equation 82 requires artificial numerical dissipation
proportional to the maximum of |[u + ¢ and lu — ¢| when discretizing with
o central scheme since it includes the continuity equation by construction.
Moreover, shocks and rarefactions can occur in pZ. In contrast, equation 80
does not require this (possibly large) numerical dissipation and there are no
shocks or rarefactions in Z.
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B Advection Equation Discretization

Consider an advection equation of the form
Zy+uZ, +vZ, =0 (83)

where Z is the advected quantity and v and v are the particle velocities in
the x and y direction respectfully. Nonconservative flux based discretizations
for Z, are given below. Z, is discretized in a similar fashion and then these
two terms are combined with u and v at each grid node hefore applying a
3rd order TVD Runge Kutta method [9, 22] for time integration.

B.1 Nonconservative Flux Based ENQ Discretization

A nonconservative extension of the ENO-Roe discretization is used, since
there are no nonlinear waves such as shocks and rarefactions [9, 22].
The munerical flux function F' is defined through the relation

~Fi3

F‘i 1
(7, =~ h

. (84)

where the Fj, 1 are the values of the numerical fiux function at the cell walls.
The numerical flux function is constructed at the cell walls by considering
the primitive function I of another function h, where h is identical to the
numerical flux function F' at the cell walls.

H is calculated at the cell walls with polynomial interpolation. The
zeroth order divided differences, Df‘.’+%, and all higher order even divided
differences of H exist at the cell walls and have the subscript ¢+ 1. The first
order divided differences D} and all higher order odd divided differences of
H exist at the grid points and have the subscript 4. Note that, the zeroth
order divided differences of H vanish with differentiation and are not needed.

The first order divided differences of H are,

DH = 7% (85)

and the higher divided differences are,

1 1
DY H=3D},2, DiH=3DiZ (86)
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Consider a specific grid point 4g. If uy = 0, then setting (Z;);, = 0
will be algorithmically correct since (wZy)i, = 0 is desired, otherwise u;,
determines the upwind direction.

The associated numerical flux function F; .y is defined as follows: If
u;, > 0, then k =45, Hu;, < 0, then k = iy + 1. Define

Qu(x) = (D H) (= — 5’»‘«?04—%) (87)

It IDi_%Hl < ]D§+%H|, then ¢ = Di_%H and k* = k — 1. Otherwise,
c= Dz+%H and k* = k. Define

Qy(x) = clz - Ek—%)(m - $k+§) (88)
If |D% H| < |D}. 1 H|, then ¢* = Di. H. Otherwise, ¢ = D%, H. Define
Qa(z) =z — $k*—%)($ - ka*-z-%)(i” - :n,m_%) (89)
Then Fiy4y =
DLH + ¢ (2050 — k) +1) Az + ¢ (3(6p — kP —1) (Azy (90)

Likewise, the associated numerical flux function Fj,_1 is defined as fol-

lows: If 4, > 0, then k =4 — 1. If uy, < 0, then k = 4. Define
Qi(z) = (DiH) (@ — 7ip—3) (o1)

If |D}_,H| < |D}, 1 H|, then ¢ = D} ,H and k* = k — 1. Otherwise,
c= D-§+§H and k* = k. Define

Qs(z) = c(z — $kﬂ%)(ﬂ7 - $k+%) (92)
T | D3 H| < | Dy, H|, then ¢ = Di H. Otherwise, ¢* = D3, 1 H. Define
Qs{z) = c*(z — mk*_%)(w - 931»-*4«%)(37 - $k*+%) (93)

Then Fy,_3 =
DIH +e(26p—1—k) + 1) Ax+¢ (30— 1 - 2 —1) (Az)*  (94)

Finally, (Z,):, is given by equation 84.
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B.2 Nonconservative Flux Based WENO Discretization

Consider a 5th order WENO scheme with the parameter € [12]. Large val-
ues of ¢ cause the stencil to be biased toward central differencing (causing
oscillations), while small values of e cause the stencil to be biased toward
3rd order ENO (lowering the order). To get a stencil biased toward the fifth
order flux e is defined as

€= 107° ma,x{'vg, Ugﬁvga ”021 v?,} + 10—99 (95)

where 10~% is used to avoid division by zero and should be much smaller
than the first term in most regions of the domain.

Consider a specific grid point 4. If ug = 0, then setting (Z;);, = 0
will be algorithmically correct since (uZ;}, = 0 is desired, otherwise u;,
determines the upwind direction.

The associated numerical flux function Fj .1 is defined as follows: If

Uy > 0, then v; = Zio—m Vg = Zyjy_1, V3 = Zig: Uy = i1y and vs = Zipa
If uy, <0, then vy = Zj 13, Vo = Jigp2: Vs = Zigtls vy = Zyy, and vy = Zijy-1-
Define the smoothness

13 s 1 9

S = ﬁ(vl — 2uy + )"+ Z(’Uz — du, + 3v;) (96)
13 1

Sy = ﬁ(”z — 2v3 +v)° + Z(Uz — vg)? (97)

13 g 1 2
Sz = ﬁ(vs — 2uy +ug) + 1(3”3 — 4wy + vs) (98)

and the weights
1 1 _ ay

“ :E(E'*‘Sl)z, = ay -+ 8y + a3 (99)
i 6 1 _ 253
2710 (€ + S53)% w2 = a; +az+ a3 (100)
1
> Wy = —— (101)

a3=—ia(€+53)2, a, + a; + ag
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to get the flux F 11 =

Tv, 11 5 5
wy (G — g+ o) +ua(g + 20 (4 - ) (109

Likewise, the associated numerical flux function F; _1 is defined as fol-
lows: If u,, > 0, then v, = 2.3, 2 = Zogyns Vg = Zig1, Vs = Z;,, and
Vg = Zm_H If u;, < 0, then vy = Zi 42, V2 = Zipr1y U3 = Ziyy Vg = Ly,
and v = Z;, 5.

Then the smoothness, weights, and flux are defined exactly as above
yielding F;

ﬂ*"‘— =

k5 7'!)2 1].’U3 5'!)3 Vs 5'1)4 Us
wl(3 5 —) + wy 6 2+ 6 + )+ (3+ 5 6) (103)
Finally,
Firy — Fig
{(Zadio= — Rz (104)
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