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SPARSE APPROXIMATE INVERSE SMOOTHER FOR MULTL-GRID
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Abstract. Various forms of sparse approximate inverses (SAJ) have been shown to be aseful
techniques for preconditioning. Their potential usefulness in a parallel environment has motivated
much inberest in recent years. However, the capability of an approximate inverse in eliminating
the local error has not yet been fully exploited in multi-grid algorithms. A careful examination
of the iterative matrices of these approximate inverses indicates their superiority in smoothing the
high frequency error in addition to their inherent parallelism. We propose a new class of sparse
approximate inverse smoothers in this paper and present their analytic smoothing factors for constant
cosfficient PDEs. The several distinctive features to make this technique special are:

¢ By adjusting the quality of the approximate inverse, the smoothing factor can be improved
accordingly. For hard problems, this is useful.
o In contrast to the ordering sensitivity of other smoothing techniques, this technique is
ordering independent.
s In general, the sequential performance of many superior parallel algorithms is not very
competitive. This technique is useful both in parallel and sequential computations.
Our theoretical and numerical results have demonstrated the effectiveness of this new technique.
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1. Introduction. The effectiveness of multi-grid is based on two main compo-
nents: smoothing and coarse grid correction. The smoothing process, usually carried
out by a relaxation method, damps away the high frequency error cotnponents. The
coarse grid correction process, carried out by an interpolation, approximates the low
frequency components on the coarser grids. The idea is that the combination of the
two will result in a significant error reduction independent of the problem size {19]
and hence lead to an efficient solution procedure.

Relaxation methods such as Richardson, Jacobi and Gauss-Seidel are oftenly used
as smoothers for multi-grid, although other iterative methods, for instance, ILU [20,
37] and (preconditioned) conjugate gradient [1, 6], or even ODE solvers [23] such as
Runge Kutta methods, have also been used for specific problems. The relaxation
methods are particularly useful for multi-grid since they are simple, and all have the
common property of removing the high frequency error components [4, 19].

In practice, Gauss-Seidel is usually the most effective smoother among other re-
laxation methods. A drawback, however, is that Gauss-Seidel is a very sequential
algorithm. A parallel version may be obtained by a special ordering of the unknowns,
for example, red-black ordering for the five-point stencil operator on a square grid.
The Jacobi method, on the other hand, is a very parailel method, but its smoothing
efficiency is not as good as Gauss-Seidel. It is also well known that Gauss-Seidel
smoothers do not work well for anisotropic problems and discontinuous coefficient
problems. In this paper, we propose a new class of smoothers derived from sparse
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approximate inverse preconditioners. It has a smoothing efficiency similar to Gauss-
Seidel and it is independent of ordering. Moreover, for hard problems, we can improve
the smoothing efficiency by adaptively adjusting the quality of the approximate in-
verse, for instance, by adding more nonzeros. Consequently, this new technique is
more robust than Gauss-Seidel smoothers. Our numerical testing verifies this state-
ment,

We remark that Huckle [22] independently experimented with a sparse approxi-
mate inverse smoother for multi-grid by modifying the standard (Gauss-Seidel itera-
tion. Specifically, instead of using the exact inverse of the lower triangular matrix, he
used a sparse approximate inverse of it computed by the techniques described in [17].
In our approach, we do not restrict ourselves to Gauss-Seidel only. Indeed, we replace
the Gauss-Seidel smoother completely by a sparse approximate inverse smoother. The
resulting multi-grid is efficient, and we have more flexibility in improving the smooth-
ing quality for hard problems.

In Section 2, we describe the construction of the sparse approximate inverse
smoother. In Section 3, we analyze the smoothing property of the proposed smoother
analytically and namerically for constant coefficient PDEs. Some techniques to im-
prove the smoothing character for the anisotropic problems are presented. Finally, in
Section 4, we show the effectiveness of the sparse approximate inverse as a smoother
for multi-grid by a variety of problems including anisotropic problems, discontinuous
coefficient problems and unstructured grid problems.

5. SAIsmoother. Various techniques have been proposed for an effective sparse
approximate inverse preconditioner (2, 3, 8, 10, 15, 17, 26, 27, 34]. However, the goal
of constructing an effective smoother is actually very different from finding a good
preconditioner. For a powerful preconditioner, the capability of removing the lower
frequency error is essential. In contrast, a good smoother should damp the high
frequency errors effectively. In this respect, much of the weakness [34] of sparse
approximate inverse preconditioners becomnes the strength of the SAI smoother. Our
new proposal is to explore them to construct a powerful smoother.

Most sparse approximate inverse approaches seek a sparse matrix M so that the
error

E=AM ~1

is minimized in some measure. The sparsity constraint often limits the effectiveness
of M as a preconditioner due to the locality of the sparse approximation. The lack of
the global approximation has created many difficulties for a powerful preconditioner.
Various additional techniques are required to improve the quality of a SAI precon-
ditioner [7, 34]. The requirement for a good smoother, on the other hand, can take
advantage of the locality of the sparse approximation. Another interesting conse-
guence is that many of the techniques to improve the quality of a SAI preconditioner
are no longer relevant to a good smoother. In this paper, a more primitive form of
approximate inverse — local least-squares approzimation is studied. It turns out that
this simple form of approximate inverse performs well as a smoother, and the cost of
computing this form of SAI is the cheapest among all others.

A sparse matrix A can be represented by a digraph G = (0, &) [13]. For multi-
grid methods, the graph often is the mesh on the PDEs solution domain. Define
Li{0:), the k-level neighbor set of node o;, the nodes which are a distance k-1 or
less from o;. The use of the level concept to define the sparsity pattern for incomplete
factorizations is widely used for ILU preconditioning{i8, 11]. The {-level neighbor set
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Lof{o;) contains all the nodes which directly connect to node o;. For PDE problems,
Li(0;) is the set of the mesh points from the discretization. Similarly, define Wi (0:),
the ktP-wavefront of node o;, as the set of nodes which are a distance k + 1 from node
0;. Tf we assign the values of the elements in a row! of inverse to the corresponding
location in the graph and the surface plot is the picture of the discrete Green’s function
at node o;.

It can be shown that the elements in a discrete Green’s function decay in a
wavefront fashion for many problems [32]. In particular, Ly(0i) includes the k most
influential wavefronts. That is the motivation to choose Ly (0;) for the sparsity pattern
to approximate the discrete Green’s function at node o;. The computation of these
locations is also cheap. A good choice of the sparsity pattern has & big impact on the
quality of the SAT.

The rectangular submatrix®

A(L(0:), Liloi)) (2.1)

is defined as the k, I-level local matrix of node o;. This matrix takes rows correspond-
ing to nodes L3(0;) and columns corresponding to nodes £i(0;} from A.

We introduce the (k, [)-level local least-squares approzimation of an inverse as: for
each node o; (row) of the approximation, the least squares solution® z of

AT(Li(0), Lifoi))x = eo; (2.2)

is taken for the nonzero values at the corresponding location Ly(0;) of the sparse
approximation of the discrete Green’s function of node o;. More precisely, we inject
each element of the least squares solution @ into a zero vector of size of the matrix A
at the corresponding location in L1(0;) and use this sparse row o approximate the
row o; of the inverse A™%. In (3.1), a (0, 1)-level case is presented. It is clear that, the
sparsity pattern of the approximate inverse is related to the locations of £ #{0:) and the
approximation range with which we are concerned to the locations of £i(0;). A higher
level k implies a denser approximation while a higher level ! provides a approximation
which is good for more neighbors. The (0, 0)-level approach was used by Benson (2]
originally, and was not a good choice for both preconditioner and smoother. Our
experiences indicate that the (0, 1)-level local least-squares approximation is the most
cost-effective smoother in general. However, for anisotropic and/or other difficult
problems, a higher level SAI smoother is required. This adaptable quality makes the
SAI smoother a robust technique.

To compuie these local least squares solutions is an easy task and can be imple-
mented in parallel effectively. For any constant coefficient PDE on a regular mesh, we
may even use the local least squares solution for one interior grid point for all nodes
to save the cost of computations. Our test and analysis indicate that this sitnple ap-
proach does not bring any noticeable penalty in performance, Various techniques can
also be adopted to save the cost to compute the SAIL A follow-up paper will discuss
these in lengths. For example:

e the shape of the Green’s function for different positions inside the solution
region does not vary much for a PDE with constant coefficients. When an

1Corresponding to the node o;

2The Matlab notation is adopted for extracting a submatrix from a given matrix A

3In (2.2), eo; is a umit basis vector of size |£1(o:)] with one in the v; position and zeros in the
rest of the location in £k (0;). An example is given for (0,1)-level in {3.1)



4 W.-P Tang and W. L. Wan

unstructured mesh is used, we may compute one approximation of the discrete
Green’s function accurately and use interpolation to obtain the approximation
for all other mesh point,

o For variable coefficient PDEs, the use of one local least squares solution for
several of its neighbors is feasible.

e For anisotropic problems, a higher level SAI smoother is required. However,
the cost of the local least-squares problems grows rapidly. A prior-drop tech-
nique [34] can significantly reduce the computations.

3. Smoothing factor analysis. We present an analysis of the smoothing fac-
tors for constant coeflicient PDE on & two dimensional rectangular region in this
section.

Consider the following constant coefficient second order elliptic PDE

wlUmw+w2Uyy+3Um +th = f(n:,y), ($>y)EEQ:
Ulf‘ = g(fb‘, y)
on an mx n regular grid; the resulting matrixis a 5-diagonal matrix A of size (mx n)?,
using the conventional finite difference or finite volume method. Assume the 5-point
stencil of the discretization is

bujyr; + dugjp1 — ouij +etioyg T EU -1 = B fids 1<i<m, 1<j<n

The (0, 1)-level local least squares problem for an interior grid point is:

a ¢ 0
a d\ 0\

a b 0

a € 0

e d b a 1 1
¢ o 0

d ¢ &La = ] (31)

d 4 0

b d Ty )]

0

b 0

e 0

e ¢ ) 0

The solution z; is used for the stencil of our simplified (0, 1)-level SAI smoother.
Notice that the (0, 1)-level local least squares solutions near the boundary may differ-
ent from (3.1). For the analysis and cost-saving purpose, we use the constant stencil
for all grid node for the simplified local least-squares SAI smoother. The resulting
matrix of this smoother is also a five-diagonal matrix. Our numerical testing indicates
that the impact of this simplification on the smoothing factor is negligible, see Fig.
3.1.

The smoothing factor analysis is based on the following theorem.

THEOREM 3.1. Given two fridiagonal matrices

B = tridiag(h,d/, )nxn, C = tridiag(d, a”, €)mxm
The eigenvalues of the mairiz

B® Inxm + Inxn ®C (3.2)
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are

b

a-+ 2\/35(:08
a1

— i . e
+2v’d.’ecosm"+1, P<k<n; I1<3sm

where a = a' + a”. The corresponding eigenvectors are

k it
sin T an 2T L <s<m 1<t <m.
n+1 m+1 -

This result was cited in many books and articles in different forms, for example,
“[terative Solutions of Large Linear Systems” by David Young or [31]. Denote S the
simplified smoother of matrix A. Notice that S can also be written in form of {3.2).

THEOREM 3.2. The eigenvalues of the ilerative matriz I — SA are

1~ 134
1-— (((:cg 4+ 2. /x1@p COS ?—1%:—1—k7r 4 24 Sy COS T—-i————“l’ﬂ')

m-1
(a-}—?@cos T +2\/CE(:OS JT ))

k
n+1 m+1

where 1<k <n; 1<j<m.

This analysis can also be generalized to three dimensional problems. For the
model problem on a 20 x 20 rectangular grid, we present the plots of the eigenvalue
distributions for both the (0,1)-level local least squares smoother and its simplified
smoother., The eigenvalue computation of the former is based on the Matlab eig
function. The two distributions are so close so that we can not put the two pictures
in one frame and to identify the difference. In Fig. 3.1, we present the eigenvalue
distribution from the Matlab computation in (a), while the analytic solutions for the
simplified smoother in (b).

Eigenvalue distribution for (0,1} local smoather Eigenvalue disiribufion for simplified smoether

1 1
oot 09
0.8 08
07 . 07,
0.6 08}
05 ] o8}
0.4 : 0.4
03t 0.3
02 ] 02
ot 0.1f
05765 150 200 250 300 850 400 % s i 2 a0 @00 350 400
(a) {0,1)-level local smoother {b) Simplified smoother

Fia. 3.1. Comparison of the eigenvalue distributions.

For the single-direction anisotropic problem

100Uz + Uyy = f(f"::y)) (ﬂ?, y) € Q, (33)
Ul[‘ = g(.’l’f, y);
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the noticeable difference in eigenvalue distributions between the gimplified SAT and
the local least-square SAI can be identified in the plot. However, the difference in dis-
tribution doesn’t have any noticeable impact on the smoothing factor, Fig. 3.2 is the
comparison of the two eigenvalue distributions. The solid line shows the eigenvalues

for the simplified smoother.

Anisotropic problem
1 T T T T T T ¥

0.9

0.8r

0.7

0.6

05

0.41

0.3

0.1

50 100 150 200 250 300 350 400

Fic. 3.2, Comparison of the sigenvalue disiributions.

4. Numerical results. In this section, we demonstrate the effectiveness of the
proposed SAI smoother. In all the examples, Dirichlet boundary conditions are used.
In the multi-grid procedure, a V-cycle is used with one pre-smoothing and one post-
smoothing, unless otherwise stated. Linear interpolation is used for structured grid
problems and a specialized energy-minimizing interpolation [35, 36] is used for un-
striuctured grid problems. The number of multi-grid levels is such that the coarsest
grid is 3 x 3 for structured square grid problems, and four levels for general unstruc-
tured grid problems. The iteration was terminated when the relative residual norm
was less than 10~8. We are using zeros as the initial guess in all cases. Actually, we
may report better numbers of iterations if a random initial guess is used. The results
are summarized in the form of a table where the number of V-cycles and the average
convergence rate are shown.

Example 1: We compare the performance of different Gauss-Setdel and SAI smooth-
ers by solving the Laplace equation on a 33 x 33 squared grid. The results are shown
in Table 4.1, We see that SAI is slightly better than GS in addition to the fact that
it is much more easily parallelized. In this simple case, SAT is shightly worse than
(GS(rb) maybe because of the special geometry. We will see in Example 4 that SAl
performs better for unstructured grid problems. As described in Section 2, SAI(1 pt)
is the low cost implementation version of SAT for constant coefficient PDEs, and they
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essentially perform the same.

Smoothers | lteration | Conv. Rale
G5 14 0.25
GS(rb) 10 0.16
SAI 12 0.19
SA{1 pt) 13 0.21
TABLE 4.1

Laplece equation. G§: Gauss-Seidel with natural ordering, GS(rb) Guuss-Seidel with red-black
ordering, SAI: sparse approzimale inverse smoother, SAI{1 pt): SAT generated by a single interior
point (see Section 2).

Example 2: Table 4.2 shows that result for a discontinuous coefficient problem with
a square interface on a 33 x 33 squared grid. The jump across the interface is 107
We get a similar result as before. However, this time SAI{1 pt) does not work since
the coefficient is not constant anymore, and in fact it changes enormously across the
interface.

Smoothers | lteration | Conv. Rate
GS 16 0.30
GS(rb) 13 0.22
SAI 13 0.22
SAI(1 pt) * x
TABLE 4.2

A square interface problem. GS: Gauss-Seidel with natural ordering, GS(rh) Gouss-Seidel with
red-back ordering, SAIL: sparse approzimate inverse smoother, SAI(1 pt): SAT generated by e single
interior point (see Section 2). * indicates convergence took more than 50 iierations.

Example 3: In this example, we present a number of variable coefficient problems
including a helical spring problem, a viscosity PDE problem, and a discontinuous
coefficient problem where the interfaces now consist of a horizontal and a vertical
line; see [7] for details of each problem. Table 4.3 shows that SAI may converge while
the other two do not.

Problems Tteration Conv. Rate
GS | GS(rb) | SAL || GS GS(rh) | SAI
Variable coeff. || 10 8 8 0.14 0.08 0.08
Helical spring 9 7 T 0.11 0.06 | 0.07
Viscosity 9 T 7 0.11 0.06 0.07
Discont. coeff. * * 22 * * 0.40
TABLE 4.3

Variable coefficient problems. GS: Glauss-Seidel with natural ordering, GS(rb) Gauss-Seidel
with red-black ordering, SAI: sparse approvimate inverse smoother. x indicefes convergence took
more than 50 tterations.

Example 4: We show the effects of unstructured grids (Fig. 4.1) on the smoothers by
solving the Laplace equation. In this case, red-black ordering is not defined. Instead,
we use a generalized red-black ordering for general sparse matrices, which is essentially
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a greedy coloring algorithm. We still denote the resulting Gauss-Seidel by GS(rb).
Table 4.4 shows that SAI is slightly better than GS(rb), which is better than GS.

Grids [teration Conv. Rate
GS [ GS(rb) [ SAI [| GS GS(rb) | SAl
airfoill || 16 15 14 | 0.3 0.32 0.29
airfoll2 || 1b 14 13 || 0.40 (.39 (.35
airfoild || 27 26 27 || 0.61 0.59 0.61
square || 16 13 i1 | 0.36 0.28 0.20
parc 18 11 10 ) 0.36 0.18 0.16
gpiral 12 9 8 0.22 0.11 0.08

TaprLe 4.4
Laplace equation on different unstractured grids. GS: Gauss-Seidel with natural ordering,
G8(rb) Gauss-Seidel with generalized red-black ordering, SAIL sparse approwimale inverse smoother.

Example 5: We show how SAI smoother can improve the convergence of multi-grid
for solving anisotropic coefficient PDEs. We consider two problems. The first problem
is the single direction anisotropic problem in (3.3). The second problem has a more
sophisticated anisotropy structure in both the # and y direction.

a(@, Y)uee + b{z, Ytyy = 1,
where the coefficients a(e,y) and b(x,y) are defined as:

(,y) = 100 (z,y) € [0,0.5] % [0,0.5] or [0.5,1] % [0.5, 1}
o, yr = 1 otherwise.

bz, y) = 100 (z,4) € (0,0.5] x [0.5,1} or [0.5,1] % [0, 0.5]
HLY=%1 otherwise.

The results are shown in Table 4.5 and 4.6. The first three rows show the results of
problem 1 on a 32 x 32, 64 x 64 and 198 x 128 grid, respectively. Similarly, row 4 and
5 show the results of problem 2. The last 4 rows show the resulis of problem 1 on
unstructured grids.

As it is well known, multi-grid with Ciauss-Seidel smoother is very slow, except
for the first two unstructured grids. Similar results are also obtained for Gauss-Seidel
with red-black ordering, and hence its results are omitted. For problem 1 on a squared
grid, a usual technique to improve the multi-grid convergence is to use block relaxation
methods. As indicated in the table, block Jacobi is quite effective for small grids, but
eventually slows down for bigger grids. Moreover, it is costly to invert each block.
The previous (0,1)-level SAI smoother is not very effective in this case. We improve
the performance by using higher level SAI smoothers (Section 2). For higher levels,
however, the approximate inverse is much denser. We control the amount of fill-in
by dropping small elements. SAI (k, €) denotes the amoother with (k,k + 1)-level
and element whose absolute values below ¢ are dropped at the end. We may also
drop small elements in the matrix A before we compute the approximate inverse.
SAI(eq,k, €} indicates that elements of size < ¢, are dropped in the matrix A, and
elements of size < ¢; are dropped in the the approximate inverge.

Table 4.5 and 4.6 shows that (3,4)-level SAT performs similarly as block Jacobi,
and (4,5)-level SAI performs better. Also, the SAI smoother does not deteriorate if
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Grids Iteration
GS T BJ [ SAI(3,e2) [ SAI(4,e2) SAT(e;,4,62)
problem 1 (32 x 32) * ] Z1 15 15
problem 1 (64 x 64) * | 27 27 20 19
problem 1 (128 x 128) || * * 37 27 27
problem 2 (32 x 32) * * 49 13 13
problem 2 (64 x 64) * * 25 20 19
airfoill 18 | — 9 8 3
airfoil2 23 5 - 12 12 12
parc 446 | — it 9 10
spiral * — 18 21 21
TaBLE 4.5

Anisotropic problems on different grids. GS: Gauss-Seidel with naturel ordering, BJ: Block
Jacobi, e =2, eg= 0.0604 for the airfoil2 and spirel grid and 0.0008 for others. See tewt for the
definitions of SAI(3,cz) and SAI(e1,4.62).

the small elements of A are dropped fivst. Hence, we may afford to use higher level
SAI if we drop small elements beforehand.

For problem 2, because of anisotropy in both directions, block Jacobi does not
improve much the multi-grid convergence. The SAI smoothers, which do not require
the concept of direction, perform as well as in problem 1.

For unstructured grid problems, blocks defined along the direction of the anisotro-
py no longer exist, Thus we do not test block Jacobi in these problems. Gauss-Seidel
does surprisingly well on some of the grids, but still very slow on the others. SAl
smoothers are effective on all the grids.

Grids Conv. Rate
GS [ BT TSAI(3.c0) | SAI(4,c5) [ SAI(er,4,3)
problem 1 (32 x 32) * 1 0.09 0.52 0.40 0.40
problem 1 (64 x 64) x| 0.62 0.51 0.51 0.50
problem 1 (128 x 128} * * 0.64 0.63 0.53
problem 2 (32 x 32) * * 0.77 0.31 0.31
problem 2 (64 x 64) * * 0.59 0.51 0.48
airfoill 038 — 0.10 0.09 .09
airfoil2 661 - 0.30 0.37 0.37
parc 0711 — 0.19 0.11 0.13
spiral * - 0.37 0.47 0.47
TABLE 4.6

Anisotropic problems on diffevent grids. GS: Guuss-Seidel with natural ordering, BJ: Block
Jacobi, €1 =2, ea= 0.0004 for the airfoil2 and spivel grid and 0.0008 for others, See text for the
definitions of SAI(3,e2) and SAI(e RIYE

Example 6: Finally, we show that SAI, like other standard smoothers, give rise to a
multi-grid method whose convergence rate is independent of the mesh size; see Table
47.

Acknowledgments. We wonld like to thank Tony Chan for his comments and
discussions on the development of the sparse approximate inverse smoothers.
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Grids Tteration Conv. Rate
GS [ GS{rb) | SAL || GS GSirb) | SAl
392 % 32 id 0 13 .25 8.18 0.21

64 % 64 14 11 13 || 0.25 | 0.17 ; 0.22
128 x 128 || 14 11 13 1025 ] 017 | 0.22

TaBLE 4.7
Laplace eguation on grids of different mesh size. GS8: Causs-Scidel with natural ordering,
G5(rh) Gauss-Seidel with red-black ordering, SAID: sparse approzimote inverse smoother.
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Fia. 4.1, The unstructured grids for Ezample 4 and 5.



