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ABSTRACT

Phase diversity is a technique for obtaining estimates of both the object and the phase, by exploiting the simulta-
neous collection of two (or more) short-exposure optical images, one of which has been formed by further blurring
the conventional image in some known fashion. This paper concerns a fast computational algorithm based upon a
regularized variant of the Gauss-Newton optimization method for phase diversity-based estimation when a Gaus-
sian likelihood fit-to-data criterion is applied. Simulation studies are provided to demonstrate that the method is
remarkably robust and numerically efficient.
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1. INTRODUCTION

Phase diversity-based blind deconvolution is a technique for obtaining estimates of both the object and the phase
in optical image deblurring. It involves the simultaneous collection of two {or more) short-exposure images. One of
these is the object that has been blurred by unknown aberrations and the other is collected in a separate channel
by blurring the first image by a known amount, e.g., using a beam splitter and an out-of-focus lens. Using these
two images as data, one can set up a mathematical optimization problem (typically using a maximum likelihood
formulation) for recovering the object as well as the phase aberration. The mathematics of this recovery process
was first described by Gonsalves.? Later, Paxman et al? extended Gonsalves’ results, allowing for more than two
diversity measurements and for non-Gaussian likelihood functions., The work presented here aims at improving the
numerical efficiency of the restoration procedure when a Gaussian likelihood, or least squares, fit-to-data criterion
is used. A variant of the Gauss-Newton method for nonlinear least squares® is introduced to solve the optimization
problem. Unlike first order (gradient-based) methods previously employed,? this scheme makes direct use of second
order (Hessian) information, thereby achieving much more rapid convergence rates. When combined with appropriate
stabilization, or regularization, the method is remarkably robust, providing convergence even for poor initial guesses
without the aid of a globalization technique, e.g., a line search, to guarantee convergence.

This paper is organized as follows. Section 2 begins with a mathematical description of image formation in the
context of phase diversity. We assume spatial translation invariance, and we assume that light emanating from
the object is incoherent.! Discussion of the mathernatical model for phase diversity-based blind deconvolution is
followed by the formulation of a mathematical optimization problem whose solution yields both the unknown phase
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aberration and the unknown object. The cost functional to be minimized is of reqularized least squares type, taking
the form

T 51 = Taaral, £+ ZUFIP + T reg 9] 1)

Here ¢ and f represent the phase and the object, respectively, and v and o are positive parameters which quantify
the trade-off between goodness of fit to the data and stability. 'Lhe first term on the right hand side of (1} is a
least squares fit-to-data term; the second term provides stability with respect to perturbations in the object; and the
third term provides stability with respect to perturbations in the phase. Stabilization provides several advantages:
It dampens spurious oscillations in the phase and the object; and it helps “convexify” the optimization problem,
getting rid of spurious small-scale minima of the cost functional. A solution can then be computed in a fast, robust
manner using local optimization techniques like Newton’s method.

We select an object stabilization term ||f]|?/2 which is quadratic. This, combined with the fact that the fit-
to-data term is quadratic in the object, allows us to formulate a reduced cost functional’>? whose only unknown is
the phase ¢. We select a parameterization of the phase which is based on prior knowledge of its statistics. This
parameterization leads to a natural choice of the phase regularization functional Jr., [¢] in equation (1).

Section 3 addresses the computation of a minimizer for the reduced cost functional. We present a variant of the
well-known Gauss-Newton method® for nonlinear least squares minimization. Results of a numerical simulation are
presented in section 4, The mathematical model used in this simulation is based on the hardware configuration for
a 3.5 meter telescope at the U.S. Air Force Starfire Optical Range (SOR) in New Mexico. See Ellerbroek et ald for
details. The functional (1) is minimized using three different techniques: (i) the Gauss-Newton variant; (it) standard
Newton’s method; and (iii} a standard method known as BFGS.®> A comparison shows that for moderately high
solution accuracy, the first method is superior when computational effort is measured in terms of iteration count.
Finally, in section 5 we present a summary and a discussion of future directions of our work.

2. MATHEMATICAL BACKGROUND
2.1. Mathematical Model
The k" diversity image is given by

dk:S[¢+9k}*f+nka k=1,...,K, (2)

where 7y, represents noise in the data, f is the unknown object, s is the point spread function (PSF), ¢ is the unknown
phase function, 8 is the k** phase diversity function, and » denotes convolution product,

(5% f)(x) =f/m2 s(x—y) fly)dy, xeR” (3)
Assuming that light emanating from the object is incoherent, the dependence of the PSF on the phase is given by

s{¢] = | Fpe' ), (4)

where p denotes the pupil, or aperture, function, ¢ = V=1, and F denotes the 2-I Fourier transform,
(FR)(y) = ff h{x)e™ "7 xY gy, y ¢ R (5)
R2

The pupil function p = p(x1,x2) is determined by the extent of the telescope’s primary mirror.

In atmospheric optics,® the phase ¢(z1,z2) quantifies the deviation of the wave front from a reference planar
wave front. This deviation is caused by variations in the index of refraction (wave speed) along light ray paths, and
is strongly dependent on air temperature. Because of turbulence, the phase varies with time and position in space
and is often modeled as a stochastic process.

Additional changes in the phase ¢ can occur after the light is collected by the primary mirror, e.g., when adaptive
optics are applied. This involves mechanical corrections obtained with a deformable mirror to restore ¢ to planarity.
By placing beam splitters in the light path and modifying the phase differently in each of the resulting paths, one



can obtain more independent data. The phase diversity functions & represent these deliberate phase modifications
applied after light is collected by the primary mirror. Easiest to implement is defocus blur, modeled by a quadratic

9&(.’1)1,:1:2) = b (IE% + 27%}, (6)

where the parameters b, are determined by defocus lengths. Iu practice, the number of diversity images is often
quite small, e.g., K = 2 in the numerical simulations to follow. In addition, one of the images, which we will denote

using index k = 1, is obtained with no deliberate phase distortion, i.e., §; = 0 in (2).

2.2. Cost Functionals

To estimate phase ¢ from phase diversity data (2), we minimize the regularized least squares cost functional

K
I=,11=5 (Zj [ [ ltowx 9 - o dx) e 2 [ ]| £60% dxt el )

where s = 5[¢ + 0x]. Here Jr.ol¢] is a regularization functional, whose purpose is to establish stability with respect
to perturbations in ¢. Similarly, the term [ fle f(x)? dx establishes stability with respect to perturbations in f~
and o are positive regularization parameters, which quantify the tradeoff between goodness of fit to the data and
stability.

Note that J is quadratic in the object f. This enables us to solve for f by fixing ¢ and minimizing with respect
to f. Let upper case letters denote Fourier transforms and hold ¢ constant. Using the Convolution Theorem and
the fact that the Fourier transform is norm preserving, one obtains from (7)

J_JF___I K g P D 2 P 2| g4 ¢ g
= []—5/[1{2 gl y(FE) - De(W® + YF¥)I°| dy + constant. (8)

This has as its minimizer

K *
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where the superscript * denotes complex conjugate. The estimated object is then

f=FiE) = [ [ et ay (10)

F(y)

Note that when K = 1, (9)-(10) give the inverse Wiener filter estimate for the solution of the deconvolution problem
sxf=d

Substituting {9) back into {7), we obtain the reduced cost functional

1
7= =5 [ [ 400) dy + ol (1)
where, suppressing the dependence on y, the integrand
X K DiSil¢l?
t[r,b] — Zlelz - |Ek_1Q[:;] k[l (12)
k=1

TR Sk DS 8] — DiSkld)? + v Ty 1Dk

= o] ’ 13)

with X
QW =7+ 3 ISP (14)

k=1

Derivation of (12) from (7) is very similar to the derivation in Paxman et al.? See Appendix A for verification of
the equality of (12) and (13).



2.3. Parameterization of Phase

Because of atmospheric turbulence, the phase varies with both time and position in space.’ Adaptive optics systems
use deformable mirrors to correct for these phase variations. Errors in this correction process arise from a variety

of sources, e.g., errors in the measurement of phase, inability of mirror to conform exactly to the phase shape, and

Sy o Anfavra ol a nhaan ahorrationg regnltine from an ad

iag time beiween phase measuremernt and mIrTor aciormation. The paase aberrations resulting Troin an m_aptive
optics system are often modeled as realizations of a stochastic process. Assuming that this process is second order
stationary with zero mean, it is characterized by its covariance function,

A(X1Y) == €(¢(Xs ')1 ¢{Y: )): (15}

where & denotes the expectation (temporal ensemble averaging) operator. This is a symmetric, positive function.
Under certain mild conditions on A, the the associated covariance operator

A = [ [ Aty s ay (16)

is compact and self-adjoint. Hence it has a sequence of eigenvalues A; which decay to zero and corresponding
eigenvectors £;(x) which form an orthonormal basis for L*(IR?). This eigendecomposition can be formally expressed

as
A =V diag(h;) V¥,

where V : £2 — L%(IR?) is given by
o0
Ve = chéj(x), ¢ = (¢1,¢cg,...) € £2.
j=1

This provides a means for generating simulated phase functions having the desired covariance structure. Letting w
denote a simulated white noise vector, take

o(x) = A2 = Vdiag(A\ ) Viw = 3 0P w, &) € (), (17)
i

where pointed brackets denote the complex inner product on L2(IR?),

)= [ [ an oo ax (18)

This also provides a natural regularization, or stabilization, functional
1, 1 Ik
Tl = 54~ 0,0) = L3 10 (19)
2 2 . Aj

where the ¢;’s are the coefficients in the eigenvector expansion of ¢,
m
$x) = e &), (20)
=1

3. NUMERICAL OPTIMIZATION
3.1. Gradient and Hessian Computations
Newton’s method for the minimization of (11) takes the form of the iteration
¢FHl = ¢ — H[¢" 7 gl¢"], E=0,1,..., (21)

where g{¢] is the gradient of J = J[¢|, H[#] denotes the Hessian, and #° is an initial guess. In Appendix B, we derive
from (11)-(12) the following expression for the gradient of J,

K
glg) = -2 Y Imag(H;[$)F (Real(hi[¢]F T Valg) )) + @ A4, (22)

k=1



where A is the covariance operator for the phase, cf., (16), Real(z) and Imag(z) denote real and imaginary parts of
a complex number z, respectively, and

Hy[¢] = perl9F8e), hild] = F~ (He[d)), (23)
s5[¢] = [hg[8l7, Sild] = F(seld]), (24)
Vi[¢] = F*[¢] Dy — |Fl¢]1?Sk[¢), (25)

with F[¢] the Fourier transform of the estimated object given in (9) and Dy, the Fourier transform of the data. With
the exception of the Real(:) in equation (22), when v = 0, this reduces to formula (22)-(23) in Paxman et al.?

If the phase is represented by a linear combination (20}, then by the chain rule the corresponding discrete gradient
is a vector in IR™ with entries
[g]j:(gngj)? i=1...,m,

and the (discrete) Hessian is an m X m matrix with ij* entry
The Hessian entries an be approximately computed from (26) using finite differences of the gradient, e.g.,

HIgE; ~ gl + 7] — gl¢]

for 7 relatively small. When combined with iteration (21), this approach is known as the finite difference Newton's
method.® When m is large, this approach is not practical. A commonly used alternative is the BFGS method.?
Requiring only values of the gradient, BFGS simultaneously constructs a sequence of approximate minimizers ¢* and
a sequence of symmetric positive definite (SPD) approximations to the Hessian or its inverse. While this method can
be rigorously proven to be asymptotically superlinearly convergent, practical experience hag shown its performance
to be disappointing for highly ill-conditioned problems?® like the one considered here.

Due to its robustness and good convergence properties, the method of choice for general nonlinear least squares
problems is Levenberg-Marquardt.®? Levenberg-Marquardt consists of a Gauss-Newton approximation to the least
squares Hessian, combined with a trust region globalization scheme. The key idea is that the integral of the first
term in (13) can be written as a sum of functionals of “least squares” form

1 1
=|ir[8lil? = 5 (rlg], rle]).
2 2
The Gauss-Newton approximation Hgy to the corresponding least squares Hesslan is characterized by

(Hon[dle, %) = (r'(gl6, r'Igl¥),

where prime denotes differentiation with respect to ¢. Hgn is clearly symmetric and positive semidefinite. With
the addition contribution a.d~! obtained by twice differentiating the regularization term in (19), one obtains an
approximation Hgy + ™! which is SPD. Even when the true (not necessarily SPD) Hessian is available, an SPD
approximation like this may be preferable. While the approximation will result in slower convergence near the exact
minimizer, it is likely to be more robust in the sense that it yields convergent iterates for a much wider range of
initial guesses.

In Appendix C, we derive a variant of the Gauss-Newton approximation which is based on (13). We do not derive
an explicit formula for the matrix Hgn[¢]. Instead, we compute the action of this matrix on a given direction vector
£ € L*(R?) as follows: First, for k=1,...,K and j =1,...,k — 1, compute

U3 = D;F (tmag[hf 7~ (He)]) — Dp F(Imaglh} F 1 (H;€)]), (27)
and then take
K k-3 o Lo
Honlple =43 TmaglH; F(h; FH(DiU)) - HiF(FH(DUu))) + aAT'E (28)
k=1 j=1
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Figure 1. Phase, phase diversity, and corresponding PSF’s.

Given a phase representation (20), one can in principle compute an m x m Gauss-Newton-like matrix Hgy in a
manner analogous to (26). Adding the contribution from the regularization (19), one obtains the (approximate}
Hesgsian matrix

H=Hgy +aA™l,

where now A = diag(\1, ..., An). If m is relatively small, H can be computed explicitly and inverted. If m is large,
linear systems HAc = —g can be solved using conjugate gradient (CG) iteration. The cost of each CG@G iteration is
dominated by one Hessian matrix-vector multiplication, Hv, per iteration, which is implemented using (27)-(28).

4. NUMERICAL SIMULATION AND PERFORMANCE

The first step in the simulation process is to generate a phase function ¢{(z1, z2), a phase diversity function 8(z1, z2),
and a pupil, or aperture, function p(z, =3 ). These are used to compute PSF’s via equations (23)-{24). Corresponding
to a telescope with a large circular primary mirror with a small circular secondary mirror at its center, the pupil
function is taken to be the indicator function for an annulus. The computational domain is taken to be a 72 x 72
pixel array. n = 888 of these pixels lie in the support of the pupil function, which is the white region in the upper
right subplot in Fig. 2. Values of the phase function ¢ at these n pixels are generated from an n X n covariance
matrix in a manner analogous to (17), i.c., the phase is the product of a square root of a covariance matrix and a
computer-generated discrete white noise vector. We use a covariance matrix which models phase aberrations from
an adaptive optics system for a 3.5 meter telescope at the SOR. The phase used in the simulation appears in the
upper left subplot in Fig. 1. The PSF s; = s[¢] corresponding to this phase is shown in the upper right subplot.
The quadratic phase diversity function ¢ appears in the lower left subplot. To its right is the PSF s2 = s[¢ + 6]
corresponding to the perturbed phase. In the notation of Section 2, # = fl2, while 8; is identically zero.

The next stage in the simulation process to is to generate an object function f(z1,z2), convolve it with the two
PSF’s, and add noise to the resulting pair of images, cf., equation (2). The convolution integrals are approximated
using 2-D FFT’s, and the simulated noise vectors, nz, k = 1,2, are taken from a Gaussian distribution with mean
zero and variances o3 equal to the 5 percent of the signal strengths in each image, ie., o = 05 X ||sg * fll. The
object is a simulated binary star, shown at the upper left in Fig. 2. The lower left subplot shows the blurred noisy
image corresponding to phase ¢, while the image at the lower right corresponds to the perturbed phase ¢ + 8.

Given data consisting of the images d; and da and the pupil function p(z,z2) shown in Fig. 2 together with the
diversity function #(z;,z2) shown in Fig. 1, the minimization problem described previcusly is solved numerically.
The regularization parameters are chogsen to be v = 1077 and o = 107%, and the dominant m == 40 eigenvectors
are selected as the £;{z1,®2)’s in the representation (20) for the phase. The reconstructed phase and object are
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Figure 2. Negative grayscale plot of simulated object f(z1,%2) at upper left; image dy = sig) * f +m at lower
left; and diversity image dp = si¢ + 8] x f + 12 at lower right. At the upper right is a grayscale plot of the pupil, or
aperture, function.

shown in Fig. 3. The parameters «, v, and m were selected by trial and error to provide the best reconstructions
from the given (noisy, discrete) data. If @ and v are decreased significantly, the reconstructions degrade because
of amphlification of error. On the other hand, increasing these parameters significantly results in overly smoothed
reconstructions. Decreasing m significantly will result in loss of resolution. Increasing m will have no effect on the
reconstructions, but it will increase the computational cost due to increased size of the (discrete) Hessians.

Tt should be noted in Fig. 3 that the reconstructed phase is compared not against the exact phase (shown
at the upper left in Fig. 1), but against the L? projection of the exact phase onto the span of the dominant m
eigenfunctions of the covariance matrix. This can be interpreted as a projection onto a “low frequency” subspace.
A visual comparison of the upper left and lower left subplots in Fig. 3 shows very good agreement; the norm of
the difference of the two functions being plotted differ by about 10 percent. Similarly, the reconstructed object is
compared against a diffraction limited version of the true object.

Numerical performance is summarized in Figs. 4. The Gauss-Newton (GN) method, the finite difference Newton’s
(FDN) method, and the BFGS method were each applied with initial guess ¢° = 0 and same parameter values,
v =10"", a = 1075, and m = 40. The latter two methods required a line search in order to converge, but GN did
not. The linear convergence rate of GN and the quadratic rate for FDN can clearly be seen. While FDN and BFGS
have asymptotically better convergence properties, GN required only 5 iterations to achieve phase reconstructions
visually indistinguishable from the reconstructions at much later iterations. FDN required 15 iterations to achieve
comparable accuracy, while BFGS required about 35 iterations. Additional overhead is incurred by these two methods
in the line search implementation. In terms of total computational cost (measured by total number of FFT’s, for
example}, BFGS is the most efficient of the three methods due to its low cost per iteration. On the other hand,
BFGS is an inherently sequential algorithm, while GN and FDN have obvious parallel implementations. Given
efficient parallel implementations, clock time should be proportional to the iteration count rather than the number
of FFT’s.

We also tested our algorithms on the simulated satellite image data considered by Tyler et al.” Numerical
performance is summarized in Fig. 5. Somewhat different regularization parameters were used in this case (a = 1074
and v = 1071}, while m == 40 and the 5 percent noise level remains the same as in the binary star test problem. A
comparison of Fig. 4 and Fig. 5 reveals the BFGS convergence history to be much the same. In the case of FDN,



Projected Trus Phase Ditfraction Limied True Object

10
15
op
25
30
35

10 20 30

X

Reaconstructed Object

S
25}
o
35

Figure 3. True and reconstructed phases and objects.
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Figure 4. Performance of various methods for the binary star test problem, as measured by the norm of the
gradient vs. iteration count. Circles (o) indicate the Gauss-Newton method; stars (¥) indicate finite difference
Newton’s method; and pluses (+) indicate the BFGS method.

rapid (quadratic) convergence occurs much earlier (at 8 or 9 iterations vs. at 18 or 19 iterations) for the satellite
problem than for the binary star problem. As with the binary star test problem, due to the need to perform several
line searches during the first few iterations, the actual cost of FDN is somewhat higher than what the 8 or 9 iterations
might indicate.

For GN, we obtained rapid decrease in the norm of the gradient for the first 3 or 4 iterations with both test
problems. This rapid decrease continues for later iterations in the binary star case. For the satellite test problem
on the other hand, the GN convergence rate slows considerably at later iterations. However, after 3 iterations there
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Figure 5. Performance of various methods for the satellite test problem, as measured by the norm of the gradient
vs. iteration count. Circles (o) indicate the Gauss-Newton method; stars (*) indicate finite difference Newton’s
method; and pluses (+) indicate the BFGS method.

is almost no change in the reconstructed phase and object. Hence, to obtain “reasonably accurate” reconstructions
with GN, no more than 4 iterations are necessary for the satellite test problem. As in the previous test problem, GN
required no line gearches.

5. DISCUSSION

This paper has presented a fast computational algorithm for simultaneous phase retrieval and object recovery in
optical imaging. The approach uses phase diversity-based phase estimation with a maximum likelihood fit-to-data
criterion when a Gaussian noise model is applied with appropriate stabilization of the cost funetional (1). Three
methods, full Newton, Gauss-Newton, and BFGS, for minimizing the resulting least squares cost functional were
compared in numerical simulations. The Newton and Gauss-Newton make use of both first order (gradient) and
second order {Hessian) information. Their implementations for our two test problems are highly parallelizable, in
comparison to the BFGS secant updating method. The full Newton approach required a good initial guess, while
Gauss-Newton is robust, even with a poor initial guess and without globalization, ie., a line search. In particular,
simulation studies indicate that the method is remarkably robust and numerically efficient for our problem.

Improvements and extensions of this work being considered inchide following projects.

e Parallel implementation. The code, currently in MATLAB, is being converted to C for implementation on
the massively paraliel IBM SP2 at the Air Force Maui High Performance Computing Center. This project is
partially in conjunction with the AMOS/MHPCC R&D Consortium Satellite Image Reconstruction Study.”
The gradient of our reduced cost functional as well as the Gauss-Newton Hessian-vector products can be
efficiently evaluated in parallel. Our objective is to achieve a parallel implementation where the run-time is
essentially independent of the phase parameterization value m discussed in §3.1.

e Phase-diversity based phase retrieval. The recovery of phase aberrations induced by atmospheric turbulence
using phase diversity methods has recently been compared to classical Shack-Hartman wavefront sensing.?
Here, the object itself is assumed known, e.g., a point source from a natural or laser guide star. The wavefront
phase aberrations estimates are used to drive a closed loop adaptive optics system for real-time control of
deformable mirrors used in optical image reconstruction. Speed is of course essential in these phase retrieval
computations, and we plan to consider this application in our future work.



APPENDIX A. DERIVATION OF EQUATION (13)
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To establish the equality of (12) and (13), add v Efil |Dx|? to both sides and divide by Q.

APPENDIX B. DERIVATION OF GRADIENT FORMULAS

The Gateau derivative, or variation, of J in the direction % is given by

J[¢ + 7] — ¢l

d
5470¢) = lim = 2 J[p + 7l 0.

The derivative J'[¢] (which is the gradient of J) is characterized by
Sy J[¢] = (, 7' [8])

for any direction 1. By the linearity of the operator &y, (11)-(12), and {19),

o) =30 [ [ PO b oty 479) 29
where
Plg] =Y DiSilgl, Qlel =7+ ScldlSkigl. (30)
k k

Now by the product and quotient rules for differentiation,

%//P[cﬁ]f’*[tﬁ] _ //Q%(P[¢]P*[¢])~|P|22k5¢(5k[¢152{¢])

Q[4] Q?
B P*QD*W!PPS* e
- /[Zk:‘s*bsk[‘ﬂ( o ’“) e
= Z<5¢Sk[¢],vk) + c.c., (31)
k

where “c.c.” denotes the complex conjugate of the previous term, and
_ PQ*Dy — | P12 S}
= g

The second equality follows from (30) and (9). We now suppress the subscripts % and make use of various properties

of the derivative, as well as (23)-(24). We also make use of the fact that the Fourier transform preserves angles to
obtain

Vk ﬁF*Dk jud |F|2Sk.

(64S[4), V) +ce. = (S, V) +cc. -
Sy(s[d],v) +ce, v= FY)

Sy (hlglh* 4], ) + c.c.

= dylhlgl hldlv) +cc.
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= (8yhid], hv) + (b, Suhldlv) + cc.
= (dyH[p], F(hv}) + (F(hv™), 8p H[dl) + c.c.
= {ispH, F(hv)) + (F(hv*), i H} + c.c. (33)
= (i, i* H*F(hv) +iHF" (")) + c.c.

= {1, 4Imag[H* F(hReal{F *(V)])]}. (34)
In (33) we have used (23) to obtain 6y H = 1pH. Equating the left hand side of (32) with (34) and then applying
(31) and (29), we obtain the derivative, or gradient, of J,

J'[¢] = —2 Imag[H} F(haReallF (Vi) + A7
k

APPENDIX C. DERIVATION OF HESSIAN APPROXIMATIONS
From (13) and (18), the first term in (11) can be written as

Jaatald) = 3 3 S Bl + IO 161, (35)
i<k
e Dy Si[¢] — D;Skld] Sohe s 1Dy
) = SR a0k — k=t 1R

and Q[¢] is defined in (14). Perhaps the simplest positive definite Hessian approximations can be constructed by
dropping the second term on the right hand side of (35), fixing the Q in the first term, and applying the Gauss-Newton
idea. Proceeding in this manner, define

Rix]@] = DuS;[8} — D;iSeldl, (37)
where D
Dy = @i};. (38)

Note that @ is fixed, so the Dy, are independent of ¢. Then the action of the resulting operator, which we denote by
H, is given by

(HEWY =3 > (U, Riy[61) (39)
i<k
where now : 3 ;
Uji, = Rifole = DiSj[¢1€ — D; Sy [81€ (40)

We next derive an expression for S}[¢]¢, where £ € L*(IR?) is fixed. Drop the subscript j, and let W be arbitrary.
Then proceeding as in Appendix B with £ and W playing the role of ¢ and V, respectively,

(S'[gle, W) = 8c(S[¢}, W)
= (i¢H, F(hw)) + (F(hw*),i¢H), w=F""(W)
= (h*"F(EH),w) + (ChF TN (EH), )
= (—2Imag[h*}"1(£H)],w).

Taking Fourier transforms,

S'[¢)¢ = —2F (Imaglh* 7 (EH))).- (41)

Consequently, ) _
Up, = —2D3 F(lmag[h 7~ (€H;)]) + 2D;F (Imaglhi 7~ (EH)))- (42)
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Examining the terms in (39) and applying computations similar to those above,

(Usr, D831y = (DiUsk, Sil814)
84{DiUsk, Sil4])

B i

= (2Imag[H; F{hyws}}, ¥}, (43}

provided B
wy = F T (DiUss) (44)

is real-valued. An analogous expression is obtained when Dy, S} are replaced by Jjj, 5. Then combining (39) with
(43),

algle =2 ImaglH; F(hjws) — Hy F(hw;)]- (45)
i<k
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