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Abstract:

Stability properties of the incompressible Navier-Stokes equations are studied using direct numerical simulations of
freely evolving turbulent flow in a two-dimensional periodic box. It is shown that with sufficient resolution an
accurate approximation can be computed that converges in the maximum norm. A number of numerical
experiments are then performed applying various types of perturbations. From these experiments it is conjectured
that the low wave-nurnber modes contained in the initial part of the spectrum (those not yet in the inertial range),
are unstable to perturbations but that higher wave-number modes are rather stable. In one case, for example, a
large perturbation is added to wave-numtbers mid-way through the inertial range. The perturbation is quickly
damped and the solution returns close to its unperturbed state. However, since a small amount of energy is
transfered to low wave-numbers, the solution eventually begins to deviate from the control run. As further
confirmation of the conjecture it is shown that a knowledge of the time history of the low wave-number modes can
be used to accurately determine the high wave-number modes for later times. In a computation presented here for
Reynolds number 10° using 2562 Fourier modes, the time history of the lowest 8% Fourier modes can be uged t0
determine, to a reasonable accuracy, the higher modes. The implication is that if one could accurately measure the
time history of the large scale features of a flow then one could possibly compute the small scale features.
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1 Introduction

Many computations have demonstrated that the incompressible Navier-Stokes equations can be accurately solved
using spectral, or higher-order difference methods provided the aumber of computational modes (number of grid
points) is sufficient to resolve the minimum scale of the flow, see for example Browning and Kreiss [4]. The minimum
scale is the length scale at which the energy spectrum begins to decay exponentially fast. Therefore, provided the
truneation eTrors are sufficiently small, the numerical solution converges pointwise to a deterministic answer, even
for long time-integrations.

Given an accurate solution, the effect of explicitly adding perturbations is studied, in order to try and understand
the actual stability properties of the flow. The flow equations are first solved on a two-dimensional periodic box,
starting with some smooth initial data for which the Fourier modes have random phases. This flow evolves over time,
initially through a complicated state containing many shear layers and then into a state of large vortex gtructures
which persists for long times. This flow behaviour is rather generic as found by many computations [10]. Starting
from this control run, & number of perturbations are then performed:

o the viscosity coefficient, v, is changed,

e the viscous operator is altered,

o 2 high wave-number perturbation is added,

e the time history of the low wave-number modes are gpecified over time.

The results of these experiments suggest that the very lowest wave-number modes are quite unstable to perturbations
but that wave-numbers in the inertial range and higher are surprisingly stable to perturbations. The inertial range
represents those intermediate wave-pumbers in Fourier space where the energy spectruin, E(k), decays in an algebraic
fashion, E(k) ,k—8. When perturbations are added to wave-numbers mid-way through the inertial range, for
example, the perturbations are quickly damped and the the solution returns close to the unperturbed state. However,
since a small amount of energy is slowly transfered to low wave-numbers, the large scale motion eventually deviates
from the unperturbed solution.

These results led us to consider the following experiment. Suppose some number of low wave-number modes
are fixed to remain equal, at every time step, to their values from the control run and all higher wave-numbers
are computed starting from initial values of zero. By fixing the time history of the otherwise unstable low modes,
there can be no influence on these low modes from perturbations of the higher modes. It is the found that the high
wave-number modes are, to a large degree, regenerated by this process. For example, in a computation reported
here of the two dimensional incompressible Navier-Stokes equations, with Reynolds number 10% and requiring 2562
Fourier modes (512 grid points) it is found that by specifying the lowest 8% modes (8 in each direction), that the
the the full solution is recovered 10 a remarkable degree. This process of specifying the low frequencies over time
is of course related to the method of data assimilation in meteorology whereby measurements are incorporated into
computational stmulations, for a deseription of this approach see, for example, Daley [5]-

2 Background: Smallest Scale Estimates

The incompressible Navier-Stokes equations in two or three space dimensions can be written as

w + (w- Viu+Vp = vAu l (1)
v-u = 0. (@)

where u is the velocity, P the incompressible pressure and v > 0 the kinematic viscosity. Introduce the spatial Fourier
coefficients

u(x, £y = 3k, 0’ . 3)
k
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The computational domain is taken to be a 27 periodic square. The solution is represented as. & truncated Fourier
series with w denoting ihe discrete approximation to the vorticity & and @ denoting the discrete Fourier transform

of w:
iN-1 iN-1

w(z,y,t) = Z Z (k1 iy, £ 1o HEay).

kq:—-%‘;N-Fl kzz‘—é—N-{-l

Similarly the Fourier transform of the stream-function ¥ and f are denoted by 1 and f respectively. The equation
for the Fourier coefficient w{ky, ke, t) 18

iy + ik (T0) + e (FD) = (2 + )b+ f (5)
(k2 + k3)9

The convolutions i and oW (Le. the Fourier transforms of the products uw and vw) are computed from G, & and W
by transforming to real space, forming the products and then transforming back 0 Fourier space, (pseudo«spectral
method). The equations (5) are integrated in time using & fourth-order Adams-Bashforth multistep scheme. A
Runge-Kutta scheme is used to restart the integration after the time step is changed. For details the reader is

referred to [6]-

1.

il

4 TUnperturbed control run

Let we(z, y, ) denote the vorticity for a control run that will be nsed to compare to various perturbation computations.
The imitial conditions for the control run are chosen t0 have random phase and an energy spectrum of

E (k) =Cck ¢ (k/ka)’
where k, = 3.5 and the constant C, is chosen sO that the vorticity has a maximum of 1,
]wc(-,-,0)|oo =1.

The maximum value of the velocity in this ron was about 0.2. Figure (1) shows contours of the vorticity forv=107%
dashed lines representing negative values. From an initially smooth state the solution develops narrow shear layers
and small vortices. Eventually the vorticity regrganizes itself into larger coherent structures. Figure (2) displays the
vorticity spectrum on a log-log scale and the evolution of some Ly norms Over time. The vorticity spectrum w(k,t)
is defined as the average value of jw(k,t)| for k| = k,

T k)l

k-1 Siki<hts

S

k-3 <Iki<h g

w(k,?) = (6)

The norms plotted are the total kinetic energy, A = Ilu? + %], the Lo-norm of the vorticity, B = [lwl], and the rate
of dissipation of vorticity
o 2, = M (el + Tel)

For plotting purposes the norms are all scaled to have a maximum value of 1. The scale factors are indicated in the
figure.

5 Resolved versus under-resolved computations

This section shows how the solution behaves when computed with different resolutions. It will also been demon-
strated that the number of grid points (in each space dimension) required to compute an accurate answer is given
approximately by the inverse of the minimum scale,

1/2
W Do) = £ = [ 2] @

min



The solution is computed for v = 2 X 10-5.with N = 128,256, 512. In these computations the maximum.norm of the
velocity gradients is | Dulge & .9 From the expression (7) one would estimate that the pumber of grid points required

is VE
Nw |———s| =212
{2 X 10—5] 12

The solutions for these runs and the energy spectra are shown in figure (3). It can be seen that with sufficient
resolution the solutions converge o o well determined answer. The solutions for N = 256 and N = 512 are very
gimilar. Note that the position of the contour lines is a very sensitive measure. When the computation is under-
resolved the highest wave-number modes become large, instead of decaying to Zero. The N = 256 run i8 reasonably
accurate even though the spectrum does not decay as much as in the N = 512 run. The smallest scale estimate of
N = 212 provides a good guess of the pumber of grid points required.

6 Perturbation: Changing the viscosity coefficient v

The solutions shown in figure (4) Hllustrate how the solution changes when the viscosity is changed. Starting from the
same initial conditions as for the control run, the equations are integrated using v = 10-4, vy =10"% and v = 5% 1078,
Clontours of the vorticity are compared at times i = 100 and ¢ = 200. The figures show that the solutions are guite
similar at time 100 although the shear layers are much sharper as the viscosity is decreased. By time 200 there are
significant differences between the solutions.

7 Perturbation: Super-viscosity, changing the form of the viscous Op-
erator

Super-viscosity, also called hyper-viscosity, consists of changing the dissipation operator from the standard Laplacian,
wy + uWg + vy = VAW (8)

t0 a higher order operator such as the Laplacian squared,
wy + Uy VWY = —vy NP, {9)

For a given grid resolution it is possible o solve with a super-viscosity ¥4 which is much smaller than the regular
viscosity v, typically one can take vq = v°. In this way it is possible to solve the equations with dramatically smaller
dissipation. Of course one is no-longer solving the Navier-Stokes equations and it is of some interest to know how
solutions to (8) compare t0 solutions to (9). There have been many simulations performed using super-viscosity, see,
for example, [2]{10].

‘The initial conditions for the super-viscosity runs are the same as the control run. Figure (5) compares the
super-viscosity run to the unperturbed run for a super-viscosity of vy = 107°. Figure (6) shows the energy spectrim
for this run. As can be seen from the figures the solutions are qualitatively similar but quantitatively quite different.
Further comparisons can be found in [4),[9]-

8 Perturbation: Switched viscosity, changing from regular to super
viscosity

There are many possible ways to implement super-viscosity. In this section an attempt is made to design a dissipation
that will reproduce the results of standard viscosity but use fewer grid points. One of properties of the Navier-Stokes
equations suggested by the results of this paper is that perturbations which affect wave numbers greater than the
minimum scale do not have any great effect on the solution. Although the minimum scale is only defined up to a
constant, in practice the rule seems to be that perturbations can be added to that portion of the spectrum which is
beginning to enter the region of exponential decay (where the spectrum on 2 log-log plot changes from flat through
the inertial range to curving downward).

A dissipation is designed that gwitches from the Laplacian for low wave numbers to the Laplacian squared for

higher wave numbers. In Fourier space this dissipation is defined as

K? for k? < k3

dissipation = { Et —kE+ k5 for k2 > ki



Figures (7)-(10) show results of applying the switched viscosity to the control run for ¥ = 10~% and ko =. 64 or
ko = 128. When the switch occurs at ko = 64 there are large changes in the solution. Switching at ko = 128 has a
smalter effect.

9 Perturbation: adding noise to high wave-number modes

In the section (5) it was shown that the solutions o the ineompressible Navier-Stokes equations ¢an be accurately
computed with enough resolution. This means that small round-off and truncation errors do not have a large cifect
on the final answer. One may wonder to what degree are the solutions stable to perturbations. In this section some
perturbations are made to the high wave-number modes and the change in the solution js measured. Tt will be seen
that these perturbations are quickly damped and the solution returns to be close to its unperturbed value. However,
since a small amount of energy is transfered to low wave numbers the perturbed solution eventually begins $0 deviate
significantly from the unperturbed solution for longer times.

Let wp (2, ¥ ko) denote the perturbation to the vorticity that will depend on one free parameter Ko. The pertur-
bation was chosen to have random phase with energy spectrum

By(k) = Cpe™ 7
with the constant Cjp chosen so the perturbation wp(z, ¥, ko) has a maximum norm of one,
lwp (5 Ko eo = i.

The perturbation is added to the solution at either at time tg = 0 or at to = 50. The perturbation is centred at
mode kp = 64 or at mode ko = 128

wil{te) = we(to) + wp(®, Y3 ko = 32)
wa (lo) we(to) + wpl(®, ¥iko = 64)

il

Figures (16), (18) and {20) compare the unperturbed Tun to the perturbed run in physical space. Figures (17), (19}

and (21) show the spectrum and norms of the evolution of the perturbation over time. Thig is the difference between
the perturbed and the unperturbed solution.

10 Do low modes determine the high modes

The results from the previous section on high wave-number perturbations indicate that there is a gmall amount of
energy that transfers from high wave-numbers to low wave-numbers. This transfer of energy eventually causes the
perturbed solution to deviate from the unperturbed solution. It is natural now to ask what will happen if some small
pumber of low wave-number modes are specified in time to be identical with the control rumn.

The time history of the lowest M? wave-numbers from the control run is saved gtarting from time & = 50. The
problem is then solved with the lowest M wave-numbers in each space dimension fixed to the values from the control
run while the other wave pumbers are obtained by solving the Navier-Stokes equations with initial values zero:

Bk, t) = el t) K| < ME20
Wk, 0) =0 |k > M,t=0
iy + ik (@) + ik {TW) = 2+ k> Mt 0

In practice this scheme is implemented by first advancing all modes one time step using the standard program. The
values of W for the lowest wave-numbers are then over-written using the results saved from the unperturbed run.
Figures (11),(12) show the results from specifying the lowest 8% modes (8 modes in each direction) over time.
Note how the magnitude of the vorticity and the fine scale structure is recovered to a significant degree. Figures
(13),(14) show the results from specifying the lowest 42 modes over time. In this case the solution does not agree as
well with the control run as in the previous case.

For comparison the results shown in figure (15) indicate the solution that is obtained when the initial conditions
are chosen equal to the lowest 42 modes from the control run at ¢ = 50. The solution is computed in the normal way,

with all modes computed by the pseudo-spectral method.



11 Shallow water equations

The challow water equations with a beta-plane approximation to the coriolis force can be written in the form
1
-+ Uty + VUy T R;(Pm —v) =vAu

1
vy + iy + VY 4 —{py +u) =vAU
¥ Rg

E54]

Py + Ups -+ UPy (Po + p)ug + vy) =0

where the Rosby number is Ko = 116 and the mean pressure is Py = 1.

Solutions to the shallow water equations can coutain fast moving sound waves. The sound waves satisfy a

basically inear wave equation and, if present, remain essentially independent from the slower motions [12]. In these

computations the gound waves are not of interest so the bounded derivative principle is used to choose initial data

to suppress them (3]. Indeed, the stability of the sound waves will follow linear theory to a good approximation.
The initial conditions for the stream function in Fourier space is taken t0 have amplitude

. 1
W0 = iy 0T 6.
’ K+ ()
with random phase. The constant K is chosen s0O +hat the maximum value of the vorticity is one. The initial pressure
field is computed from the balance equation

Ap = Ro [u3 + 2uyvz + V3] + ity — Vs

This initialization will reduce the amplitude of the sound waves. The shallow water equations are solved numerically
with the pseudo—spectra.l method in space. The time differencing uses leap-frog with the diffusion terms lagged in
time for stability. For further details see [4].

The equations are solved with v = 10~* and 64% Fourier modes (1287 grid points). Figure (22) shows the results
from comparing the unperturbed control run with the run where the the lowest 8 modes are specified over time. It
can be seen that the shallow water equations exhibit a similar behaviour to the incompressible equations.

12 Conclusions

Computations presented in this paper demonstrate some surprising stability properties of the two dimensional incom-
pressible Navier-Stokes equations and the shallow water equations. The solutions are guite stable to perturbations
at wave-numbers within the inertial range. However, it appears the very lowest modes are quite unstable to per-
turbations. If some relatively few number of low wave-number modes are fixed over time then much of the high
wave-number information can be recovered by solving for all wave-numbers other than the known low modes. It is
of some interest as to whether the results observed here will be gimilar in the three dimensional case. Initial three
dimensional computations by Dr. Jacob Vstrém indicate that this seems to be true. These three-dimensional results
will be reported in a future paper.
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Right column: control run, v = 1078
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Figure 17: High frequency Gaussian perturbation at mode 64, added at t = 0, v = 10-5. Left: spectrum of the
perturbed solution. Right: spectrum of the difference between the perturbed solution and the control run.
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Figure 21: High frequency Gaussian perturbation at mode 128, v = 1075, Left: spectrum of the perturbed solution.
Right: spectrum of the difference between the perturbed solution and the control run.
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Figure 22: Shallow water equations, left column: specify 8 modes over time. Right column: control run, ¥ = 10-4
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