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Abstract
This report describes three series of numerical experiments for the
three-dimensional incompressible Navier-Stokes equations. In the first

experiment the smallest scale estimate A = /| Dl is studied.
It is demonstrated that the estimate is sharp and that if the small-
est scale is well resolved the numerical approximations on different
grids converge in the max-norm. In the second experiment a high
frequency perturbation is considered. We show that coherent struc-
tures are quite stable to perturbations. On a short time-scale high
frequency perturbations are effectively damped. In the third exper-
iment we demonstrate that the time history of the large scale (low
Fourier modes) of the solution generate the small scale (high Fourier
modes).
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1 Imntroduction

In this report we summarize some results for the numerical solution of the
three-dimensional incompressible Navier-Stokes equations,

w+ (- Viu+Vp = vAu, v>0, (1.1a)
V-u = {, (1.1b)

with 27-periodic boundary conditions. We can expand the solution into
Fourier series ' -

u(z,t) = Y ak,t)e™ =, (1.2)
k

pla,ty = 3 plk,t)e* =, (1.3)
k

where & = (,¥,2)7, uw = (u,v,w)T and k = (k;, ks, k3)”, k; € M. As usual
we define the kinetic energy spectrum,
1 N
ER=5 % lakop

ke 1/2< k| <hb+1/2
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Thus

sl ?

VZk: [k, t)?
=VX( >  lakyP)

k k—1/2<lkl<k+1/2

= VY E(k),
k

where V' = (27)3. To solve the equations we use in space the pseudo-spectral
method with de-aliasing and for the time marching, we use the second order
Adams-Bashforth method in combination with the Crank-Nicolson for the
viscous terms. The calculations are of relaxation type, i.e. the initial data
evolve freely and no outer forcing is imposed. The initial data

u(ma 0) = 'U,g(:l:), p(:c,(}) = pﬁ(m)a

are chosen to have a prescribed spectrum with a random phase, satisfying
the incompressibility constraint (1.1b).

For the same initial data we make two base-runs on a grid with N = 256
grid points in each space direction. The only difference between the two
calculations is the value of the viscosity, v = 1/153,1/300 respectively. In
section 3 we make a comparison between these calculations.

In section 4 the base-run with larger viscosity is used as reference for
calculations on coarser grids with N = 64 and 128 grid points respectively.
Based on the smallest scale estimate [1], the data are such that the solution
is not resolved when N = 64, but resolved on the finer grid, where N = 128.
As expected the solution on the coarser grid deviates significantly from the
reference solution while the solution on the finer grid is close to the reference
solution.

In section 5 we use the base-run with the smaller viscosity as a reference
solution for two perturbation calculations. A rather large high mode pertur-
bation of the base-run is made at ¢ = 0.5. At this time, the spectrum shape
has stabilized. At the beginning the difference between the base-run and the
perturbed solution decays rapidly which means that the coherent structures
are stable to high mode perturbations. After a while the difference starts to
increase. We believe that, as in two-space dimensions c.f. 12], after some time
the effect of the perturbation is pushed into the low modes and the solutions
start to deviate.



In section 6 we demonstrate that the time history of the large scales of
the solution can actually generate its own small scale. Perhaps surprisingly,
we obtain the same results as in two space dimensions c.f. [3]. We use the
base-run with » = 1/300 as a reference solution. Let k., be a natural number.
We denote base-run-2 by u;(x,t) and write it in the form

Uy = ug + uf:" )

where .
up=ui(z,t)= Y alkkt)e® T, ull =u, —ul.
|k|<ke+1/2

We call u] the large scale and u{’ the small scale. We make the following
two types of experiments.

1. At time ¢ = 0.5 we restart the calculations by truncating u; to uj, i.e.
we restart the calculations at ¢ = 0.5 with initial data

u!(2,0.5) = uj(z,0.5), u'(x,0.5)=0. (1.4)

We call the new solution truncated run and denote it by ur.
2. We restart the calculations at ¢ = 0.5 with the truncated data (1.4)
and force the solution at every time step by uj{z,t) i.e. we replace

at every time step u’ by ul. We call the solution playback run and
denote it by wy. Clearly uly(x,t) = uf(z,t).

Mathematically we can express the Navier-Stokes equations (1.1) in the
following way, for the large scale

up + ((u' +u'") - V)Y +
(u" - V)u'Y-4 Vp! = vAu’ + Fl(u!), (1.5a)
V-u' =0, (1.5b)
and for the small scale
ui' + ((u' + o'y V' H +

(" - V)u")" + Vp'! = vAau'! + F(u)), (1.6a)
v.ull =0, (1.6b)
where
FI(‘U.”) — —((u”-V)u”)I,
F”('U.I) — —(('U.I 'V)'U.[)H.
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The type 2) experiment above can be formulated as;
find the solution u'!(wz,t),¢ > 0.5 to equations (1.6) with

ul(x,t) = ul(x, 1),

and with initial data,
u'l{x,0.5) = 0.

We say that the large scale reproduces the small scale u]’ (,t) if

(1) - ull(@,1) - 0.

2 Numerical technique

The experiments in this report uses a spectral DNS (Direct Numerical Simu-
lation) computer program which is based on a program from the Department
of Mechanics at the Royal Institute of Technology, Stockholm Sweden. Sev-
eral authors have contributed to the code c.f. [4],{5],[6]. The program utilizes
a spectral formulation that practically means that on the spectral side only
two ODE’s, for the y components of the velocity and vorticity, have to be
solved for each k. The reason is that the pressure p can on the spectral side
completely be eliminated and that the continuity equation and the vortic-
ity definition are simple algebraic relations for the velocity components from
which the x and z components can be updated at each time step.

2.1 Space discretization

In space, the pseudo-spectral method with de-aliasing is used. We only
consider equal grid spacing in all directions. Let eg. N = 27 for some
7 >0, and

ki€ [-N/2+1,N/2], i=1,2,3.
We denote the smallest scale that we can represent on the grid by A\, and
will use the relation

A= 1/kmae = 2/N.

The FFT algorithm is used to go between spectral and physical space. The
FFT routines used are optimized specially for vector machines. Furthermore
the FF'T subroutine calls can be made in parallel. The 3D FFT is done plane
by plane, each plane transformed independently of other parallel planes.
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2.2 Time discretization

The non-linear terms are treated explicitly with a second order Adams-
Bashforth method. The linear viscous term is computed with help of the
second order Crank-Nicolson method. There is a variable time step feature
implemented in the code but since we want to do comparisons between dif-
ferent calculations at equal simulation times, we choose to use a constant
time step.

2.3 Numerical solutions
By a numerical solution we mean the Fourier polynomial,

N/2 N/2 N/2 o
wet)= > 3 X akt)e*

klz—N/Z-I-l kg:—N/2+I k3=—N/2+I

where the @(k,1,) are obtained from the numerical algorithm. As usual the
vorticity is defined by,

€= (6,86 =V x u = (w, — vayty — 1wy, 0, — 1)

2.4 Norms

We denote the L; norm over the whole 3D domain by,

Nl = [ [7 [ uf? dodys,

and the L, norm over a y = const. plane by,

2T T
e |? :] ] luf? dzdz.
0 0

3 Base-runs

In this section we present two calculations, base-run-1 and base-run-2 which
differ only in the viscosity. The viscosity in base-run-1 is v == 1/153 and
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in base-run-2, ¥ = 1/300. In section 4, base-run-1 is used for reference
in a series of grid-refinement computation. In section 5 and 6, base-run-2
is used for reference for high-mode perturbations and for low-mode forcing
respectively. The initial data for the base runs are constructed with random
phase distribution, satisfying the incompressibility constraint,

V.-u=0,
and with the spectrum,
Ey(k) = Cyke= (ko)

where ky = 3.76 and C} is 5 such that
- ||w(z, 0)|||> = 0.5
v ’ B

Since the presentation and comparison of 3D data is practically difficult we
will restrict the comparison and plotting to the y component of the vorticity,
£¥ in planes for which y = const. We argue that the solution is isotropic
and therefore, that our conclusions are also valid for the whole solution, c.f.
figure 1 where, 5
_Zel€l 1

Sel€2 3
a measure of the vorticity anisotropy for the base-run2 vs. time is plotted.
In this section and in section 4 we use the plane y = 7 for comparison and

in section 5 and 6 the plane for which |£/| attains its maximum.
- Contour plots of the initial data for base-run (1 and 2) can be seen in
figure 2 (the y-vorticity for y = w). Positive vorticity is displayed with
red and negative with blue. In figure 3 the two base-runs are compared at
t = 0.46 and in figure 4 at ¢ = 0.91.

In figure 5 and figure 6 some scalar quantities of the base-runs are moni-
tored as time goes, ¢ € {0,1.0] for base-run-1 and ¢ € |0,4.5] for base-run-2.
The kinetic energy per unit volume, rate of dissipation per unit volume is
displayed as well as the global maximum of |£¥].

In section 5 and section 6 we use the base-run-2 at { = 0.5 as initial data
for a series of experiments. This is to get more physically reasonable initial
data. At this time the spectrum shape is relatively stable. -

i t=I,Y, %,
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Figure 2: Initial data for base runs: & for y = 7,t = 0.0. Contour spacing:1,
(min,max): (—10.1,10.4)
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Figure 3: Contour plots of the y component of the vorticity, base-run-1 (a)
and base-run-2 (b), ¢t = 0.46,y = 7. Contour spacing:1



(b) (min,max): (—19.2,19.6)

Figure 4: Contour plots of the y component of the vorticity, base-run-1 (a)
and base-run-2 (b), t = 0.91,y = 7. Contour spacing:1
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unit volume and |£¥i
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4 Smallest scale and resolution requirement

In this section we investigate the need of spatial resolution and its influence
on accuracy. In this context the smallest scale estimate, c.f. [1] is central. Tt
states that the smallest length scale of the solution to eq. (1.1) is no smaller
than, ' :

v

| Do

od

Amm
where

|Du|o = sup | Dulo = sup max | V.
t t Ty

In three space dimensions there is no a priori bound on | D, 80 the question
of resolution requirement can strictly speaking not be determined beforehand.
However, for the same initial data (and without outer forcing) the behavior

|Dutlo ~ 1/""1/2,

is typical. Consider the base-runs in the previous section. Instead of com-
puting

max | V|
x,i
for these runs, we compute
|00 = m§x|§y|, (3 max (34"
. and use
v
Amz’n - |€y|oo,

as an estimate of the smallest scale. For the base-runs, the parameters in
table 1 are obtained. The base-run-1 is very well resolved since

A:nin/ ’\E’ain =2.2.

We now compute the numerical approximation on two grids with N = 128, 64
respectively for the same viscosity and time-step as for base-run-1, c.f. table
2, here the Ay is taken from the base-run-1. Denote the vorticity of the
different numerical solutions,

€y = Ey(z,t), N =256,128, 64,
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run v N At * Py

min TRETL
base-run-1 | 0.0065 | 256 | 0.0019 | 0.0168 | 0.0078
base-run-2 | 0.0033 | 256 | 0.0019 | 0.0090 | 0.0078

Table 1: Parameters and data for base-runs.

and let £ = €{x, {) denote the true solution. The relative L, norm error for
the vorticity is approximated on the grids with N = 128, 64 as,

HIEC2) — En Il [Eas6s ) — EnC )]
&G I [|€as6(-> I
116556 (- 1) — &K G DI
[11€256 )]

s ”6356((‘3 x, ')’ t) — gly\.’(('s T, '): t)”
”6356((')7:-7')?@” ’
i.e. the error is approximated as the error of the y component of the vorticity
in a plane, y = const.. We approximate the relative max-norm error for the
vorticity correspondingly. These approximations of the errors can be found
in table 3. Observe that e.g. the Kolmogoroff length scale,

dap = 24 [/t > 0,035,

where ¢ is the rate of dissipation per unit volume c.f. figure 5. A smallest
scale estimate based on the Kolmogoroff length scale implies that coarse grid
should suffice to resolve the solution. This is clearly not the case c.f. table
3. For the calculation on the grid with N = 128 the relation

M/ AC. =11,

Tin
holds. This relation also holds for the the base-run-2. We therefore expect

that the truncation errors for the base-run-2 are about the same as for N =
128, c.f. table 3.

5 High mode perturbation

In this section we consider a high mode perturbation of base-run-2. The
perturbation is localized around a mode number k; in spectral space and is

14



grid v [ NT At | din | XS,
very-fine | 0.0065 | 256 { 0.0019 | 0.0168 | 0.0078
fine 0.0065 | 128 | 0.0019 | 0.0168 | 0.0156

coarse | 0.0065 | 64 | 0.0019 | 0.0168 | 0.0312

Table 2: Parameters and data for grid-refinement calculations

N |t |y | S | Eeetiiee
64 [0.000 | = 0.000 0.000
64 |0.152 | x| 0016 0.066
64 | 0304 | 7| 0.052 0.134
64 | 0456 | 7| 0.071 0.102
64 | 0.608 | 7| 0.084 0.142
64 | 0.760 | x| 0.088 0.115
64 | 0912 | 7| 0.081 0.112
128 1 0.000 |« | 0.000 0.000
198 [ 0.152 | x| 00011 | 0.007
128 | 0304 |« | 0.0046 | 0.016
128 | 0456 | = | 00033 | 0.010
128 | 0.608 | 7 | 0.0033 | 0.0069
128 | 0.760 | = | 0.0036 | 0.0076
128 | 0912 | = | 00027 | 0.0061

Table 3: Grid convergence in the plane y = 7 for the y-component of vorticity.
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added to the velocity components of the base-run-2, described in section 3, at
t = 0.5. Denote the perturbed solution by u, s, and denote the perturbation
by wg,. Now, let

Up o (€, 0.5) = (e, 0.5) + we, (),
where the energy spectrum for wy, is of the form,
E, (k) = Cpe~ ko),

Let & denote the vorticity of the perturbation. C,, is chosen such that the
enstrophy of the perturbation satisfies '

P =18,

which can be compared to

~lIgs( 05)(I = 0.0,

The perturbation has random phase and fulfills the continuity equation,
V- Wg, — 0.

In figure 7 we plot the difference between the unperturbed and the perturbed
solution in terms of the relative Ly norm in y = const. planes for kg = 32, 64.
Here the planes are chosen such that |£}] attains its maximum in the plane.
For practical purposes these maximum values and these planes are taken on
a grid with % * N points in each direction. We use the notation,

y; = —Dh={—-1)4x/(3N)), j=1,..,3N/2.

The norms can also be found in table 5. Contour plots of &, 55’32 are shown
at the start of the simulation in figures 8, close to the time at which the
difference attains its minimum(in Ly-norm) in figure 9 and at the end of the
simulation in figure 10.
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Figure 7: Difference between perturbed and unperturbed solution, ky =
32, 64.
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(b) (min,max): (—31.3,21.0)

Figure 8: Base-run (a) and perturbed-run (b): &,¢ = 0.5, ky = 32. Contour
spacing:2
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(—19.2,35.8)
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(min,max

)

(a

(—20.0,35.8)

(min,max):

)

(b

Figure 9: Base-run (a) and perturbed-run (b): &%, ¢ = 1.32, ky = 32. Contour

spacing:2
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(b) (min,max): (—10.4,12.9)

Figure 10: Base-run (a) and perturbed-run (b): &Y ¢ = 4.34,k; = 32. Con-
tour spacing:1



; ’ 60 —€2 pmazll | Nep =€), —eal”
HE 1€
(.5000 | 164 0.4889 0.5097
0.6164 | yogs 0.2456 0.0214
0.7328 | yop3 0.1226 0.0019
0.8492 | y964 0.0701 0.0005
0.9656 | y263 0.0489 0.0002
L0820 | y324 0.0418 0.0001
1.1984 | 11199 0.0291 0.000075
1.3148 | 4102 0.0279 0.000071
1.4312 | y103 0.0280 0.000069
1.5476 | y192 0.0286 0.000070
1.6640 | 4199 0.0310 0.000076
1.7804 | 189 0.0347 0.000087
1.8968 | 1189 0.0363 0.00010
2.0132 | 7190 0.0393 0.00011
2.1296 | y1g 0.0435 0.00012
2.2460 | y193 0.0486 0.00014
2.3624 | y193 0.0545 0.00016
2.4788 | y169 0.0905 0.00023
2.5952 | y1s9 0.1028 0.00030
2.7116 | y157 0.1212 0.00036
2.8280 | y153 0.1282 0.00038
2.9444 | y153 0.1429 0.00040
3.0608 | y152 0.1548 0.00042
3.1772 | y1s0 0.1612 0.00043
3.2936 | yia9 0.1681 0.00044
3.4100 | y300 0.1463 0.00044
3.5264 | y30; 0.1580 0.00048
3.6428 | yim 0.1989 0.00054
3.7592 | yin 0.2171 0.00059
3.8756 | 1173 0.2317 0.00064
3.9920 | 1173 0.2511 0.00070
4.1084 | y174 0.2630 0.00075
4.2248 | y17¢ 0.2678 0.00081
4.3412 | y177 0.2784 0.00084

Table 4: Difference between perturbed and unperturbed solution, kg

32,64, N = 256, At = 0.00194
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6 Large scale forcing

In this section we discuss whether the large scale determines the small scale.
We start with a large scale experiment of type 1) from section 1. We choose
k. = 12, and solve the equations (1.1) with initial data (1.4). Norms of the
difference £ — &% can be found in table 5 and a contour plot in figure 11.
It is clear, at least for the simulation time considered here, that the small
scales are not reproduced.

For the large scale experiment of type 2) we make three calculations with
k. = 8,10,12, respectively to determine u{,{ {(z,1) from the time history of
ul(x,t). Thus, we solve (1.6) with

u'(z,t) = ul(x, ),

and the initial data
u'(x,0.5) = 0.

In figure 12 and figure 13, contour plots of & and of &% for k. = 8 are
shown for ¢ == 0.5, 2.36 respectively in y = const. planes. The same plane is
chosen for the playback-runs as for the base-run-2, which as before is chosen
as the plane for which the maximum of |£}] is attained (at the time t of
consideration). Contours of the difference & — % at t = 2.36 are plotted in
figure 14. In figure 15 to figure 20, corresponding contour plots for k. = 10,12
are shown. The difference for k, = 8,¢ = 2.36 is rather big. For k, = 10,12,
the match is much better and all structures visible in the base-run-2 are also
present in the playback-runs. L, norm and max norm estimates also reveal
this, c.f. table 6.

In figure 21, the spectrum of the base-run-2 is plotted in a log-log diagram
at some times ¢. Also the relative difference of spectrum between the base-
run-2 and the playback-runs are shown, i.e.

(Eb(k) — Epp(K))/ Ey(k),

where Ey, By are the spectrums of the base-run-2 and the playback-runs
respectively. Note that by definition this relative difference of the spectrum,
at £ = 0.5 is zero for the large scale and one for small scale. During the time
interval of the calculation, the relative difference diminishes for all small
scales and for all k. = 8, 10, 12.
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(b) (min,

Figure 11: Contour plots of the y component of the vorticity, base-run-2 (a)

and truncate-run (b), ¢

2.36,y = y193. Contour spacing:1



(b) (min,max): (—7.6,6.3)

Figure 12: Contour plots of the y component of the vorticity, base-run-2 (a)
and playback-8 (b), t = 0.5,y = yags. Contour spacing:1
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Figure 13: Contour plots of the y component of the vorticity, base-run-2 (a)

and playback-8 (b), t = 2.36, y = y,93. Contour spacing:1



Figure 14: Difference between base-run-2 and solution to forced equations:
& — &Y at y = yy03,t = 2.36. Contour spacing:1, (min,max):(—12.0,16.5)
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(b) (min,max): (—9.7,8.6)

Figure 15: Contour plots of the y component of the vorticity, base-run-2 (a)
and playback-10 (b), £ = 0.5, y = yses. Contour spacing:1
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Figure 16: Contour plots of the y component of the vorticity, base-run-2 (a)

and playback-10 (b), ¢

2.36, y = y193. Contour spacing:1



Figure 17: Difference between base-run-2 and solution to forced equations:
& — €Y% at y = ye3,t = 2.36. Contour spacing:1, (min,max):(—14.6,22.6)
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(b) (min,max): (—9.8,11.8)

Figure 18: Contour plots of the y component of the vorticity, base-run-2 (a)
and playback-12 (b), t = 0.5, y = y193. Contour spacing:1
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(b) (min,max): (—16.8,25.0)

Figure 19: Contour plots of the y component of the vorticity, base-run-2 (a)
and playback-12 (b), t = 2.36, y = y193. Contour spacing:1
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Figure 20: Difference between base-run-2 and solution to forced equations:
& — &, at y = yi93,t = 2.36. Contour spacing:1, (min,max):(—3.6, 4.6)
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Figure 21: Relative difference of the spectrum, for 8,10, and 12 mode forcing
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¢ Y Hgﬁef,’fllﬂ;“ Igﬁeﬁﬁﬁlﬂw
0.50 | yaes | 0.316 | 0.6794
0.97 | yoes | 0.228 | 0.6542
1.43 | yrgs | 0.345 | 0.8749
1.90 | yige | 0.553 | 1.0399
2.36 | yios | 0.664 | 0.9513
2.83 | y153 0.972 0.9018
3.29 | 1140 1.20 1.0608
3.76 | yin | 1.3¢ | 1.0051
4.22 | yi7e 1.47 0.9552

Table 5: Relative norms of the difference of the y-component of vorticity,
between base-run-2 and the truncate-run.
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