e T

COMPUTATIOR

A PDE Based Fast Local Level Set Method

Danping Peng
Barry Merriman
Stanley Osher
Hongkai Zhao
Myungjoo Kang

April 1998
CAM Report 98-25

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90095-1555

http://www.math.ncla.edu/applied/cam/index.html

AL AND APPLIED MATHEMATICS

1 T3 . T . .. PR
ased Fast Local Level S

>
U
-
=]
Y,

Danping Peng!
Barry Merriman!

Stanley Osher!
Hongkai Zhao'*
Myuungjoo Kang'

Department of Mathematics
UCLA
Los Angeles, CA 90095-1555

Abstract

We develop a fast method to localize the level set method of Osher and Sethian [19],
and address two important issues that are intrinsic to the level set method: a) How to
extend a quantity that is given only on the interface to a neighborhood of the interface;
b) How to reset the level set function to be a signed distance function to the interface
efficiently without appreciably moving the interface. This fast local level set method
reduces the computation effort by one order of magnitude, works in as much generality
as the original one, is conceptually simple and easy to implement. Our approach differs
from previous related works in that we extract all the information needed from the level
set function (or functions in multi-phase flow), and do not need to find explicitly the
location of the interface in the space domain. The complexity of our method to do tasks
such as extension and distance reinitialization is O(V), where N is the number of points
in space, not O(N log N) as in [22] and [11]. This complexity estimation is also valid
for quite general geometrically based front motion for our localized method.

*Research supported by DARPA/NSF grant on thin film, NSF DMS grant #9706827.

tDepartment of Mathematics, University of California at Los Angeles , Los Angeles, CA 90095-1555.
Contact email: zhao®math.stanford.edu.

tCurrent address: Department of Mathematics, Stanford University, Stanford, CA T4305-2125.
Fmail: zhao®math.stanford.edu.

1 Introduction

Since its inception in [19], the level set method has been used to capture rather than
track interfaces. The advantages of this capturing approach are well known by now.
The method is stable, the equations are not unnecessarily stiff, geometric quantities
such as curvature become easy to compute, and three dimensional problems present no
difficulties. See [21, 17, 15] for a survey and references. Recent improvements include
the computation of multi-phase flows in [26, 97], and unstable fronts in [9, 10].

As pointed out in [1], “one drawback of the technique stems from the expense;
by embedding the interface as the level set of a higher dimensional function, a one
dimensional interface problem has been transformed into a two dimensional problem.
In three space dimensions, considerable computational labor (O(n®)) is required per
time step”.

We remark that there are physical problems, e.g. multi-phase incompressible fluid
dynamics [25, 4], compressible fluid dynamics [16], and melting ice problems [6] in which
the additional level set equation adds only a fraction of extra computing time. This is
because the underlying field equations must also be solved throughout all space.

In this paper we localize the level set method. Our localization works in as much
generality as does the original method and all of its recent variants [26, 27], but requires
an order of magnitude less computing effort.

The first work on localization was done by Adalsteinsson and Sethian [1]. Our
approach differs from theirs in that we use only the values of the level set function (or
functions, for multi-phase flow) and not the explicit location of points in the domain.
Our method requires only one additional comparison operation at each grid point, thus
much less overhead is incurred. Its implementation is easy and straightforward, and has
been used in [8, 13, 26, 27].

Another fast method was recently devised in [22] and [11] in the special case when
the normal velocity of the front is a given nonnegative function of position. The key
observation there is that the problem can be reduced to first arrival time (see also [18])
and that this time independent equation can be solved by space marching using a first
order accurate upwind scheme, as is commonly done, e.g. in the computation of steady
supersonic flows. The complexity of the method developed in [22] and [11] is formally
O(Nlog N), where N is the number of grid points in space. The complexity of our
method is O(N), which is optimal in the sense that it is proportional to the number of
points near the front.

Our method works easily in the presence of topological changes, for general speed
functions and for a wide class of numerical discretizations, as we demonstrate in section
5 below. Unlike the method in {22}, which is necessarily first order accurate, our method
is of arbitrarily high order of accuracy.

This paper also addresses two important issues in level set computation: extension
and reinitialization.

To move the interface, we need the normal velocity tn in a neighborhood of the
interface. In some applications, such as in mean curvature flow, u, is naturally given
globally or at least near the front. However, in some other applications, the normal
velocity Uy, is only known ai the ioterface The Stefan problem and Hele-Shaw flow
problems fall into this category [6, 8]. We propose in this paper a PDE based method
to extend a quantity that is defined on the interface to a neighborhood of it along the
direction normal to the interface. Our approach is conceptually straightforward and
easy to implement. It has been successfully used in [6, 8].

In most cases, it is impossible to maintain the level set function as a signed distance
function to the moving interface in the advection step. Flat and/or steep regions develop
as the interface moves, rendering the computation and contour plotting at those places
inaccurate. For numerical reasons, we need to resurrect the level set function to be close
to a distance function from time to time. This is the so called distance reinitialization
of the level set function. This process can be quite complicated, expensive and with
subtle byproducts. A straightforward reinitialization by finding the location of the
front and computing the signed distance to it is very expensive, and also may bring
some unpleasant side effects, such as oscillations in curvature, which is the Laplacian
of distance function [14]. This is highly undesirable in situations where such geometric
quantities play a crucial role. In [25], the reinitialization is achieved by solving a time-
dependent Hamilton-Jacobi type equation o its steady state. This is the desired signed
distance function. This approach works well when the level set function is initially not
far away from a distance function, but may become too slow when the level set function
‘s flat near the interface, or even worse, move the interface across grid points when the
interface becomes steep. We propose here a variant to the original Hamilton-Jacobi
equation in [25] and a new approximation to the sign function in the equation to ensure
that the interface does not move across the grid points, if it moves at all. Our numerical
computations verify this.

The format of our paper is as follows. In section 2, we review the standard level set
formulation, and present our localization algorithm. In section 3, we derive the PDE
used to extend a quantity on an interface away from the interface. We also discuss
the appropriate numerical implementation. In section 4 we discuss the level set reini-
tialization in some detail. Numerical examples that are used to demonstrate specific
declarations appear near the related text, while the more involved examples that use
several of the techniques presented in this paper are presented in section 5.

29 The Level Set Formulation and Its Localization

We begin by reviewing the standard level set method, as first developed in [19], and set
the conventions that will be followed through out the paper.

Consider a closed moving interface I'(t) in R™ with co-dimension 1. Let Q(t) be
the region (possibly multi-connected) that I'(t) encloses. We associate with)t) an
auxiliary function ¢(z,t), called the level set function, which is Lipschitz continuous

and satisfies the following conditions:

#z,t) < 0 in Q(t)
dxt) = 0 on I'(¢) (1)
| é(zt) > 0 in ENQE)

where z € R",t € Rt. Note that our choice of the sign of ¢(z,t) is opposite to the
popular sign convention. We have found this choice more convenient. See figure 1.

a .
Y ®0 I §<0 -024.
a
Aol

- []

(a) (b)

]

Figure 1: (a) Zero contour of ¢ representing the front I'. (b} Surface of —¢.

Conversely, if we know ¢, we may locate the interface by finding the zero level set of
¢. That is, I(t) = {z : ¢(z,t) = 0}. So moving the interface is equivalent to updating
¢, which can be done by solving a [Mamilton-Jacobi type equation. The equation can be
derived simply as follows.

Suppose z(t) is a particle trajectory on the interface I'(t) moving with velocity & =
(). By definition ¢(z(t),t) = 0. Differentiating with respect to ¢, we get:

e+ i-Vo=0 (2)

By projecting the velocity @ onto the direction # normal to the interface, equation
(2) above becomes:

¢ + un‘v¢1 =0 (3)

Typically, the interface ['() has a prescribed velocity @ or normal velocity us, which
might be a function of space variable z, time t, the normal direction fi, the local mean
curvature &, or some global quantities like the Hausdorff measure |T'(¢)| of the interface
or the Lesbegue measure |(1(2)} of (%), or some external physics to which the motion of
I(t) is coupled. One of the nice features of level set formulation is that these geometric
quantities have simple representations in terms of ¢:

. Vo
= vl)

V¢
Nl (5)

rol = [a@rvel de (6)
()] =]H(ﬂqs) dz (1)

where &(¢) is the 1D §-function, H (4) is the 1D Heaviside-function which takes 0 for
¢ < 0 and 1 otherwise, and & is chosen such that a sphere has positive mean curvature
equal to the reciprocal of its radius. In 2D, ID(t)| is simply the arclength of I'(t) and
IQ}(t)| the area of Q(t), while in 3D, IT(t)] is the surface area of T'(t) and |Q(t)] the
volume of (t).

K = V

The level set method is just to extend equation (3) or more generally(2) to be valid
throughout the space, and pick up the zero level set as the front at all later time.

We point out here two issues of practical importance.

First, extending u, off the interface is not always routine. Localization helps confine
the definition of u, to a small neighborhood of T'(t) = {z : $(z,t) = 0}. In section 3,
we describe a fast method to extend u, continuously off the front.

Secondly, for numerical accuracy, the Jevel set function must stay well behaved in
the sense that, except for isolated points,

0<e< |V <C

for some constants ¢ and C. In fact, it is desirable for many problems that ¢(z,t) be a
signed distance function, i.e.

V] = 1.

Yet the solution of equation (2) or (3) often becomes very flat and/or steep at the
front T'(t). So a procedure is needed to resurrect ¢(z,t) so that it behaves well in a
neighborhood of the front. Such a procedure is commonly called reinitialization. Again
localization makes it only necessary to perform reinitialization within a narrow region
around the front. We will address this issue in section 4.

Now we introduce an algorithm to localize the level set method. For simplicity of
presentation, we describe the algorithm in 2D. The idea can be extend to 3D without
any change.

Let 0 < B < v be two constants which are comparable to Az whose values will be
determined below. For a given open region in R™ with boundary I'®, we define a level
set function ¢%(x) satisfying (1). If necessary, apply the reinitialization step described in
section 4 to set ¢°(x) to be d°(z), the signed distance function to the front [°. Around
T° we define a tube with width ~ by:

T° = {z : [§"(z)] <} (8)
Actually we only need ¢°(z) to coincide with d°(z) in T°.

5

-
|

-0.8

1 I : ! . . 1 L i L
- 08 -08 -G4 -02 0 02 04 06 OB 1

Figure 2: Compulation is only performed on the marked region around I'.

Next, let ¢ be a cut off function:

1 if |¢] < B
@) =4 (1] — 72208l +7-38) /(=8 it B<ldl < (9)
0 if 4] >
We update T'° by solving the following equation:
¢+ ()i Vo =0 (10)
or
¢e + c(Pyun| VP =0 (11)

on TO with initial data ¢°(z) for one time step and get #'(z). Refer to figure 2. The time

step is chosen such that the front moves less than one grid point. This is equivalent to
the CFL condition which requires Atju,| < Az uniformly on the front. If the velocity i
or Uy, is only given on I'°, an extension step is needed to extend % or u, to T°. The reason
we introduced the cut off function in (10) and (11) is to prevent numerical oscillations
at the tube boundary.

The new location of the front is given by I'' = {z : ¢'(z) = 0}. Let d'(z) be the
signed distance function to Tt. Of course, d*(z) is not known to us. All we have is

¢t(z)-
To move the front further, we need the shifted tube

7= fa: (@) <) (12
Qo we must construct a new level set function ¢*(z) from ¢'(z) such that

$'(z) = d'(e) for |d'(2)} <. (13)

6

This can be achieved via a step described below. First we discuss the necessity and
some difficulties involved in doing this.

In the npdating step above, we solve the correct equation only in a tube of radius
8. In the region {z : § < [¢"(z)] < ~}, the motion is modified by the cutofl function.
Outside the tube T°, we do not update ¢! at all. A steep gradient develops at the
region near the boundary of the tube T° in the direction of motion of the interface.
Obviously, ¢!(z) is not a signed distance function to I, See figure 3(b). To rteset ¢'
to be a signed distance function in a neighborhood of I of width 7, the reinitialization
must be performed on a region that contains T. Since the front moves less than one

grid point, we can choose this region to be:

NO = {z: |¢*(z +y)| <7, for certain ly| < Az} (14)

Next we perform the reinitialization step on NO, starting with e (z), and obtain
d!(z), the signed distance function to T, Our new level set function is defined by:

— if dt(z) <-—v
#Hz) = d(z) if |d(z)] £ v (15)
v if di(z) > 7
Then we define 7" and N' as follows:
It = (o (@) <) (16)
N = {z: |¢'(z +y)| <7, for some |y| < Az} (17)

Here TU is the region where the computation in the next time step will be performed,
and N1 is the region on which the reinitialization will be performed after next time step.

We are now ready to move I'' one more step. lterating the above described steps
will move the front further. This process is depicted in figure 3.

The actual numerical values of 8 and v depend on the width of the stencil of the
schemes used to approximate the spatial derivatives. In our computation, we choose
B = 2Az,y = 4Az for a 2nd order ENO scheme [20] or a 3rd order WENO scheme
[12], and 8 = 3Az,y = 6Az for a 3rd order ENO scheme[20] or a 5th order WENO
scheme[12].

We remark here that our extension and reinitialization are done by solving a hyper-
bolic equation with characteristics flowing out of the tube. No boundary conditions are
needed. This is enforced numerically by using a upwind scheme. See sections 3 and 4
for details.

Having described the local level set method in a semi-discrete way, we now outline
the algorithm in the fully discrete form.

Main Algorithm:

Figure 3: The current result is plotted with solid line, while the previous result(s) is
shown with dashed line. (a) The initial local level set profile. (b) After moving one step.
Note the steep gradient developing at the right tube boundary. (c) After reinitialization.
(d) The final local level set profile after cutoff.

Step 0 Initialize. Given the interface T', construct an associated level set function ¢. If
necessary, apply the reinitialization step described in section 4 globally to set ¢ be a
signed distance function to T.

Step 1 Compute velocity. Calculate u, or 4 from ¢ or the physical problem coupled with ¢
on or near the zero level set of ¢.

Step 2 Extend (if necessary). Extend wy or @ to tube T = {(zi,y;) : |¢ijl < v} by the
method described in section 3.

Step 3 Advance. Update ¢ in tube T for one time step to get é by an ODE time stepping
method. See remark 2 below.

Step 4 Reinitialize. Apply the reinitialization step to ¢ on the tube N = {(zi, ;) Min_1<uy,u<i |Pitrjanl <
~}. Define the new ¢ by (15). Go back to step 1.

We make several remarks here.

Remark 1: The most straightforward way to implement the above algorithm is to store
the values of the level set function(s) and other related quantities at the grid points in
2D arrays. In the updating step, we search through each grid point and test if it falls
into the tubes by checking the value of level set function at that point. If it does, then do
the computation; Otherwise, nothing is done. While easy to code, the drawback of this
implementation is that we have to go through all the grid points and do a compatison

there. This is not really necessary since computation is performed only at the grid points
within the tube T in the main time step and within tube N in the reinitialization step,
and such points usually constitute only a small fraction of the total grid points. As
the number of grid points or dimension inciease, this overhead takes up a considerable
amount of CPU time. To overcome this drawback, we introduce an extra 2D array
mask of the same size as ¢ that can be used to differentiate the grid points in and out
of the tubes, and two equal-sized 1D arrays index] and index?2 that store the index of
the grid points in the tube N and whose size is in the order of O(NV). These arrays are
initialized by a procedure like the following

k =1;
for i = 1 to Nx,
for j = 1 to Ny
mask(i,j) = 0;
if |phi(i,j)! < gamma
magk(i,j) = 2; indexi(k) = i; index2(k) = j; k=k+1;
else if |phi(p,q)| < gamma and mask(p,q) == 0 for p=i-1,i+1, g=j-1,j+1
mask(p,q) = 1; indexi(k) = p; index2(k) = q; k=k+1;

Thus tube T corresponds to grid points where mask(i,j) = 2 and tube N corresponds
to mask(i,j) = 1 or 2. This tube construction step need O(N?) operations and is
performed just once per main time step. For all the other steps, we only need O(N)
operations since the computation is done in a 1D loop. For example, to compute ¢z at
the grid points within the tube T, we can use the following pseudo code

for k = 1 to K
if (mask(indexi(k),index2 (x)) == 2)
phi_x(indexi (k) ,index2 (k)) = (phi(index1(k)+1,index2 (k)
- phi (index1(k)-1, index2(k))/ (2*xdx) ;

where K is the number of grid points within the tube N found in the construction step
above. After the level set function is updated in the tube T, we reinitialize ¢ over the
tube N in step 4 by a procedure like

for k=1 to K
phi_new(indexi(k),index.’Z(k)) = phi(indexl(k),indexz(k) + ..

We then construct the new, shifted tubes by going back to our tube construction step
above. Analogous statements are also true in 3D. This gives us an algorithm of approxi-
mately O(N) complexity in 2D and O(N?) complexity in 3D, as will be shown in section
5.

A truly O(N) implementation of the main algorithm is possible by replacing the
simple tube construction step above with a procedure that require only O(N) opera-
tions. We have done this in all the numerical experiments in section 5 with very little

9

change in our results. We recommend the implementation presented here because of its
programming simplicity.

Remark 20 The solutions to equation (2) or (3) are often only uniformly continuous

Liiifs o

ra

with discontinuous derivatives, no matter how smooth the initial data are [19, 20].
Simple central differencing is not appropriate here to approximate the space derivatives.
Instead, we use ENO type schemes for Hamilton-Jacobi equations as developed in [19, 20]
or WENO schemes developed in [12].

Remark 3: The time stepping methods we used are the TVD Runge-Kutta schemes
devised in [23]. Consider the system of ODEs:

{-f‘i = L(9) (18)

$(0) = oo
where I is some spatial operator. The 2nd order method at the nt" step is:
o S AT (19)
gt = g+ SHL(EN) + L(¢™T)]

The 3rd order method at the n®* step is:

%n+1 — qs'n. + AtL((’bn) i
gt =g+ BHL(gm) + L] (20)
g = g+ BL(g) +AL(FE) + L(F)]

Remark 4: If the front moves very little in one time step, there is no need to reinitialize
every step. We can iterate using only Step 1, 2 and 3 until reinitialization is triggered.
Then we go to Step 4. We shall discuss this further in section 4.

Remark 5: If the motion of the interface involves sensitive quantities such as derivatives
of curvature, we need to choose bigger and v and compute these quantities in an even
narrower tube of width «, where 0 < a < B < . In this case, we choose a = 2Az, 8 =
4Az,y = 6z for a 2nd order ENO scheme [20] or a 3rd order WENO scheme [12], and
o = 3Az, B = 6Az,v = 9Az for a 3rd order ENO scheme[20] or a 5th order WENO
scheme[12]. Introducing an extra tube also enable us to monitor the behavior of the
level set function and the movement of the front and trigger the reinitialization only
when necessary. We will discuss this further in section 4.

3 Extending a Quantity Off an Interface

In the level set formulation, we need the velocity # or normal velocity un in a neighbor-
hood of the interface I'(#). In some applications, i or u, is naturally defined globally
or at least near the front. Such examples include motion with a constant speed and
mean curvature flow [19]. But in some other applications, @ or u, is only given on the

10

interface. Away from the interface, it is not defined at all. The Stefan problem [6]
and Hele-Shaw flows [8] are such examples. There are also situations where we need to
extend other quantities defined on the interface to a neighborhood of the interface. In
6], a PDE based method was used to do this, and this is the approach that we adopt
here. This method is straightforward and easy to implement. We note that the same
method was originally proposed and analyzed i the appendix of [26], but the authors
did not pursue it there.

Suppose we have a quantity ¢ defined on the interface I'(t). The most natural way to
extend ¢ off I'(1) is to let ¢ be a constant along the curve normal to ['(t). This suggests
the following hyperbolic PDE:

V¢
g+ S(¢) = - Vg =0 21

where S(¢) is the signature function of ¢ define as:

-1 ifg<O
S(¢) = 0 if¢g=0 (22)
+1 if¢>0

The characteristics of equation (21) are exactly those that are normal to the level set
level set of ¢ and pointing away from T'(t).

Equation (21) is a particular case of the following general Hamilton-Jacobi equation:

g+ H(Vg,z,t)=0, z€ R*,1 >0 (23)

Accurate and robust numerical schemes exist to compute approximate solutions to
equation (23). See for example [20, 19, 12]. Yet usnally in the extension step, numerical
accuracy of the method used is not an issue, as long as the method extends the quantity
under consideration in a sensible way. In the following, we shall use a first order upwind
scheme coupled with a forward Euler time discretization. For simplicity of presentation,
we will only write down the formula for the 2D case, and drop the explicit (z,y) and
t dependence, which is understood to exist in the scheme in a simple fashion, i.e., by
fixing (z,y) and t to be their grid values in the numerical Hamiltonian. The extension
to higher dimension is straightforward.

We approximate S{¢) by Ss(¢) = @/+/$* + 6%, where § is a small smoothing pa-
rameter which can be taken as Az, and denote the nodal value of Si(¢) as si;. We

compute the fixed quantities f1 = (n®,n¥) = (¢=/+/(¢5 + B2}, by /(D2 + ¢2)) by cen-

tral differencing, and use fy; = (nf;, n{;) to denote their nodal values. The above method
reads:
bl AT Qz; — qi-1j oz \- Qit1; — qij
gt = g - A{(synl)” T T (sim$i)” — Az T
(sind)* G — B3l 4 (gn¥) Gigtr — %igy (24)

Ay N Ay

11

where (z)* = maz(z,0), (z)” = min(z,0). The nodal values of ¢ on the stencils that
the interface cut through can be computed by interpolation [6, 8]. As pointed out in
section 2, no internal boundary condition is needed because the characteristics of the
PDE (21) fiow out of the interface I' = {z: ${z,t) =10} Thisis numerically enforced
naturally by the upwind scheme, since we use only the value of ¢ on the nodes biased
to I

We consider the following example. Suppose
8
L={(r,8):r(0) =0.1A +0.7(1=A), A= o 0<0<6br}

is a spiral on the domain D = [-1, 1] x [~1,1] that orbits the origin 3 times. Let §) be
the region consisting of all points with distance to I less than 6/128, and ¢ be the signed
distance function associated with Q. We use a 128 x 128 grid, and define a quantity g
which is equal to # on points with distance to A0 less than Az, and 0 otherwise. See
figure 4 for the result of the extension using the above scheme. Section 9 contains a
more elaborate example that uses the extension method described in this section. This
is a very successful level set based calculation of an unstable vortex sheet, improving

the results of [10] considerably.

4 Reinitialization

It is numerically desirable to keep ¢(z,1) close to a signed distance function. For general
i@ or uy, it is impossible to prevent ¢(z,t) from deviating away from a signed distance
function, except in some very special cases [26]. Typically, flat and Jor steep regions
will develop at the interface, making further computation and contour plotting highly
inaccurate.

As an illustrative example, we consider the simple case of the shrinking of a unit
circle in 2D or a sphere in 3D with its mean curvature. In the level set formulation, this
is equivalent to solving the following PDE:

bt = VIV (28
{qﬁ(w,O) -1 (2)

This equation is rotationally invariant. This suggests that we look for solution of the
form ¢(z,t) = ¢(r,t), where r = |z|. We have:

_ 99
AV 1
VoNg T r

Then the equation (25) becomes:

2% 1
at r
{ #(r,0) = 7

i2

(26)

08T

08r

04

0.2f

-0.2r

045

=06+

" T S S S ST S
(a,) T o8 06 .08 -8z 0 02 04 06 0B 3

il
rlliiéllllliE i

()

Figure 4: Extension. (a) Zero contour of ¢. (b) Initial g. (c) Extend for 5 steps. (d)
Extend for 10 steps.

13

which has the well-known solution:

d(r,t) =vVr2+2t—1 (27)

The interface is located at r = /1 — 2¢. On the interface, V@] = V1 — 2t Clearly,
#{z,t) becomes more and more flat at the interface, and becomes totally flat just before
vanishing at ¢t = %

Even in this simple case, a direct numerical implementation of equation (25) turns
out to be problematic at the center, where |V 4| is always zero. A spike appears at the
center after one step. See figure 5(b). As the interface moves near to the center, the
computation becomes highly inaccurate. For simple cases such as this one, we know in
advance where the problem will arise, and we can kill the spike by enforcing explicitly
an internal boundary condition at the center. For example,

Po,0 = —;*(45—1,0 + 1o+ Po-1+ Boq1) — %‘i(fﬁwz,o + $a0 + P02+ $o,2) (28)

But in general, we do not know in advance where the problem will arise, and such
a condition is hard to enforce. A reinitialization step will effectively eliminate such
problems without the explicit knowledge of their locations. This is a very important
effect of level set reinitialization. In figure 5, we plot the errors in computing the radius
of the shrinking circle with and without the reinitialization step, and in each case, with
and without enforcing the internal boundary condition (28).

Generally, a procedure is needed to reset the level set function ¢(z,t) to be a signed
distance fumction to the front T'(¢). One may ask if it is legal to do so. Theoretically,this
is justified in [7] and [3], where the anthors showed that the interface T'(t) = {z :
é(z,1) = 0} does not depend on the particular choice of the initial data $(z,0), as
long as its zero level set coincides with T(0). Reinitialization is simply the process of
replacing #(z,t) by another function #(z,t) that has the same zero contour as é(z,1t)
but behaves better, and then taking this new function $(x,t) as the initial data to use
until the next round of reinitialization.

A straightforward way to reinitialize is to find the location of the front with some
interpolation technique, and then compute the signed distance function to this front, as
is done in [14]. This brute force approach has the advantage that it does not move the
interface up to the numerical accuracy of the interpolation scheme. The disadvantage
is its high cost, and the likelihood of introducing some spurious irregularity into the
data, making differentiated quantities such as curvature behave very badly. Some kind
of smoothing procedure is usually needed to be coupled with this approach. A more
elegant way is presented in [25], where the following Hamilton-Jacobi type equation:

{ d: + S(do)(|Vd|—1) =0
d(z,0) = do(z) = ¢(z,1)
is solved to steady state, which is the desired signed distance function. Properly im-
plemented, this method converges quickly in a neighborhood of the front. The reason

(29)

14

R
o
LR
R
XA
A OOBIONIN
i
i
o Y
OO N
O RSTE
N SNTI
iyl ':,:,’o o
BT

057

(RN

t=412

()
YD AN AR, dihiiay
R
N Y
ottt AR A ety
Lol IR ol

kb

it
X
X

ot
el

&
25
Yt

3
25

it

r

75 4%:':}?

N,

1,!,',‘,:0"
A0

oo

O

%5
3

3

R

3

25
2%

SIS

e

35
2%

23

2
202
gs

230

=
25

25
ot

2

2
25

o5
5%

oS

oo
'+
5
dS,
203
528
S
S

2
T,
SRR
™,
3
bt
S

5%
SRS
o :
s

Y
R

2
o

(R

2%
3
2
535
s

525
R0
&5

23

5
<3
e

5

o5
&%
2%
>

T

5
o

25

g5

2%
e
g0
S

05

e

(55
%
e
33t
ey

3

!

<5

: il L i

Y S S — . . ¢ 005 o1 o015 02 02 03 035 04 045 05
(C) [005 LAl 045 0.2 0.28 23 635 04 045 45 (d) time

Figure 5: (a) The mid-slice of analytical level set function of a shrinking circle. (b)
A spike appears at the center with a direct implementation. (c¢) The plot of errors in
radius computed with reinitialization (solid line) and without reinitialization and without
enforcing the internal boundary condition (28) (dashed line). Note that at about t = 0.35,
a spurious circle appear at the center. In this case, the radius is taken as the average of
the two. (d) The plot of errors in radius computed with reinitialization (solid line) and

without reinitialization and with enforcing the internal boundary condition (28)(dashed
line).

15

is quite simple. On the PDE level, d propagates with speed 1 along the characteristics
that are normal to the interface, and converges in time € to a signed distance function
in a neighborhood of I'(t) of width e. We note that the complexity of this kind of reini-
tialization is proportional to the number of grid points in the e-neighborhood of T'(t),
which is of order N when the area of the ¢-neighborhood occupies a gmall fraction of
the total area. In [25], the authors approximated S(d) by

d
Se(d) = N

with € = Az, and used a 2nd order ENO scheme [20] to approximate the space deriva-
tives. They reported good results.

(30)

Their method generally works well when do(z) is neither too flat nor too steep near
the interface. When d becomes too flat, the quantity S.(d) above is small, and the
propagating speed will be small. More steps will be needed to reset d to be a signed
distance function in a neighborhood of I'(2) of fixed width. See figure 6(a). When d is
very steep near the interface, this approach might changed the sign of d, thus moving
the interface across grid points. See figure 7 (a).

Now we analyze how these issues arise and try to find ways to solve them. To keep
things simple and the idea clear, we take the 1D case and use the first order upwind
scheme in space and the forward Fuler method in time discretization. Suppose the
interface cuts through the interval [z, ziya], and d; < 0 < djy1. After one time step, we
have:

diy1 — d;
dl = di+siAr(l- _t;g—) (31)
" diy1 — ds
&y = dip+sipAr(l— —7x—) (32)

where —1 < 5; < 0 and 0 < sipq < 1 are some approximations to S(d;) and 5 (diz1),
respectively. The above scheme is monotone, which means d} is nondecreasing in d; and
d;y1, when the CFL condition A7 < Az is satisfied. When d"—n*};—d" < 1, we see that
d} < 0 < di,, regardless of the choice of AT, s; and si4;. But when d—ifgf— > 1, if we
approximated S(d) by S.(d) with an uniform € as in [25], there is no guarantee that d
does not change sign. For example, if we take AT = cAz,d; = —mAz and diy1 = nAz,
we then have:

d = mAz[-1-+

2

] (33)

dl,, = nAg 1-] (34)

One can easily pick m and n such that d} or d},, changes sign, no matter how small ¢
18.
To ensure that d does not change sign, we have to require:
d
A’T < ‘ kl

Az = Aglsp||l — L4

for k=1i,i+1. (35)

16

0.5 A 05 %(%_ﬂ
: :

-t

-1
-1

05
0 :
-0.5
0

Figure 6: Convergence rale comparison for a flat ¢ with different approzimation to
5(¢). The initial level set in polar coordinates is ¢(r,0) = (r—0.5+0.1r sin(78))%. Grid
198 x 128, At = .5Az. RES-ENOS. Contour taken over [—10Az : 2Az : 10Az]. (a)

Approzimate S(¢) by ¢/+/¢* + Az?. (b) Approzimate S{(¢) by ¢/ + (|[Vdlaz)?.

17

step & step 5

1 1
05 0.5
O L O
-0.5 -0.5
-1 —i
-1 -05 0 0.5 1 -1 -05 0 0.5 1
step 10 step 20
1 1 y j
0.5 0.5
0 o
05 0.5
- -1
(a) -1 -0.5 0 05 1 -1 -0.5 o 05 1
step ¢ step 5
1 1
0.5 0.5
;O
-05 -0.5
-1 -1
-1 -0.5 0 05 1 -1 -0.5 0 0.5 1
step 10 step 20
1 y 1
0.5 0.5
o o
05 -0.5
-1 - -1
(b) -1 0.5 0 05 1 -1 -05 o 05 i

Figure 7: For a steep ¢, the interface is moved substantially with the approzimation to
S(¢) as (30}, while the new one given by (36) alleviates the problem quite a bit. The
initial level ¢(z,y) = z°/.3% & y2/.22 — 1, and the grid is 128 X 128, At = .BAz. RK3-
ENO3 is used. The contour is taken over [~10Az : 2Az 10Az]. (a) Approzimate S(¢)
by ¢/+/ % + Az?. (b) Approzimate S(¢) by o//9? + ([VlAz)?.

18

In order that the above inequality does not pose a more serious restriction on time
step A7 than the CFL condition does, we choose the approximation to 5(d) as

d

&+ (1 - B]2Ae?

5 =

That is, our approximation to the sign function S(d) depends on the local slope of d.

The above analysis suggests that, in the multidimensional case as well, if we use the
torward Euler method in time discretization, and approximate Vd(z) with some discrete
operator Dd (see below), we can choose

d
§ =
V& + (1 —|Dd])*Ac?
to ensure that the interface is confined to one cell in the reinitialization step. The higher
order TVD Runge-Kutta methods given by (19) and (20) are convex combinations of
the first order Euler method. We need only to approximate S(d) with the d in previous

step and Vd(z) with npdated d in cach sub step. It is easy to see that the original CI'L
condition is still valid with this choice of approximation to S(d).

To put in some smoothing effects, we will use the following approximation in our
computation:

d
=
V& + |DdPAz?
This choice of S(d) inherits the above properties. See figure 6(b) and figure 7(b).

(36)

The choice of approximation to S{(d) by (36) solves the problem of the changing of
sign of ¢ (thus moving the interface across the cell boundary) in the reinitialization step
when ¢ is steep and speeds up the convergence when ¢ is flat at the interface.

Based on the above analysis, we propose to solve the following Hamilton-Jacobi
equation:
{ d, + S(d}{|Vdl - 1) =0 (37)

d(:l’:,(]) = dﬂ(m) = ¢(w:i)
to steady state, with S(d) approximated by (36).

There are two canonical monotone upwind schemes which have been frequently used.
In [19] a variant of the Engquist-Osher scheme developed for scalar conservation laws
was suggested. In our case it becomes:

2R = @ A (@ G (P (@ 1)

Az
si(V{@ 2+ () + () + (@) = 1) (38)

ar
Az
where s;; is the approximation to 5 (dz) with (36), a,b,¢, d are defined by:
a=D;d%, b= DId};

x Yy T 1y
— - m — =+ Jn

19

Scheme {38) is easily seen to be monotone i.e. the right side of (3.3) is a nondecreasing
function of all the d%, if

1
[si5] < 5- (39)

AL
LA

This is also upwind, which means that away from sonic points (for those which either
$(d)dy, = 0 or S(d)ds, = 0) the scheme has a domain of dependence which is in the

same direction as that of the characteristics.

The second and most canonical example is Codunov’s scheme, described abstractly
in [20], see also [2] and whose realization for this problem is

et = iy — ST (@, (5] (e (=)

N o e R ot B

which is also monotone and upwind with the same time step restriction, and is slightly
less dissipative near sonic points.

If we start each iteration of our main time step with a distance function, the reini-
tialization typically takes only one or two iterations within the tube.

For simplicity, we described the above two schemes using forward Euler time dis-
cretization. In actual computation, we can use a TVD type Runge-Kutta scheme. See
(19) and (20) in section 2. The one-sided differences D¥d;; DEd;; are computed with
ENO [20] or WENO [12] schemes for Hamilton-Jacobi equation.

A very important practical question is: when do we start our reinitialization step?
Shall we do it every time step? There is no simple answer that applies generally. Reini-
tialization every time step is necessary when the interface undergoes a rapid change and
$ deviates dramatically away from the signed distance function. Otherwise this is exces-
sive. What we need is some way of monitoring this process to trigger the reinitialization
automnatically. In our computation, we choose to monitor two factors: Does the average
slope of ¢ deviate from 1 substantially? Does the interface move near the boundary
of the tube g (if three tubes are used)? (This is another reason to have a middle
tube.) If one of these two signals is activated, we start the reinitialization procedure
immediately. However, this is not very reliable. If the reinitialization is not triggered
by the above monitoring procedure after a fixed number of time steps, it still needs to
be executed. Since the monitoring procedure is only done within a narrow tube with
central differencing, the cost of doing this is minimal. We have found this approach
works well in our computation. See section 5 for some numerical examples.

To summarize, our reinitialization step consists of several steps of the PDE solver
for (29), with the sign function approximated as discussed above.

20

5 Numerical Results

In this section, we present some numerical examples that use one or more of the tech-
niques presented in the previous sections, and compare the resulls and performances
with that obtained by global level set method. All the computations below are per-
formed on a Sun Sparc-10 workstation.

Ezample 1 We compare the performances between our local level set method and global
level set method on the following problem. We rotate a circle around the origin twice.
The circle is initially centered at (0.5,0), with radius 0.25. The computation is performed
on the domain D = [~1,1] x [-1,1], with RK3-ENO3. A reinitialization is performed
for 3 steps in every main time step, also using RK3-ENO3. In the level set formulation,
this is equivalent to solve the following equation

br — Yo + zdy =10 (41)

Table 1 tabulates the CPU time (in seconds) used in each step for the global method
and the local method described in section 2, and their ratios. This table clearly shows
the O(N) behavior of our local level set method.

Mesh size | Global | O(N?) | Local [O(N) | Global/ Local
32 x 32 | 0.03269 0.01986 1.646
64 x 64 | 0.1416 | 4.332 | 0.04221 | 2.1225 4.6451
198 x 128 | 0.9366 | 6.614 | 0.09511 | 2.253 7.3221
256 x 256 | 4.35 4.64 | 0.2246 | 2.363 9.2933

Table 1: Comparison of global and local level set methods for Ezample 1.

The quality of the numerical solutions is measured by three factors, namely, the loss
of area A, the loss of arclength L (in percentages), and the isoperimetric defect ratio
R = L?/(4rA). The defect ratio R measures how far the shapes deviated from a circle.
For a circle, R = 1, and R > 1 for any other shape. Because of numerical errors in the
algorithms we used to compute the area and arclength, the defect ratios computed are
all smaller than 1, but are pretty close to 1. See Table 2. In figure 8, we plot the loss
of area and arclength (in percentage) and the deviation of defect ratio from 1 in the
results computed by local and global method for a grid of size 128 x 128.

FEzample 2 We test our local level set algorithm on volume-preserving mean curvature
flow:

¢ = (k= RB) VY| (42)
where & is the mean curvature, & is the average mean curvature on the front which can
be computed by:

8(¢)|Vld

"= TE(4) IV dlda

21

2500

0 i 10
"l
Wt
W0
1w
107 4
(a) 0 500 1000 1500 2000 2500 0 500 1000 1500 2000
1! y —
107
107
10
10°
167 L 2 L J e~ L L . J
(b) ¢ 500 1000 1500 2000 w0 Do w o0 00 %0 o
1 10’
W' 10“.
107 0%
! il PRI T T LR [F
{ 1l Pt ® | Talti F| " o il
T | | Tt 11, TR I) H e AT INE Wit il
|:=;,_%l } ! 3&1 ‘Ei ‘\I‘ t‘ U\ hw‘ I d i i wll
| Lk (i L0
10 I Wy -
10" 0%
1000 1500 2000 2600 0 500 1000 1500 2000 2500

(C) 0 S0

Figure 8: Data on the left are computed with
with local method. Grid 128 x 128. RK3-
Percentage of arclength loss. (c) Deviation from 1 of defecl ratio.

22

global method,
ENOS. (a) Percentage of area loss. (b)

while the right are computed

Mesh size Global Local
area loss | length loss | defect ratio | area loss | length loss | defect ratio
32 x 32 57.3 37.4 0.9174 57.3 37.4 0.9174
64 x 64 13.6 7.45 0.9908 13.5 7.42 0.9910
128 x 128 4.88 2.64 0.9964 4.87 2.64 0.9964
256 x 256 0.48 0.36 0.9977 1.17 0.69 0.9980

Table 2: Area, arclength loss and defect ratio for global algorithm and local(fast) algo-
rithm in Ezample 1.

To test the performance of our local level set method, two different initial conditions
are used in our test. In the first case, the initial front is a spiral as we have used in our
extension example in section 2. In figure 8, we plot the fronts at different steps, and
the area (which should stay constant) and arclength against the computational steps.
In the second case, the initial fronts are 100 bubbles spread over [—1,1] x [-1, 1j, with
centers and radius produced by a random number generator. We computed the total
area, the total arclength and the approximate number of bubbles by

1
N = o [Ro(8)IT6lde (44)

The results are shown in figure 10. With a 128 X 128 grids, we lose about 4 percent
of the area after 1600 steps. The same computations are also performed with global
level set method. No distinguishable differences are noticed between the results of the
global and our local methods.

For complexity analysis, we applied our local level set method to this problem with
various initial shapes in 2D, namely a circle, an ellipse, a square, a star (see Example 4
below) and the spiral mentioned above. We also simulated the 3D problem of a dumabbell
collapsing under its mean curvature for which pinch off occurs. Table 3 tabulates the
CPU time (in seconds) per time step for different number of grid points and different
initial shapes, which clearly demonstrated the O(IN) complexity of our local method in
9D and O(N?) complexity in 3D.

Mesh Circle Ellipse Square Star Spiral Dumbbell
32 | L.7e-2 2.4e-2 3.6e-2 4.3e-2 5.8e-2 0.4
64 | 4.0e-2 123 [49e2|21)79e2 22121 27| 1.5e-1 125 2.4 159
198 | 8.3e-2 |21 | 1.1e1 |23 1.8¢1 (23 28e1 2.4 | 4.4e-1 | 2.9]10.7 | 4.5
956 | 2.3e-1 | 2.8 | 3.1e-1 | 2.7 | 4.8e-1 { 2.7 | T.9e-1 28] 1.1 |26

Table 3: Complexity analysis of the local level set method for Ezample 2.

Ezample 3 In this example, we test our extension and reinitialization algorithms dis-
cussed in section 3 and 4 on the vortex sheet problem. Details of this problem in the

23

08t 08

06t g osf T

04k 04}

o2t oz

ok of

02} -0z

04t -0d}

-08 -0}

-08 08

e s e
(a,) N8 05 04 0z 0 02 o4 06 08 ¢ (b) 1" Ths o8 04 2 o o0z 04 06 08

1 ¥ T T T T T T T 1 T ¥ T T T T T T ¥ j

o.ar o‘ar

os} osr

04} odr

02} o2t

o ot

-0.2F ~0.2

~0.4F -04F

Y -0

-08 -08t

L I P T P} T B S Bttty
(C) NoF 06 04 92 o 02 04 06 ot (d) T35 08 4 02 0 02 ¢4 08 0E 1

03 T T T T T 1% T T 1 T T T

78}

s} o

en

076}

.25

O4r

Eiedd] o

oier

aHE

[y L L L L - L L L L £ L
(e)‘ 200 400 800 BOD 0w 100 1400 80 1000 1200 1400 1600

Figure 9: Volume conserved mean curvaiure fl

Initial front. (b) After 200 steps. (c) After 400 steps.

(f) Arclength.

24

ow. Grid 128 x 128, RK3-WENOS5. (a)

(d) After 1600 steps. (e) Area.

!
28} oet
os ocOooCo0o 0O ost
00000000 N
o4 o 000000000 o4
e OO0 o 00QO o o2k
000 000000
o O QooQOOoO0 ot
0l o0 ooQO0©o il
- OO0 QOO0 e O
04t OOOO OOOOO o —Cdr O
coc000 O 0
-08f o 00O (Co0o © O o8}
08 j -0.Br
. L L ") . . s ; L 1 L . :) L) 1
(&) Nos 05 o4 -0zt 02 04 06 03 (b) T8 0 04 02 @ 0tz 04 06 o0& 1
1 0s
0.8} 049
0} 248
" 047
o2} 048
o 045+
Y 044k
-0df 043t
~0.6} 042F
-08 oaf}

25

20

L : L L
400 600 800 1000

Ol

I L
400 500

W00 f0 19 1400 1630 (f) ¢

Figure 10: Volume conserved mean curvature flow. Grid 128 x 128, RK$-WENOS5. (a)
Initial fronts. (b) After 200 steps. (c) After 1600 steps. (d) Area. The exact area is
0.4618. (e) Arclength. The initial arclength is 23.598. (f) Number of bubbles. The
initial number of bubbles is 100.

25

level set formulation is contained in [10]. We briefly summarize it here.

The 2D incompressible Euler equation in vorticity-streamline formulation is:

wy + uwg +owy = 0, (45)
curl(u,v) = w, (46)
div(u,v) = 0 (47)

where w is vorticity, u and v are the two components of the fluid velocity.

Suppose w is only concentrated on a thin curve called a vortex sheet, and let

w = 8(¢)n (48)

where ¢ is the level set function associated with the vortex sheet, 77 is a parameter that
is related to the strength of vorticity.

Inserting equation (48) into (45), and equating the coefficients of 5(¢) and &'(¢)
terms, we get

b +uds +vdy = 0, (49)
e+ ufe + 0y = 0, (50)

Introduce the streamline function t, such that

u =1y, v=— (51)
From equation (46) we get the following equation for t:
Yoo + Yy = ~&(¢)n. (52)

Note that 7 itself does not make physical sense, since 6(4) is not invariant in the
sense that ¢ can be replaced by h(¢) for a function b that satisfies &’ > 0 and A(0) =0
without changing its value. But 6(¢)|V4] is invariant. Hence 7/|V¢| is the strength of
the vorticity. This gives us the following transformation of 5 if ¢ is changed to ¢ that
corresponds to the same interface)

. Vel

= 4" (53)
This relation is used in the reinitialization of ¢. Another issue that concerns 7 is that 7
only makes sense on the vortex sheet, ie. the zero level set of ¢. But to update 7, we
need its value in a neighborhood of the interface. This problem can be solved by the
extension procedure we described 1n section 3.

Our computation is performed on a rectangular D = [-1,1] x[-1,1]. The boundary
conditions for ¥, ¢ and 7 are:

1. 4 is periodic in z, and P(z,1) = Pz, —1) = 0.

26

9. ¢ is periodic in z, and ¢(z, +1,t) = ¢(z,—1,1) + 2.

3. 7 is periodic in both z and y.

The initial conditions for ¢ and 5 are:

#(z,y,0) = y+0.05sin(rz),
n(z,y,0) = L.

The choice for the approximation to delta function are :

L cos(%£) i
o¢) = { 56(1 +eonl) cfthlsefwise (54)

where € is a small parameter that is proportional to mesh size Az. In our computation,
we nse a 128 x 128 grid, with e = 12Az as in [10], and RK3-WENO5 in main time step
and reinitialization. The Laplace equation (52} is solved by the FISHPACK routine
hwsert.f. Since the cost of updating ¢ and 7 is only a small fraction of the cost of
solving the Laplace equation, a global level set method is used here. See figure 11 and
19 for the remarkable results. In particular, we obtain numerous turns without spurious
wiggles. With only the reinitialization but without the extension step, the computation
blows up quickly. The reason for this is that in the rescaling of n using (53), 7 is not
well defined at the grid points where the gradient of ¢ vanishes. The data near the front
is polluted by the data over these grid points, especially when the front rolls up, making
further computation hard to proceed. An extension step will assign meaningful values
to these grid points.

The next two examples showed a comparable savings of one order of magnitude in
local and global level set calculations.

Ezample 4 We test our local level set algorithm on the motion with curvature dependent
acceleration. The general equation governing the motion is:

du 1 d|dA| 1du
pogy = —lpln—onnt fop =g toE
where Ll
MW:VU—HDUH
and

o(V-w)(u-n) = (u-Vu) n—glor—f-n— I n))8(¢)|V]2
Jo 1 6(8)IVeldQd

[Pl =

where

1 d(dAD | 1
F=—mla & e

27

t=0 t=1 t=1.6

1 4 ———— H———
4 0 1 4 1 g 0 1
- t=2 - 135 - t=3
1 { ———— { —————
- 1 ! 0 1 . 1
-1 s - 124 -1 s
1 1 1
-1 Al—_ g
(a) -1 0 1 -1 0 1 -1 0 1
fa t=1 t=158
1 1 i

-1 12 1 -1 t=9.5 =3

53
:
¢

—
—
—

¢
¢
e

-1 -1 -1
(b) -1 0 1 -1 0 1 -1 0 1

Figure 11: Vortex sheet problem. At = 0.1Az. (a) Without reinitialization and exten-
sion. (b) With reinitialization and extension every 10 time step.

28

Figure 12: Vortex sheet problem. The vorticity at time t = 4.5.

and f can be determined depending on the property of the motion. For the details, see
[13]. See figure 13 for the numerical results.

Ezample 5 In this example, we apply the local level set method to the 3D double bubble
minimizer calculation. Initially, a dumbbell shaped bubble is surrounded by a doughnut
shaped bubble, and the bubbles are in the air. The total surface energy is the integration
of the surface tension along the bubble surface. Surface tension can be prescribed to be
different at interfaces between bubble and bubble, bubble and air. We are interested in
finding the shape which minimize the total surface energy while keeping the volume of
each bubble fixed. Three level sets are used, namely, ¢o for the air, ¢; for the dumbbell
and ¢, for the doughnut. We try to minimize

5= [V do (55)

1=0

subject to non overlap and volume conservation constraints. Here the 4;’s are surface
tension. Details can be found in [27].

In our calculation, the surface tension of the doughnut shaped bubble 18 taken to
be bigger than that of dumbbell shaped bubble. Figure 14 is the contour plot of the
dumbbell shaped bubble taken on a cross section. Notice that we did not cut the level
set function to be constant outside the tube around the interface. We see that the
dumbbell shaped bubble is clipped into two. We also see that only in a neighborhood
of the interface the level set function is very close to a distance function. Contours that
are far away from the interface are not even touched.

29

0 Of D
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
t=0 t=0.0B253 t= 0123
i : , i i
Y D} 0
~1 -1 . -1
-1 0 1 -1 D 1 -1 0 1
t=0.1875 1 t=p.25 ‘ 1= t=03125
0 O} 0
_-l M -1 " " _-l i
-1 D 1 w1 0 1 -1 D 1
t= 0375 t=04375 t=05

Figure 13: Oscillating starfish, curvature dependent acceleration(volume preserving).
Initial shape is given in polar coordinate by r = 0.5 + 0.3 sin 56.

30

dx=0.015625, dt=0.00005

60}
50|
sl
30|

20 [|
10{

60
50}
a0 |
30}
20}
101

Figure 14: Middle slice of the 3D double bubble minimizer problem. The surface tension
of the dumbbell is smaller than that of doughnut.

31

References
[1] D. Adalsteinsson and J. A. Sethian, A Fast Level Sel Method for Propagating Interfaces, J. Comput.
Phys., vii8, pp. 269-277, 1695.

[2] M. Bardi and S. Osher, The Nonconvez Multi-Dimensional Riemann Problem for Hamilton-Jacobi
Eguations, J. Numer. Anal., v22, pp. 344-361, 1991.

[3] Y. G. Chen, Y. Giga and 8. Goto, Unigueness and Dristence of Viscosity Solutions of Generalized
Mean Curvature Flow Equations, J. Diff. Geom., v33, pp. 749-786, 1991.

[4] Y. C. Chang, T. Y. Hou, B. Merriman and S. Osher, A Level Set Formulation of Eulerian Interface
Capluring Methods for Incompressible Fluid Flows, J. Comput. Phys., v 124, pp. 449-464, 1996.

[5] D.L.Chopp and J. A, Sethian, Flow Under Curvature: Singularity Formulation, Minimal Surfaces,
and Geodesics, J. Exper. Math., 2, 4, pp. 235-255, 1993.

[6] S. Chen, B. Merriman, S. Osher and P. Smereka, A Simple Level Set Method for Solving Slefan
Problems, J. Comput. Phys., v135, pp. 8-29, 1995.

[7] L. C. Evans and J. Spruck, Motion of Level Set Via Mean Curvature 1, 1. Diff. Geom., v33, pp.
6356-681, 1991.

[8] T. Hou, Z. Li, S. Osher and H. K. Zhao, 4 Hybrid Method for Moving Interface Problems with
Applications lo the Hele-Shaw Flows, J. Comput. Phys., v 134, 1997.

[9] E. Harabetian and S. Osher, Regularization of Ill-Posed Problems Via the Level Set Approach,
UCLA CAM Report 95-41, 1995. To appear in SIAP, 1998.

[10] E. Harabetian, S. Osher and C. W. Shu, An Eulerian Approach for Vortez Motion Using a Level
Set Regularization Procedure, J. Comput. Phys., v127, pp. 15-26, 1996.

[11] J. Helmsen, E.G. Puckett, P. Colella, and M. Dorr, Twe New Methods for Simulating Photolithog-
raphy Development in 8D, SPIE Microlithography 1X, pp.253-261(1996)

[12] G. S. Jiang and D. Peng, WENQ Schemes for Hamilton-Jacobi equations, UCLA CAM report
97-29, 1997. To appear in SIAM J. Sci. Comput.

[13] M. Kang, B. Merriman, S. Osher and P. Smereka A Level Set Approach for ihe molion of Soap
Bubbles with Curvature Dependent Velocity or Acceleration, UCLA CAM report 96-19.

[14] B. Merriman, J. Bence and S. Osher, Motion of Multiple Junctions: A Level Set Approach, J.
Comput. Phys., v112, pp.334-363, 1994.

[15] B. Merriman, R. Caflisch and S. Osher, Level Set Methods with Application to Island Dynamics,
Proceedings of Meeting on Free Boundary Problems: Theory and Application, Crete, 1997, Pitman,
eds. I. Athasopoulos and G. Markrikis, to appear. GCLA CAM Report 98-10.

[16] W. Mulder, S. Osher and J. A. Sethian, Computing Interface Motion in Compressible Gas Dy-
namics, J. Comput. Phys., v100, pp. 209-228, 1992.

[17] S. Osher, Subscale Capluring in Numerical Analysis , Proceeding of the International Congress of
Mathematicians, Zurich, Birkhauser-Verlag, Basel, pp1449-1460, 1994.

[18] S. Osher, A Level Set Formulation for the Solution of the Dirichlet Problem for Hamilton-Jacobi
Equations, SIAM J. Numer. Anal., v24, pp1145-1152, 1993.

32

[19} S. Osher and J. A. Sethian, Fronts Propagating with Curvature Dependent Speed: Algorithms Based
on Hamilton-Jacobi Formulation, J. Comput. Phys., v79, pp. 12-49, 1988,

[20] S. Osher, C. W. Shu, High-Order Essentially Non-Oscillatory Schemes for Hamillon-Jacobi Equa-
tions, J. Numer. Anal., v28, pp 907-922, 1991.

[21] J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer
Vision, and Material Science, Cambridge Univ. Press, 1996.

[22] J. A. Sethian, A Fast Marching Level Set Method for Monotonically Advancing Fronts Proc. Nat,
Acad. Sci., v93, 4, pp. 1591-1595, 1996.

[23] C-W. Shu, Total- Variation-Diminishing Time Discretization, SIAM J. Sci. Stat. Comput. v9, pp.
1073-1084, 1988.

[24] C. W. Shu and 8. Osher, Efficient Implementation of Essentially Nonoscillatory Shock Capluring
Schemes, 3. Comput. Phys., v77, pp. 439-471, 1988.

[25] M. Sussman, P. Smereka and S. Osher, A Level Set Method for Computing Selutions to Incom-
pressible Two-Phase Flow, J. Comput. Phys., v119, pp. 146-159, 1994,

[26] H. K. Zhao, T.Chan, B. Merriman and S. Osher, A Variational Level Set Approach 1o Multi-Phase
Motion, J. Comput. Phys., v122, pp. 179-195, 1996.

[27] H. K. Zhao, B. Merriman, S, Osher and L. Wang, Capturing the Behavior of Bubbles and Drops
Using the Variational Level Set Approach, J. Comput. Phys. v143, pp. 405-518, 1998,

33

