UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Scalable and Multileve Iterative Methods
(Ph.D. Thesis)
Wing Lok Wan

June 1998
CAM Report 98-29

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90095-1555

UNIVERSITY OF CALIFORNIA

Los Angeles

Scalable and Multilevel lterative Methods

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Mathematics
by

Wing Lok Wan

1998

(©) Copyright by
Wing Lok Wan

1998

The dissertation of Wing Lok Wan is approved.

Bjorn Engquist

Stanley Osher

Xiaolin Zhong

Tony Chan, Committee Chair

University of California, Los Angeles

1998

i

DEDICATION

To my love Winnie:

Words cannot express my heartfelt thanks and gratitude to you.

Your presence and support complete the fullness of my study.

1

TABLE OF CONTENTS

Introduction 1
LI Overview i i e e 1
1.2 Scalable and Multilevel Preconditioners 2
1.3 Content of this Dissertation 4
A Parallel ILU Preconditioner 13
2.0 Introduction. 13
2.2 A Scalable Coloring Heuristic 14
2.3 A Scalable ILU(0) Algorithm 17
2.4 Implementation Issues of ILU(1) 19
2.5 A Scalable ILU(1) Algorithm FE 20
26 Numerical Results 21
2.7 Concluding Remarks 0oL 23
Wavelet Approximate Inverse Preconditioners 24
3.1 Imtroduction e e 24
3.2 Fast Wavelet Based Approximate Inverse 26
3.3 Theoretical Aspects e 28
3.4 Connection to HB Preconditioner 30
3.5 Complexity and Implementation 31
3.6 Numerical Results 32
3.7 Concluding Remarks 38
Robust Multigrid Methods: Introduction 39
41 Model Problem oo 39
4.2 Smoothing e 40

421 Richardson o oo 41

4.2.2 Jacobi and Gauss-Seidel L oL, 41

4.2.3 Other Smoothings, . 43
4.3 CoarsenifDf v it e e e e e 44
4.4 Interpolation and Coarse Grid Basis 45
Sparse Approximate Inverse Smoother for Multigrid 47
51 Introduction. e 47
5.2 SAlsmoother e 48
5.3 Smoothing Factor Analysis 51
5.4 Complexity e 53

iv

55 Numerical Results 55
5.6 Concluding Remarks 59

6 Interface Preserving Coarsening for Highly Discontinuous Coeffi-
cient PDEs e e 62
6.1 Introduction e 62
6.2 Failure of Multigrid with Standard Coarsening 63
6.3 Interface Preserving Coarsening: One Dimension 66
6.4 Interface Preserving Coarsening: Two Dimensions 67
6.4.1 Regular Interfaces 67
6.4.2 Irregular Interfaceso ... 68
6.4.3 Complexity Issue 71
6.5 Numerical Results 71
6.6 Concluding Remarks 75
7 Energy-Minimizing Multigrid. 76
7.1 Introduction v i it e e e e 76
7.2 Stability and Approximation Property 77
7.3 Energy-minimizing Interpolation 79
7.31 OneDimension v it v 80
7.3.2 Higher Dimensions 82
7.3.3 Solution of the Minimization Problem 86
7.3.4 Connections to Other Approaches 88
7.4 Convergence Analysis L 89
74.1 OneDimension 89
742 Two Dimensions i v v 95
75 Numerical Results 98
7.6 Concluding Remarks 103

8 Application: Multigrid Methods for Differential-Convolution Eqg-
Hatlons e e e e e e e e 106
8.1 Imtroduction. i 106
82 TheCase A=1T. i, 108
83 The Case A= —A it 115
84 MG for TV deblurring 117
8.5 Computation Complexity 119
86 Concluding Remarks 000 120
9 Linear Systems with Multiple Right-Hand Sides 121
91 Inmtroduction o i e 121
9.2 Single Seed Method oo 123
9.3 Analysis of the Single Seed Method 125
9.3.1 Lanczos Connection, 125

9.3.2 Rate of Convergence of the Seed System 126

9.3.3 Convergence Analysis of the Non-seed System 129

9.3.4 Error Analysis of the Initial Guess 134

9.4 Block Seed Method o oo 135
9.5 Analysis of the Block Seed Method 135
9.5.1 Convergence Analysis of the Seed System 136

9.5.2 Convergence Analysis of the Non-seed System 138

9.5.3 Error Analysis of the Initial Guess 139

9.6 Numerical Results 139
9.7 Concluding Remarks oo oL 145
Bibliography e 147

i

ACKNOWLEDGMENTS

1 would like to thank Tony Chan, my advisor, mentor and teacher, for his
guidance, patience and support. [am indebted to his help to make my Ph.D. study
abroad a reality. His inspiration and sharing of knowledge provide perspective
and wit. [would like to thank other members of the committee: Bjorn Engquist,
Stanley Osher and Xiaolin Zhong, for their comments on my research and teaching
during my years at UCLA.

Certain other individuals have played important roles in my graduate school
career. I would like to thank Barry Smith for granting me an opportunity to
experience state-of-the-art parallel computing at Argonne National Laboratory,
and enlightening my work on multigrid and wavelet preconditioning. I would like
to thank my academic uncle, Wei-Pai Tang, for his paternal advice and encour-
agement, and his illuminating ideas on my sparse approximate inverse work. My
sincere thanks also go to Jinchao Xu and Jun Zou for deepening my understanding
of multigrid and finite element theory. [would also like to thank Raymond Chan
for his help on my multigrid work for differential-convolution equations. Special
thanks go to two dear mathematicians: late Dr. Wong for his enthusiastic teaching,
and Dr. Ng for his kind concerns and caring during my study at CUHK.

Finally, I am grateful to my parents for encouraging me to study abroad and
to make my childhood dream come true.

This work was partially supported by the Dissertation Year Fellowship granted
by the Alfred P. Sloan Foundation, the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract W07405-Eng-48, the NST under
contract ASC-9201266, DMS-9626755, ASC-9720257, the ONR under contract
N00014-92-J-1890, N00014-96-1-0277, and the ARO under contract DAAL-03-91-
G-150, DAAL-03-91-C-0047.

vii

August 7, 1970

1992

1992

1992-93

1993-98

1995

1995

1996-97

1997-98

VITA

Born, Aberdeen, Hong Kong,.

B.Sc.(First Class Honors), Mathematics
The Chinese University of Hong Kong

Teaching Assistant
The Chinese University of Hong Kong

Croucher Foundation Scholarship

Teaching Assistant and Research Assistant
University of California, Los Angeles

M.A., Mathematics
University of California, Los Angeles

Givens Research Associates
Mathematics and Computer Science Division
Argonne National Laboratory

Alfred P. Sloan Foundation Doctoral Dissertation Year

Fellowship
ISCR Grant Award

Lawrence Livermore National Laboratory

PUBLICATIONS AND PRESENTATIONS

Chan, T. F., and Wan, W. L. (1997). Analysis of Projection Methods for Solving
Linear Systems with Multiple Right-hand Sides. STAM Journal on Scientific
Computing, 18:1698--1721.

Chan, T. F., Tang, W-P., and Wan, W. L. (1997). Wavelet Sparse Approzimate
Inverse Preconditioning. BIT, 37:644-660.

viii

Chan, R., Chan, T. F., and Wan, W. L. (1997). Multigrid for Differential-
Convolution Problems Arising from Image Processing. Proceedings of the
Workshop on Scientific Computing, Hong Kong, Springer-Verlag.

1A7- T M1000Y O oo 2y e ayayamo
Tang, W-P., and Wan, W. L. {1998). Sparse Approwimate Inver

Multzgmd UCLA Mathematics Department CAM Report 98-18.

Wan, W. L. (April, 1996). Fust Wavelet Based Sparse Approzimate Inverse Pre-
conditioner. Talk presented at the 1996 Copper Mountain Conference on
Iterative Methods, Colorado.

Wan, W. L. (April, July, August, 1997). An Energy-Minimizing Interpolation for
Multigrid Methods. Talks presented at the 1997 Copper Mountain Confer-
ence on Multigrid Methods in Colorado, the SIAM 45th Anniversary Meeting
in Stanford, California, and the International Conference on Domain Decom-
position Methods in Boulder, Colorado.

Wan, W. L. (October, 1997). Wavelet Sparse Approximate Inverse Precondi-
tioning. Talk presented at the Sixth SIAM Conference on Applied Linear
Algebra, Snowbird, Utah.

Wan, W. L., Chan, T. F., and Smith, B. F. (1998). An Energy-Minimizing In-
terpolation for Robust Multigrid Methods. UCLA Mathematics Department
CAM Report 98-6.

Wan, W. L. (April, 1998). Sparse Approzimate Inverse Smoothing for Multi-
grid. Talk presented at the 1998 Copper Mountain Conference on Iterative
Methods, Colorado.

Wan, W. L. (1998). An Interface Preserving Coarsening Multigrid for Elliptic
Problems with Highly Discontinuous Coefficients. UCLA Mathematics De-
partment CAM Report 98-27.

X

ABSTRACT OF THE DISSERTATION

Scalable and Multilevel [terative Methods
by

Wing Lok Wan
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1998
Professor Tony Chan, Chair

In this dissertation, we analyze three classes of iterative methods which are
often used as preconditioners for Krylov subspace methods, for the solution of
large and sparse linear systems arising from the discretization of partial differential
equations. In addition, we propose algorithms for image processing applications
and multiple right-hand side problems.

The first class is the incomplete LU factorization preconditioners, an intrinsic
sequential algorithm. We develop a parallel implementation of ILU(0) and devise
a strategy for a priori memory allocation crucial for ILU(k) parallelization.

The second class is the sparse approzimate inverse (SPAI) preconditioners. We
improve and extend its applicability to elliptic PDEs by using wavelets which
converts smoothness, often found in the Green’s functions of PDE operators, into
small wavelet coefficients, thus producing a more efficient approximation. We also
give analytic estimates for the wavelet SPAI preconditioners.

The third class is the multigrid preconditioners. We propose and analyze new
techniques for the basic components of multigrid: smoothing, coarsening and inter-
polation. First, we present a new class of parallel SPAI smoothers which offer more
robustness than the relaxation smoothers by improving their quality using more
nonzeros in the approximate inverse. Second, we propose an interface preserving
coarsening, a new technique for solving discontinuous coefficient PDEs. It selects
coarse grid points in such a way that the interfaces will align with or are resolved
by all the coarse grids, allowing linear interpolation to give fast multigrid conver-
gence. Finally, we propose and analyze a new robust interpolation method based
on the concepts of energy minimization and approximation. In one dimension, we
prove a super-optimal convergence rate independent of both the mesh size and the
PDE coefficients. In two dimensions, we prove a two level convergence and show
that the resulting multigrid is effective for rough coefficient problems. The energy
minimization principle can be also applied to indefinite problems.

As an application, we propose the use of fast transform preconditioned con-
jugate gradient methods as smoothers to solve differential-convolution equations
arising from PDE-based image problems by multigrid. These smoothers remove
the high frequency errors which the usual relaxation smoothers cannot damp away.
The resulting multigrid is effective for the Tikhonov regularization appreach.

We analyze a class of projection methods for solving multiple right-hand side
problems. We observe and prove two fundamental properties, namely: the su-
- perconvergence of the conjugate gradient refinement process and the automatic
exploitation of the near rank deficiency of the right-hand side matrix. Farther-
more, we propose a block generalization of it.

x

1.1 Overview

With continued improvements in computer hardware and architecture design,
scientists and engineers are attempting numerical simulations of complex phenom-
ena involving increasingly large number of unknowns. The underlying mathemat-
ical models are often described by partial differential equations (PDEs), a dis-
cretization of which often results in extremely large and sparse linear systems. An
efficient solution approach is the combination of two iterative method techniques,
namely, Krylov subspace methods and preconditioning. While Krylov subspace
methods are a subject of interest by themselves, this dissertation is mainly de-
voted to the study of scalable, multilevel and robust preconditioning and issues
related to it.

A success of iterative methods for large scale computing is their simplicity.
They often just need perform simple operations such as matrix-vector product and
vector arithmetics. Hence the computer storage is minimal; we need only to store
the nonzero entries of the sparse matrix, if necessary, and a few number of vectors.
Consequently, the structures of a matrix, for instance, sparsity and storage format,
can be fully exploited. On the other hand, however, their convergence rate may
be slow. Also, they may not be as robust as direct methods. A standard way to
improve both the efficiency and robustness is preconditioning; a powerful technique
to improve the condition number of linear systems which often determines the
convergence rate of Krylov subspace methods. In fact, the development of effective
preconditioning techniques helps bring the iterative methods into widespread use.

There is a wide spectrum of preconditioners. On one extreme of the spectrum,
there are black boz solvers; they are purely algebraic and do not require any in-
formation of the problem from which the linear system arises. Moreover, they
are often quite robust with respect to variations in the coefficients of the PDEs.
However, their convergence may deteriorate as the problem size increases. On the
other extreme, preconditioners can be designed for a specific class of problems and
may require the analytic and geometric information of the problem being solved.
They are often characterized by the optimal convergence rate which is independent
of the mesh size. However, their convergence may depend on the PDE coeflicients
and special techniques are needed for specific problems. Preconditioners between
the two extremes, which may be known as gray boz solvers, apply techniques of one

extreme to the other and hence possess a mixture of their advantages and disad-
vantages. In fact, one of the goal of this dissertation is to bridge the gap between
the two extremes. In particular, we enhance the purely algebraic preconditioners
for specific and yet important problem classes, and on the other hand, generalize

‘é‘l"!ﬂ ﬁroblﬂm_ﬂﬂﬂ!‘;'ﬁf‘ p?"ﬂf‘nhfi;f;nhﬂ"'ﬂ tO a }'\T‘{\QAPT Qﬁf’i"iﬂg_

viin s SALLATO RO RS, IR VLR LR RV LSS Lws) M ASGART S ST U Veas

Apart from preconditioning, there are other issues in employing iterative meth-
ods. For example, unlike LU factorization, iterative methods are not readily suit-
able for solving linear systems with multiple right-hand sides which arise frequently
in various applications.

In this dissertation, we address the issues of iterative methods and the trade-
off between generality, parallelism and robustness (fast convergence) for large scale
scientific computing. We intentionally provide a good mix of theory, algorithm and
application. As the main theme of the dissertation, we introduce and analyze three
of the most useful and interesting scalable preconditioners ranging from algebraic
and problem-independent to analytic and problem-specific preconditioners. Appli-
cations to other interesting problems such as image processing are also studied. In
addition, we analyze a class of projection methods for solving multiple right-hand
side problems and propose a generalization to it.

1.2 Scalable and Multilevel Preconditioners

Although there is a broad number of topics, this dissertation has a unifying
theme-scalable and multilevel methods.

Classical iterative methods such as Jacobi, Gauss-Seidel and SOR were evolved
from the algebraic extreme of the spectrum, where a matrix is approximated by
the diagonal or the triangular parts of itself. A more sophisticated and pow-
erful example is the incomplete LU factorization preconditioners [34, 98], where
the L, U factors of a matrix are approximated by sparse matrices. Since their
algorithms resemble Gaussian elimination, they possess the robustness of direct
methods. However, their convergence may deteriorate with the problem size. Al-
though there are some analyses regarding the existence and convergence of ILU
preconditioners for M-matrices [52, 98, 125], the theoretical aspect is still an open
issue. Furthermore, their sequential character makes them hard to parallelize on
modern computer architectures. Nevertheless, there is a practical need for general
purpose preconditioning techniques, since linear systems arising from applications
often do not have many structures other than sparsity to exploit and for those
problems, specialized preconditioners may fail. Efforts have been made on the
parallelization aspect for the symmetric case, the incomplete Cholesky factoriza-
tion, for example [82]. In Chapter 2, we generalize the parallel implementation
to the ILU(0) factorization for general nonsymmetric matrices with a symmetric
structure. We also discuss how to tactically add nonzeros to the approximate L

and U factors to improve the gquality of the ILU(0} preconditioners.

Another class of purely algebraic methods is the sparse approzimate inverse
preconditioners [7, 8, 89]. They construct a sparse approximation to the inverse
of a matrix, instead of a sparse approximation to the matrix itself as the ILU
factorizations do. They have not received much attention until recently, where their
intrinsic parallelism is recognized. Robust algorithms and theory are still under
development. Nevertheless, their potential as an alternative to ILU preconditioners
has drawn a lot of attention recently. In contrast to ILU preconditioners, they
are designed for parallelism. Yet they have to face other issues such as how to
determine an effective sparsity pattern a priori, and how to maintain parallelism
if the sparsity pattern is chosen adaptively. More importantly, there is a potential
weakness of sparse approximate inverse preconditioners for solving matrices arising
from PDE problems since these inverses are dense and may not be accurately
approximated by sparse matrices. In Chapter 3, we improve their efficiency for
PDE problems by incorporating the wavelet techniques [41]. These wavelet sparse
approximate inverse preconditioners can be considered as gray box solvers belonging
to the middle of the spectrum, since they are specialized for linear systems arising
from differential equations.

On the other extreme, preconditioners can be designed for a specific class of
problems and may require the analytic and geometric information of the problem
being solved. For example, an important class of problems in scientific computing
is second order self-adjoint elliptic PDEs. Given the fact that a good discretization
method retains the essential properties of the PDEs by the discretization matrix,
preconditioners in this category must be able to uncover and exploit the hidden
properties, for instance, symmetry, positive definiteness, etc, to obtain an eflicient
solution procedure. In particular, a well-known fact about elliptic PDEs is that
the solution value at a point is influenced by all the values, far and near, of the
given right-hand side function. Thus, there must be an efficient mechanism in
the numerical methods to pass around information, and a key technique is the
multilevel approach.

Multilevel methods can be obtained by a change of basis which possesses a
multilevel structure, for instance, the hierarchical basis for the hierarchical basis
preconditioners [103, 150} and the wavelet basis for the wavelet sparse approximate
inverse preconditioners [33] mentioned above. Another approach to obtain mul-
tilevel methods is by a hierarchy of grids, for instance, multigrid. Multigrid [73]
and domain decomposition [121] methods are among the most efficient solution
approaches for self-adjoint elliptic PDEs. They are often characterized by their
mesh and subdomain size independent convergence rate. Optimal convergence
analysis for smooth coefficient problems is quite well established in the literature
[13, 14, 15, 73, 148, 149]. Moreover, algorithms and theory have also been extended
to solve nonsymmetric and indefinite problems [17, 94, 148]. Despite that the cur-
rent trend of multigrid research has been migrating to nonsymmetric problems,

there are yet many issues of multigrid for solving self-adjoint problems which are
either less known, not understood, or just left behind.

Multigrid methods can be extremely slow for PDEs whose coefficients are dis-
continuous [1, 46, 86}, oscillatory [54, 93, 128], or anisotropic [74], although they
have been proved successful for smooth cocflicient problems. Besides, multigrid
methods for unstructured grid computations are not easy to design. The main is-
sue is that there is no natural choice of coarse grids [31, 70, 96, 90]. Another is how
to define interpolation between grids [29, 32, 35, 134]. Also, multigrid methods
for nonelliptic or integral equations [17, 22, 75], whose analytical properties are
entirely different from differential operators, are not well understood and usually
applicable to some special cases only. In practice, however, this kind of problems
are quite common, and hence there is a need to design robust multigrid methods on
general computational domains in any dimensions. The challenge of multigrid is to
construct appropriate interpolations and smoothers for these problems. Besides,
the parallelization is also a practical open issue for multigrid.

Chapters 4-8 mark the highlight of this dissertation. We address all the above
issues and present solutions to some of them. In particular, we propose and analyze
new multigrid techniques in smoothing, coarsening and above all interpolation, to
obtain robust and efficient multigrid methods. In Chapter 5, we present a new class
of sparse approximate inverse smoothers which are intrinsically parallel and can
improve the robustness of multigrid for anisotropic problems without determin-
ing the direction of anisotropy. In Chapter 6, we propose an interface preserving
coarsening technique to solve discontinuous coefficient problems. Special coars-
ening technique specific for these problems has not been studied in the literature,
which turns out to be useful and effective. Chapter 7 is the climax of our multigrid
work. We propose and analyze a new robust interpolation based on the concepts of
energy minimization and approximation. The analysis for one dimension proves a
convergence rate independent of the PDE coefficients and the mesh size, which has
not been shown in the literature before. These techniques shed new light on the
design of robust multigrid. In Chapter 8, we start a promising attempt to apply
multigrid with preconditioned conjugate gradient smoothing to solve differential-
convolution equations, and in particular, PDE-based image problems.

1.3 Content of this Dissertation

This dissertation contains a number of works on different aspects of iterative
methods; some are more in-depth (Chapter 7, 9) and some just touch the surface
of the problem (Chapter 8). The central parts are Chapters 2-7, in which we study
three scalable preconditioners across the algebraic to problem-specific spectrum:
parallel ILU, wavelet sparse approximate inverse and multigrid. The application
and multiple right-hand side issues are discussed in Chapter 8 and 9. Figure 1.1

gives a pictorial overview of the various work on iterative methods. A more detailed
account of the dissertation is given as follows.

Parallel Incomplete LU Factorizations

ILU preconditioners have been extensively used in a broad range of applications.
They resemble Gaussian elimination but control the amount of fill-in. Let the
allowable fill-in positions be given by an index set Z. Then

l:‘O and uhij If (2,})¢I,

(2%

where L = (I;;) and U = (u;;) are the incomplete factors. If 7 is chosen to be
the nonzeros of A, the resulting incomplete factorization is called ILU(0), whose
algorithm of computing the incomplete L and U factors can be obtained by a simple
modification of Gaussian elimination. Thus, the computation is done column by
column, which is very sequential. Also, in each preconditioning step, a sequential
forward and backward solve are performed. These generic sequential steps are
unavoidable, unless the matrix possesses further structures that allow parallelism.

A common technique to parallelize sequential methods is multicoloring. That
is, we choose an ordering based on a coloring of the matrix graph. In such ordering,
the unknowns with the same color form a block variable where we can perform a
block incomplete factorization in parallel. Jones and Plassmann [83] proposed a
numerically scalable coloring scheme and developed a scalable incomplete Cholesky
factorization preconditioner for symmetric matrices. Incomplete Cholesky factor-
ization, however, is not enough since many applications are nonsymmetric. On the
other hand, general ILU factorization is difficult because the memory allocations
and message passing patterns are hard to determine @ priori without symmetry.
In Chapter 2, we make a trade-off between efliciency and generality and develop a
scalable ILU preconditioner for general matrices with a symmetric structure, which
include most matrices arising from finite element calculations.

The quality of ILU(0) may not be sufficient to yield a fast convergence. More
accurate factorizations are often needed. One approach is to allow more fill-in in the
incomplete factors based on the concept of level-of-fill {142]. The resulting ILU(k)
preconditioner, where k corresponds to the level-of-fill, is even harder to implement
efficiently since the nonzero structures of the incomplete factors are not predictable
for k& > 0 and hence the level-of-fill is not known until we have performed the
factorization. Thus, the memory allocations have to be done dynamically which
will result in a very inefficient process. An important observation is that the
legitimate fill-in positions of ILU(1) introduced by eliminating the ith node have to
be neighbors of an entry in row i. Similar observation can be generalized to ILU(k).
Based on this observation, we develop a scalable ILU(1) algorithm. Numerical
results on the IBM SP2 show good scalability and performance.

Wavelet Sparse Approximate Inverses

Although scalable ILU is possible, there is still a trade-off between parallelism
(number of colors) and convergence rate. This motivates the recent interest in
sparse approximate inverse preconditioning. Benson [7] and Frederickson [8] ob-
tained a preconditioner M by considering a minimization problem:

: _ 2
min [|AM — 1|,

where S is a class of sparse matrices, for instance, matrices with fixed sparsity
pattern. The above minimization problem is equivalent to the following system of
minimization problems:

mrglé%J”AmJ - ej||2= .7 = 17"'5”:
where m; is the jth column of M and S; is the collection of the jth column of
matrices in 5. Bach least squares problem is independent and can be solved in
parallel. Fast convergence results for Harwell-Boeing matrices have been reported
by Grote and Huckle [67] and Chow and Saad [37].

A weakness of sparse approximate inverses for elliptic PDEs is the assumption
that the inverse matrix A=1 can be well approximated by a sparse matrix M. In
Chapter 3, we show that for this class of matrices, their inverse entries need not
have rapid decay, and hence sparse approximate inverses do not work. As discussed
in the previous section, the lack of multilevel structure is the core failure of sparse
approximate inverse preconditioners for elliptic PDEs. The crucial observation we
made is that these inverses are often piecewise smooth. Hence we consider using
a multi-scale method based on wavelets (e.g. Daubechies wavelets [40]) to capture
the local smoothness while retaining scalable efficiency. Moreover, the resulting
preconditioners benefit from the multilevel structure built in the wavelets. Our
new minimization problem becomes:

min [|AM — I||%
Mes
= min]|WAWTWMWT - I,
MeS
= minl||AM — I}?
min | %

= Enll:_l ”Aﬂﬁ?,jmejng, j:I,...,n,
h;ES;

where W denotes an orthogonal wavelet transform. The symbols A, M, S'j and M
denote the representation of the corresponding matrices or vectors in the wavelet
space. Due to the localization and approximation properties of wavelets, the sparse
approximation M in the wavelet space gives a better approximation to A than M
to A, thus producing a more effective preconditioner for a larger class of problems

where the matrices have a piecewise smooth inverse whose singularities clustered
around the diagonal. Besides, the storage for the preconditioner is also dramati-
cally reduced by the wavelet compression.

Multigrid

Elliptic PDEs constitute a significant part of scientific computing. Multigrid meth-
ods are among the most efficient solution procedures for linear systems arising
from the discretization of self-adjoint elliptic PDEs. They consist of two main
steps: smoothing and coarse grid correction. The smoothing process, usually car-
ried out by a relaxation method, damps away the high energy error components.
The coarse grid correction process, carried out by an interpolation and a coarse
grid solve, solves the low energy components on the coarser grids. The idea is that
the combination of the two will result in a significant error reduction independent
of the problem size and hence lead to a fast solution procedure. Moreover, we gain
eflicienicy since the coarse grid solve is less expensive than the fine grid one.

There is a vast amount of literature on the optimal convergence of multigrid
methods; see e.g. [13, 14,15, 73,97, 121, 148, 149]. The classical analyses, however,
usually ignore the effects of the PDE coefficients on the convergence of multigrid
methods. In fact, standard multigrid may converge slowly for coefficients which
are discontinuous, oscillatory or near singular.

To minimize the influence of the coefficients, we must be able to capture the low
energy error components during interpolation so that the coarse grid correction 1s
effective. In other words, the range of the interpolation operator must span the
low energy subspace. Mathematically, the coarse grid basis functions given by the
interpolation must satisfy two inequalities [148}:

J

@10l + D0 M@k — Qr—)olly, < Collvll3, (1.1)
k=2

I{@x ~ Qr-1)|| < C1hk”Qk'U“A, Yk > 1, (1.2)

where V; € V,--- € V is a sequence of subspaces of the fine grid space V', (J; :
V — V, is a linear operator onto V;, and C,, and C; are constants independent
of the mesh size h;. The inequalities (1.1) and (1.2) are sometimes known as the
stability and the approximation inequalities, respectively. Applying the energy
minimization and constant preserving principles, we study an energy-minimizing
interpolation for multigrid methods in Chapter 7. In one dimension, we can prove
that the convergence rate is indeed independent of the PDE coefficients and the
mesh size. In two dimensions, numerical experiments also demonstrate that the
convergence is robust with respect to the PDE coeflicients.

Another issue of multigrid is smoothing. The Gauss-Seidel smoothers are effec-
tive but they are not parallel in their original form; the Jacobi smoothers, on the

other hand, are parallel but they are less effective than Gauss-Seidel. Moreover,
both methods are poor for anisotropic and discontinuous coefficient problems. In
Chapter 5, we combine the sparse approximate inverse (SAI) techniques to obtain

a robust and parallel smoother. Sparse approximate inverses may not be efficient
preconditioners for elliptic PDEg due to a lack of multilevel structure. However,
because of their local nature, they are in fact very efficient smoothers. Moreover,
by adjusting the density of the approximate inverses, we are able to improve the
quality of the SAI smoother for anisotropic and discontinuous coefficient problems.
This flexibility feature makes the SAl smoothers more robust than the Gauss-Seidel
and Jacobi smoothers.

Other than smoothing and interpolation, coarsening can also play a role in
designing robust multigrid. For example, semicoarsening is a useful techniques for
anisotropic problems [48, 124]. In Chapter 6, we demonstrate that coarsening can
also be used to improve multigrid convergence for discontinuous coefficient prob-
lems. The key observation is based on both experience and theory. Intuitively, the
parts of the solution on the regions of different constant coefficients behave inde-
pendently and are glued together through a Neumann boundary condition on the
interfaces. Theoretically, convergence analyses for interface problems often require
that the discontinuities align with all coarse grids. Based on these observations,
we derive an interface preserving coarsening algorithm so that the interfaces are
aligned with the coarse grids, or as closely as possible, allowing the simple linear
interpolation to be good enough to approximate errors on the coarse grids. An-
other explanation for the success of the interface preserving coarsening is that it
improves the constant C; in the approximation inequality (1.2) since the finer grid
functions can be correctly approximated by the coarser grid.

Application: Multigrid for Differential-Convolution Equations

One way to understand multigrid, especially the smoothing part, is based on the
spectral property of the discrete elliptic differential operators, of which the eigen-
functions corresponding to small (large) eigenvalues coincide with the low (high)
frequency sine/cosine functions. Unfortunately, this characteristic may not hold
for other operators. For example, in PDE-based image processing, we often need
to solve differential-convolution equations of the form:

aR(u)(z) + [bz = yu(y)dy = f(z) in O, (1.3)

where u(z) is the recovered image, k(z) is the kernel convolution function, R(u)
is a regularization functional often represented by an elliptic differential operator,
and « is a positive parameter.

The challenge of multigrid for this kind of problems is that the spectral prop-
erty of the convolution operator k(z) is opposite to that of the elliptic differential

operators. In fact, for convolution operators, the eigenfunctions corresponding to
small (large) eigenvalues are the high (low) frequency sine/cosine functions. Thus,
standard smoothers do not have the desired smoothing effect. This problem did
not seem to have been studied before in the multigrid literature. In Chapter §, we
propose to use fast transform based preconditioned conjugate gradient methods as

smoothers. For example, the fast cosine transform preconditioner [21] is obtained
from the solution of the following minimization problem:

min[|C — Al|r,

where C is the class of matrices diagonalizable by the discrete cosine transform. It
can be proved that the fast transform preconditioners are effective for convolution
operators of certain types [23, 24, 26] as well as the Laplacian operator [20]. As a
result, the resulting multigrid is efficient for R(u) = I, the identity operator, and
R(u) = A, the Laplacian operator. The result for R(u) = —V - (Vu/{Vu|), which
arises from the total variation denoising {27, 111], are not as good as the other two
cases, but still satisfactory.

Multiple Right-Hand Sides

Multiple right-hand side problems arise frequently in various applications, for in-
stance, wave scattering problems [123], time marching methods for PDEs {57] and
structural mechanics problems [56]. Efficient solution procedure is important when
the number of right-hand sides is large. Direct methods such as LU factorization
do not have any difficulty for this kind of problems since the additional right-hand
sides can be solved efficiently using the existing I and U factors. Iterative meth-
ods, however, have no such advantage, and a separate iterative solution procedure
is needed for each right-hand side. The problem is that the desire for simplicity in
iterative methods dictates keeping only a minimal amount of data sufficient for the
convergence of the iterations. Suppose all the right-hand sides are available at the
same time. The challenge is to extract and collect the information obtained from
each iteration using only a small amount of additional storage. Various solution
approaches including projection methods [123], block methods [101] and hybrid
methods [119]) have been proposed to find a better alternative for solving

where A is symmetric and positive definite. For example, Smith, Peterson and
Mittra [123] devised a single seed method for an electromagnetic scattering appli-
cation. It belongs to a class of Galerkin projection methods {104, 105, 114, 133]
which project the unsolved right-hand sides, b9}, j # s, onto the Krylov subspace
generated by the seed right-hand side, (), In Chapter 9, we analyze this method
and observe two fundamental properties. One is the superconvergence of the con-
jugate gradient refinement process. It comes from the fact that Krylov subspace

captures the extreme eigenvalues so that the effective spectrum of A is reduced
after projection. Another is the efficient solve for continuously varying right-hand
sides, which comes from the automatic exploitation of near rank deficiency of the

right-hand side matrix B = [b?)]. We make these statements more precise and
nd propose a

Vol L

prove them in Chapter 9. Furthermore, we generalize their idea a

block extension which enjoys the fast convergence of the block conjugate gradient
method while preserving the two desirable features.

10

List of Publications from this Dissertation

Tony F. Chan, Wei-Pai Tang and W. L. Wan. Wavelet Sparse Inverse Precondi-
tioning. BIT, 37:644-660, 1997.

Wei-Pai Tang and W. L. Wan. Sparse Approximate Inverse Smoother for Multi-
grid. CAM report 98-18, Dept. of Mathematics, UCLA, 1998. Submitted to SIAM
J. Sci. Comp.

W. L. Wan. Interface Preserving Coarsening Multigrid for Elliptic Problems with
Highly Discontinuous Coefficients. CAM report 98-27, Dept. of Mathematics,
UCLA, 1998.

W. L. Wan, Tony F. Chan and Barry Smith. An Energy-Minimizing Interpolation
for Robust Multigrid Methods. CAM report 98-6, Dept. of Mathematics, UCLA,
1998. Submitted to SIAM J. Sci. Comp.

Raymond Chan, Tony F. Chan and W. L. Wan. Multigrid for Differential-Convo-
lution Problems Arising from Image Processing, Proceedings of the Workshop on
Scientific Computing, March 10-12, 1997, Hong Kong, Springer-Verlag.

Tony F. Chan and W. L. Wan. Analysis of Projection Methods for Solving Linear

Systems with Multiple Right-hand Sides. SIAM J. Sci. Comp., 18:1695-1721,
1997%.

11

Iterative Methods

qret s Multiple RHS
?FQCOﬁdlilaliﬁng {Chupier 9
« proved two fundainental
properties of the single
seect method
~ generplized w bleck seed
method
| L SISC 18:1698.1721, 1997
Parallel ILU Wavelet SPAI Multigrid
(Chapter 2} (Chapter 3} (Chapter 4}
-implemented a parallel |- used wavelets to convert
LU0 BLAD code smoct inverse entries
= pumerical results into small entries
showed good scalabi- - extended SPAL to PDE
lity and performance problems and showed
effective numerically
Ly BlackSolved%, ANL = gave analylic estinates
for new approx. inverse
i BIT 37:644-660, 1997 {
I i I
Smoothing Coarsening Interpolation Application

(Chapter 5)

(Chapter 6)

{Chapter 7)

{Chaper 8)

= parallel sparse approx.

inverse ssuoothers

- Fourier analysis for
smoothers

- may adjust quality to
IMProve COnvergence
for anisofropic PDEs

CAM repor: 98-18
Submitted 0 5I5C

= developed an interface
preserving coarsening

- jomp and mesh size
indep. convergence
for regular interfaces

- jump indep. converg-
ence for irregular
interfaces

= developed an energy-
minimizing interpola-
1ion in any dimension

- proved PDE coeff.
indep. convergence
for 1T, 2-level optimal
convergence for 20

| CAM reprt 9527

CAM report 45-G.
Subniitled to SISC

- identified probiem with
standard smoothers

- used fast transtorm
PCG as smoothers in
MG for differentind-
convolution equations

= applied o solve PDE-
based image problems

Springer-Verlay, In Proc. 97

Figure 1.1: Dissertation Overview

12

CHAPTER 2
A Parallel ILU Preconditioner

2.1 Introduction

Incomplete LU factorization (ILU) preconditioners have been widely used in a
broad class of applications for its simplicity and robustness. ILU is essentially the
Gaussian elimination but it controls the amount of fill-in {cf. Section 1.3). The
idea of ILU is based on eliminating the entries only in the specified locations. The
purpose is to avoid introducing extra nonzeros (fill-in) during elimination. More
detail discussion of incomplete factorizations can be found, for example, in the
books by Axelsson [3] and Saad [116], or in the survey paper by Chan and van
der Vorst [34]. The parallelization aspects can be found in the survey paper by
Demmel, Heath and van der Vorst {45}.

A serious drawback of using ILU on parallel computer architectures is that
the preconditioner is sequential in two ways. First, the incomplete factorization
steps are basically Gaussian eliminations which are to be done column by column.
Second, in each preconditioning step, a forward and backward solve are performed
which are inherently sequential.

A common technique to parallelize sequential methods is multicoloring, or sim-
ply coloring. In other words, we choose an ordering based on a coloring of the graph
representing the nonzero adjacency structure of the matrix. The idea is to assign
a. color to each unknown so that unknowns of the same color do not connect to
each other with respect to the adjacency graph. Thus we may consider unknowns
of the same color as a block of variable where we can perform a block incomplete
factorization in parallel. Similarly, in each preconditioning step, the forward and
backward solve can also be done in parallel for each color. Hence fewer colors
results in more parallelism. In general, for matrices arising from physical models,
the maximum degree of any node, which bounds the number of colors used (cf.
Lemma 2.1), is bounded independently of the total number of nodes. Under this
assumption, Jones and Plassmann [83] derived a scalable coloring heuristic which
will be described in Section 2.2.

A scalable coloring scheme is not sufficient for scalable performance. One must
also achieve good computation rates on each node. A standard implementation
of a sparse matrix times vector multiplication does not necessarily exhibit good
data locality and probably uses a large amount of indirect addressing. To improve
these, we can take advantage of the special local structure typical in structural

13

mechanics, for example. These matrices usually have large, dense cliques and can
be easily identified. The sparse operations involving these cliques can utilize dense
level 2 and 3 BLAS. Combining all these, Jones and Plassmann [84, 82] developed
a scalable incomplete Cholesky factorization preconditioner for symmetric matri-
ces. We extended the idea to the nonsymmetric case to obtain a scalable TLU
preconditioner; see Section 2.3. The challenge is to keep track of the symmetry
assumption used in the algorithm and to modify them accordingly to allow for the
usual LU factorization.

The accuracy of the ILU{0) preconditioner discussed above may not be suflicient
to yield an adequate rate of convergence for some applications. More accurate
incomplete LU factorizations are sometimes needed. One way is to allow more fill-
in. In {142], Watts introduced the concept of level of fill-in. In ILU(1), for instance,
we also allow fill-in at the entries which are some of the neighbors of the nonzeros
in ILU(0). In the following sections, we describe a scalable coloring heuristic used
for the construction of a scalable ILU(0) preconditioner. Then we discuss the
difficulties of implementing [LU(1) and how we resolve them. Numerical results
on the SP2 are presented and finally we conclude this section by several remarks.

2.2 A Scalable Coloring Heuristic

In this section, we summarize the parallel coloring heuristic derived by Jones
and Plassmann [83] which is to be used for the incomplete LU factorization. Given
a structurally symmetric matrix A, the symmetric graph of A is defined as: G(A) =
(V,E), where V = {1,...,n} is the set of vertices and E = {(4,7) : 4;; # 0,¢ # j}
is the set of edges. The function o : V — {1,...,s} is an s-coloring of G(A), if
o) # o(j) for all edges (¢,7) € E. The chromatic number of G(A4), denoted by
x{G), is the minimum possible value for s.

The goal is to color the graph using x(G) number of colors in an efficient way.
Unfortunately, to determine whether a graph is s-colorable is NP-complete [59],
not to mention finding the way to color it. Nevertheless, we can easily find an
upper and lower bound for it.

Lemma 2.1 Let A(G) = max;cy deg(i), where deg(t) = degree of vertez i € V.
Then x(G) < A(G) + 1.

The sequential (greedy) heuristic, Algorithm 2.1, always satisfies the upper
bound above.

Let V’ be a subset of V. The induced graph G'(V’) = (V', E), of G is given
by the vertex set ¥V’ and the edge set E/ = {(¢,j) € £ : 4,7 € V'}. An r-clique
is a complete subgraph of GG of size r. Since the r vertices in an r-clique must be
assigned different colors, we have the following lower bound.

Lemma 2.2 If G(A) contains an r-clique, then x(G) > r.

14

Algorithm 2.1: A Sequential Coloring Heuristic
ViV
fori=1,..,n

choose v; € V/

o{v;) = smallest available consistent color

Ve V\{9}

end for

For many applications, it has been demonstrated that a number of sequential
coloring heuristics [38, 84] are able to find colorings which are only one or two
colors off the optimal one.

Algorithm 2.2: A Parallel! Coloring Heuristic
ViV
while V' # @

choose an independent set I from V’

color [in parallel

V= VI\I

end while

A parallel version of Algorithm 2.1 can be obtained by choosing an independent
set I from V" in place of a single node v; and color I independently; see Algorithm
2.2. Thus the key issue now is to select an independent set in parallel. Luby
proposed an Monte Carlo algorithm for determining I based on the following rule:

1. For each v € V’, determine a distinet, random number p(v).
2. velsplv)>p(w) Yw e adjv).

The resulting algorithm is shown in Algorithm 2.3.

Jones and Plassmann improved the global synchronous step occurring at each
new choice of random numbers and derived an asynchronous version of it; see
Algorithm 2.4. In this algorithin, it is assumed that each v is assigned to a different
processor.

It turns out that the asynchronous algorithm can also be applied to the general
situation where each processor possesses a subset of nodes. Let V5 be the set of
subdomain boundary nodes, i.e. v € V5, if v is adjacent to vertices belonging to
different processors. Then the scalable coloring heuristic is performed in fwo main
steps:

1. Color G(V¥) using the asynchronous Monte Carlo heuristic.

15

Algorithm 2.3: A Parallel Heuristic for Determining MIS
I—§
ViV
G -G
while G' # §
choose an independent set I’ in G’
I—10r
N{(I'} « set of neighboring nodes of I’
X —I'UN(I)
Vi—V'/X
G — G(V")

end while

Algorithm 2.4: An Asynchronous Parallel Coloring Heuristic

choose p(v)
n-wait = 0
send-queue = {}
for each w € adj(v)
send p(v) to processor responsible for w
receive p{w)
if p(w) > p(v) then n-wait=n-wait+1
else send-queune «— send-queue U{w}
end for
n-recv =
while n-recv < n-wait
receive o(w)
n-recv = n-recv+4-1
end while
o(v)= smallest available color consistent with the previously
colored neighbors of »
for each w € send-queune
send o(v) to processor responsible for w
end for

16

2. On each processor, color the interior nodes using the colored nodes on the
boundary obtained from Step 1.

2.3 A Scalable ILU(0) Algorithm

The idea of incomplete factorization is that the Gaussian elimination steps are
only performed at the locations allowed so that the nonzeros of the incomplete
L, U factors are restricted to those positions only. The advantage is that we can
make the L, U factors sparse and hence the forward and backward solve can be
performed more efficiently in the preconditioning steps. More precisely, let the
allowable fill-in positions be given by the index set Z, 1.e.

[

ty

;=0 and wu ;=0 if (i,7) ¢Z, (2.1)
where L = (I;;) and U = (u; ;). For ILU(0), the choice for 7 is the nonzeros of A:

T = {(i,3) : az; # 0},
Let M = LU be the resulting preconditioner from ILU(0). It must be a good
approximation to A in some way. A common criterion is that

a; if (i,5) €L (2.2)

My ;= G

The conditions (2.1) and (2.2) determine the incomplete L, U factors uniquely. The
calculation can be implemented by a modification of the Gaussian Elimination; see
Algorithm 2.5. Note that it is exactly Gaussian Elimination if the update for a;;
in the inner-most loop is not restricted by the index set 7.

Algorithm 2.5: ILU

for k=1,..,n—1
fori=k+1,..,n
if (1,k) € Z then
Qi = g3/ 0
for j=k+1,..,n
if {i,7) € 7 then
Gij = Qi — Qg5
end if
end for
end if
end for
end for

17

The construction of ILU(0) is sequential since the updates of a;; in the inner-
most loop depends on the value of a;;, k < ¢, which is not fixed, in general, until
the elimination process proceeds to column k. A parallelization of ILU(0) is based
on coloring, for example, the scalable coloring heuristic described in Section 2.2.

1A1ftC1' thc mn+r;v 1a v‘anvdcrar] ':r'r'.r\rr];ﬂ tn the stiﬂ‘ﬂﬂd enlorg ‘]'}113 A"lﬂﬁ'ﬂnﬂ] biock

o
CLLEIA 10 TLUIULLTU LAY il g, W Uil Cadndl mailioia Wasdira By Masts SASESERIALSES

of the block of rows with the same color will be a diagonal matrix. Thus we may
update all these rows simultaneously. Similarly, the forward and backward solve in
the preconditioning steps can also be done in parallel for each color. The parallel
ILU(0) algorithm is summarized in Algorithm 2.6.

Algorithm 2.6: A Scalable ILU(0)

1. Construct a data structure for factorization
2. Color the variables
3. Perform the incomplete factorization

Step 1 is a technical preprocessing procedure which is described as follows.
In our implementation, the matrix A is stored by rows, which is a very common
format (CSR [116]) for sparse matrices. An advantage is that the common matrix
operation, matrix-vector multiply , which is essentially a sequence of rowwise inner
products, can be done efficiently. However, a disadvantage is that the positions
of the nonzeros down a column may not be available directly. It causes a serious
problem when we calculate the multipliers and the Schur complement during the
incomplete factorization since these operations need to work on both the rows and
columns. We solve the problem by constructing an additional data structure which
stores the matrix A by columns. After that, the coloring and factorization can be
proceeded as described above.

As mentioned in the introduction, it is not enough to achieve scalable perfor-
mance by coloring. One must also be able to achieve good computation rate on
each processor. Data locality and avoiding indirect addressing are two of the i1ssues.
For example, a standard implementation of a sparse matrix-vector multiply does
not exhibit good data locality and involves great amount of indirect addressing.
Note that for matrices arising from physical models, it is often that dense cliques
exist in the matrix graph and they can be easily identified. We take advantage of
this fact by utilizing dense level 2 and 3 BLAS in the computation. For problems
involving multicomponents on each computational node, for instance, structural
mechanics applications, rows corresponding to the same node often have identi-
cal structure. By exploiting this structure, we can reduce the amount of indirect
addressing.

18

2.4 Implementation Issues of ILU(1)

For some applications, the quality of ILU(0) may not be good enough to give
fast convergence. We may improve it by adding more nonzeros based on the level
of fill-in [116]. Define the initial level of fill of an element a, ; by

LA otherwise.

lev _{0 fa,;#0o0ri=j

When g, ; is modified in the incomplete factorization process, its level of fill must
be updated by

16V£’j = min{levijj, 1€V£’k + levk’j + 1} (23)

The above procedure provides a systematic way of determining the fill-in positions
of I and U. For ILU(k), we keep all the fill-in elements whose level of fill does
not exceed k. In particular, for ILU(0), we keep precisely the nonzeros of A. For
ILU(1), we keep those whose level of fill does not exceed 1; see Algorithm 2.7.

Algorithm 2.7: ILU(k)

define lev(a; ;)=0 for all nonzeros of A
forl=1,..,n-1
fori=l+1,..,n
if lev{a, ;) < k then
G = ai,I/ai,I
for j=I+1,..,n

Gi5 = @5 — Gy 1815
update lev{a, ;) using (2.3)
end for
end if
end for
replace any element in row [+ 1 and column {
with lev(e; ;) > k by 0
end for

For efficiency, especially in parallel computing, we often separate the incomplete
LU factorization into two phases. In the symbolic phase, we determine the nonzero
structures of I and U and allocate the necessary amount of memory for them. In
the numeric phase, we perform the incomplete factorization as usual. For parallel
ILU(0), the symbolic phase can be done easily since the nonzeros of L and U are
just those of A. However, in general, the amount of fill-in and computational work
for obtaining ILU(k) is not predictable for £ > 0 since the level of fill is not known
until one has performed the factorization. In other words, extra memory can only
‘be allocated during the factorization, which will result in a very inefficient process.

19

Furthermore, in the factorization steps, we have already colored the graph of A.
Since the coloring depends on the graph of A which is the same as the original
graph of L and U, if we add extra nonzeros to L and U, the graphs of L and U
will be changed and it is possible that two vertices of the same color are connected
by the newly added nonzeros. Oue might comsider reordering the graph of the
expanded A. However, this will then change the extra fill-in positions which in
turn require another recoloring. It might be an indefinite cycle.

We discuss a compromised solution based on the following observation {107].
The legitimate fill-in positions of ILU(1) introduced by eliminating the ith node
have to be neighbors of an entry in row i. It does not mean, however, that every
neighbor of an entry in row 7 will be a legitimate fill-in positions of ILU(1). We
know which neighbors are legitimate fill-ins only when we are eliminating the ith
node. This is the fundamental problem that causes the above difficulties. Our
compromised solution is to allocate extra memory for all neighbors and put zeros
in these potential fill-in positions. Hence the graph of A is changed. After that,
we proceed Step 1-3 as in Algorithm 2.6. In this way, we always have already
allocated the memory needed for the legitimate fill-ins no matter what coloring we
have used in Step 2. However, we may have spent some amount of memory which
have not been used in the factorization process.

2.5 A Scalable ILU(1) Algorithm

Based on the compromise discussed previously, the implementation of ILU(1)
is just to add Step 0 in the ILU{0) Algorithm 2.6:

Step 0: Allocate memory for the neighbors of every entries in each row.

Now we describe Step 0 in more detail. Recall that each processor contains a
sequence of disjoint rows of A. For each processor, we loop over each row and
record all the column numbers in the index set J. Then we gather all those rows
with indices in J. We collect all the column numbers in these rows and add them
to the current row. The entire (complicated) process can be summarized concisely
by a sentence if we think of A as a graph. That is, the new neighbors of node 2
are node j which are distance 1 or 2 away.

A technical problem is that the processor may not contain the rows that it
needs. Moreover, those rows are not known until we come to the row that needs
them. Also, the processor which contains that particular row may not be aware that
some processor needs it at that moment. A solution to this situation is that each
processor first looks over the rows it has and determines which rows it needs. After
that, we make a global exchange of rows among processors. This procedure can
be significantly simplified by the fact that the matrix A is structurally symmetric.
In other words, if processor ¢ needs k rows from processor j, processor j in turn

20

needs k rows from processor i. Moreover, those rows are related in some way such
that each processor can determine which processors have the rows it needs and the
rows which other processors need in advance. This fact makes the global exchange
possible and efficient.

A final remark. It seerns that we eventually obtain a parallel ILU(1) algorithm.
However we should caution that there is a minor difference between our algorithm
and the classical one. For the classical ILU(1) algorithm, the structure of the
incomplete factors L and U are the expanded version of those of ILU(0). However,
in our algorithm, it may not be the case. Recall that the memory is allocated before
factorization. In this way, the graph of A is changed, which implies the coloring
used will be different from that of ILU(0). Consequently, the newly permuted A is
probably different from the old one. Hence, the structure of the incomplete factors
from ILU(0) and ILU(1) are different. Nevertheless, theoretically, we can think of
the incomplete factors from ILU(1) as the expanded version of those from ILU(0)
which uses the same ordering as ILU(1).

2.6 Numerical Results

In this section, we demonstrate and compare the efficiency of ILU(0) and ILU(1)
in terms of factorization time, solution time and number of iterations to conver-
gence. The testings are done in BlockSolve95 running on IBM SP2. The model
problem is a simple convection-diffusion equation:

—Au+ fu, = f.

We solve the discretization linear system by GMRES(20) preconditioned by ILU(0)
or ILU(1). The iteration stopped when the relative residual norm was less than
10-7. The timings are the wall clock time recorded by MPI using the MPI Wiime()
command. Since the wall clock timings depend on the workload of the machines
being run and some other system factors, they may not reflect accurately the time
used for the operation being timed. Thus, we occasionally obtain speedups greater
than the theoretical bounds.

Table 2.1 shows the factorization time of ILU(0) with different number of pro-
cessors and mesh size. The speedups are relative to the time run by one processor.
We see that the speedups are very close to the optimal. Moreover, for fixed prob-
lem size per processor, it requires roughly about the same amount of time to do
the factorization. Hence the parallel factorization of ILU(0) described in Section
2.3 is scalable.

Table 2.2 shows the solution time of GMRES(20) preconditioned by ILU(0).
The poor speedups in the solution phase is not known yet. It may be that the for-
ward and backward solve during the preconditioning steps are not fully parallelized
in BlockSolve95.

21

Table 2.3 shows the factorization time of ILU(1). We see that the speedups are
similar to those of ILU(0) and are also close to the optimal. Also, like ILU(0), it
requires roughly about the same amount of time to do the factorization for fixed
problem size per processor. Hence ILU(1) described in Section 2.5 is also scalable.
We note also that ILU{0} and ILU(1) took about the same amount of time to do
the factorization.

Table 2.4 shows the solution time of ILU(1). Similar to ILU(0), the speedups
are poor. However, we can see that ILU(1) generally takes less time than ILU(0)
to solve the linear systems, and the saving is about 30%-50%.

Finally, table 2.5 shows that number of iterations to convergence of ILU(0) and
ILU(1). The smaller number of ILU(1) iterations shows that ILU(1) indeed gives

a better preconditioner than ILTU(0).

Factorization time Speedup
h 1 2 4 8 16 1] 2 4 8 16
1/64 || 0.5454 | 0.2807 | 0.5223 | 0.3673 | 0.1946 |y 1 | 1.94 | 1.04 | 1.48 | 2.80
1/128 || 2.321 | 1.178 | 0.6764 | 0.3286 | 0.4299 || 1 | 1.97 | 3.43 | 7.06 | 5.40
1/256 || 30.72 | 15.46 | 6.866 | 3.334 | 1.639 || 1| 1.99 | 4.47 | 9.21 | 18.74
1/512 || 145.1 | 73.73 | 34.01 | 12.85 | 5.634 || 1| 1.97 | 4.27 | 11.29 | 25.75

Table 2.1: Factorization time (sec) of ILU(0) with different number of processors
and mesh size, and their corresponding speedup.

Solution time Speedup
h 1 2 4 8 16 1i 2 4 8 16
1/64 || 2.992 | 2,470 | 66.67 | 109.6 § 120.4 || 1 | 1.21 | 0.045 | 0.027 | 0.025
1/128 || 20.73 | 12.20 | 10.60 | 49.97 | 80.58 || 1 | 1.70 | 1.96 | 0.41 | 0.26
1/256 || 543.7 | 313.6 | 182.7 | 371.6 | 423.1 || 1 | 1.73 | 2.98 | 1.46 | 1.29
1/512 || 2865 | 1684 | 1226 | 1964 | 579.1 || 1 | 1.70 | 2.34 | 1.46 | 4.95

Table 2.2: Solution time (sec) of ILU(0) with different number of processors and
mesh size, and their corresponding speedup.

Factorization time Speedup
h 1 2 4 8 16 11 2 4 8 16
1/64 || 1.439 | 0.7532 | 0.4215 | 0.2521 | 0.5058 || 1 11.91 | 3.41 | .71 | 2.85
1/128 || 6.445 | 3.308 | 1.706 | 0.8870 | 0.9725 || 1 | 1.95 | 3.78 | 7.27 | 6.63
1/256 || 29.25 | 14.39 | 6.939 | 3.817 | 4.001 || 1] 2.03 |4.22 | 7.66 | 7.31
1/512 - 62.93 | 3763 | 1466 | 7.592 || - | 2 | 3.34 | 8.59 | 16.58

Table 2.3: Factorization time (sec) of ILU(1) with different number of processors
and mesh size, and their corresponding speedup.

22

Solution time Speedup
h 1 2 4 8 16 1| 2 4 8 16
1/64 || 2913 | 2.594 | 2.71313.031 138563 1| 1.12 | 1.07 | 0.96 | 0.076
1/128 | 30.25 | 16.38 | 10.52 | 8.376 | 60.53 || 1 | 1.85 | 2.88 | 3.61 | 0.50
1/256 1 207.57 1 100,84 1 6453 13687 1 4544 111 1 2.06 | 3.22] 5.63 | 4.57
1/512 . 915.5 | 539.1 | 2322 | 317.1 || - | 2 |3.40]|3.94| 2.89

Table 2.4: Solution time (sec) of ILU(1) with different number of processors
mesh size, and their corresponding speedup.

TLU(0) ILU(1)
h 112 48 16| 1] 24816
1764 || 163 | 157 | 180 | 187 | 155 || 83 | 85 | 92 | 97 | 98
1/128 || 257 | 250 | 277 | 250 | 253 || 199 | 177 | 169 | 173 | 183
1/256 | 561 | 549 | 538 | 544 | 518 || 348 | 317 | 307 | 271 | 318
1512 % | * | * | * | = | - | 740 | 810 | 646 | 657

and

Table 2.5: Number of GMRES(20) iterations. The numbers 1,2,4,8,16 indicate the
number of processor. Convergence over 1000 iterations is denoted by * and test
fail due to insufficient memory is denoted by -.

2.7 Concluding Remarks

A simple parallel implementation of ILU(1) is derived from the existing ILU(0)
algorithm. Tt preserves almost the same scalability of ILU(0) while possessing
better quality.

In principal, we should be able to construct ILU(2) from ILU(1) and hence
ILU(k) for any k. However, the compromise we have adopted by allocating ex-
cess amount of memory may be too expensive for ILU(k) when k > 1. Further
investigation and testings are needed.

23

CHAPTER 3

3.1 Introduction

There have been many efforts to look for alternative robust preconditioners
for ILU since the parallelization of the latter, though possible as described in
Chapter 2, is quite difficult. Recently, there is an increasing interest in using
sparse approximate inverse preconditioners for Krylov subspace iterative methods
to solve:

Az = b, (3.1)

where A is large and sparse. On the one hand, they possess a conceptually straight-
forward parallel implementation. In contrast with ILU, the application of the
preconditioner is simply a matrix-vector multiply instead of a forward and a back-
ward solve and it can be done easily in parallel. On the other hand, similar to ILU
preconditioners, they can be applied to both general and PDE problems due to
their purely algebraic algorithm. The studies of Grote and Huckle [67] and Chow
and Saad [37] showed that they are robust for a wide range of matrices in the
Harwell-Boeing collection.

An approach of computing sparse approximate inverse is described by Benson
[7] and Benson and Frederickson [8]. Consider the right preconditioned linear
system:

AMy =56, z= My, (3.2)

where M is a right preconditioner. A sparse approximate inverse preconditioner
M is defined as a solution to the following minimization problem:

min | AM — T2, (3.3)

subject to some constraint on the number and position of the nonzero entries of
M. The Frobenius norm is particularly useful for parallel implementation. Notice
that

IAM — 1|5 = > | Am; — e,
=1
where m; and e; are the jth column of M and I respectively. Thus solving (3.3)
leads to solving n independent least squares problems:

H,},,iPHAmj_eme i=1,...,n, (3.4)

24

which can be done in parallel.

Another possibility is to use a weighted Frobenius norm which had been in-
vestigated intensively by Kolotilina, Yeremin and others {88, 89, 92]; see also the
survey by Axelsson [3]. In the following, however, we focus primarily on the Frobe-
nius norm approach. Other constructions of approximate inverse are discussed in
[9, 10, 19, 36, 37, 61, 130]. A comparison of approximate inverse preconditioners
and ILU(0) on Harwell-Boeing matrices can be found in [64].

In practice, it is desirable to look for sparse solutions of (3.4). However, this
poses two difficulties: how to determine the sparsity pattern of M and how to
solve (3.4) efficiently. Recently, two main approaches have been suggested. One is
discussed by Cosgrove, Diaz and Griewank [39] and Grote and Huckle [67] and the
other is by Chow and Saad [37]. For the former approach, the least squares prob-
lems (3.4) are solved by the QR factorization, which may seem costly. But since
m; is sparse, the cost of the QRF can be greatly reduced. Moreover, algorithms
can be derived to determine the positions of the nonzero entries adaptively. Similar
methods were also discussed in [68, 69, 88, 89, 92] where the sparsity pattern of
M is typically fixed as banded or that of the nonzeros of A.

For the approach described by Chow and Saad, standard iterative methods (e.g.
GMRES) are used to find an approximate solution to Am; = e;, and a dropping
strategy is applied to m; to control the amount of fillin. The idea is to let the
Krylov subspace build up the sparsity pattern gradually and then the nonzeros
entries are selected automatically by size. Other adaptive searching heuristics are
also proposed which will not be discussed here.

The idea of sparse approximate inverse is based on the assumption that A~1
can be approximated by a sparse matrix M. Thus sparse approximate inverses
are particularly useful for matrices whose inverse contains only a small number of
relatively large entries. For example, if the matrix is banded or diagonal dominant,
the inverse entries decay away from the diagonal [12, 43, 44, 53]. However, as
mentioned in [37, 39], if we require ||AM — I||; < 1, we can always find a sparse
matrix A for which the corresponding M has to be structurally dense. Another
source of difficulty comes from matrices arising from elliptic PDEs with smooth
coefficients, whose inverse may not necessarily have enough number of small entries
so that sparse approximate inverses are effective.

The key idea is to transform A to a new basis in which A~! has a sparse approx-
imation. For example, the inverse of a discrete elliptic operators (corresponding to
the discrete Green’s function [99]) typically possesses some smoothness which can
be converted into small wavelet coefficients. Specifically, we apply a wavelet trans-
form to compress the piecewise smooth entries of A=! and then apply the standard
techniques (e.g. Grote and Huckle’s implementation) to construct a sparse approx-
imate inverse. The use of wavelets to solve integral and differential equations can
also be found in [11, 19, 55, 61].

We should also mention that the factorized approximate inverse technique is

25

another approach to deal with the case where the inverse contains only a few
number of small entries. See [9, 10, 88, 89, 92] for details. An advantage of this
approach is that the symmetry of matrix A can be preserved,

We also remark that even if A—! has decay away from the diagonal (e.g. if A is
the rate of doc

~
LIl€ rawv &

P -t o et

the Laplace operator),
inverse to have optimal convergence, in the sense that the number of iteration for
convergence is independent of the mesh size. This is verified numerically in Table
3.1, where SPAI is the sparse approximate inverse given by Grote and Huckle’s
implementation [67]. The number in the bracket is the maximum allowable size
of the residual norm of each column. In general, the smaller the number, the
better (but also the denser) the approximate inverse is. We show numerically in
Section 3.6 that our approach provides a means to improve the optimality of sparse
approximate inverse preconditioners for solving elliptic PDEs. In Section 3.4, we
show that the wavelet approximate inverse preconditioner is closely related to the
well-known optimal hierarchical basis preconditioner.

i be annnoh fer the a‘})?rn\’;mnfe

Ay may no
vy fudey elvu R A e TRy

h no. of GMRES(20) iter no. of nonzeros in precond.
SPAI(0.4) | SPAI(0.2) | ILU(0) || SPAI(0.4) [SPAI(0.2) [TLU(0)
1/8 16 10 9 208 696 288
1/16 29 17 14 1040 3640 1216
1/32 67 37 25 4624 16440 4992
1/64 160 63 57 19472 69688 20224

Table 3.1: Convergence of GMRES(20) where A=2D Laplacian.

In Section 3.2, we show how to adapt the wavelet transform in the least squares
approach to solve {3.4). In Section 3.3, we justify theoretically that a smooth in-
verse has better decay in the wavelet basis. We also make an interesting connection
between our wavelet based preconditioner and the classical hierarchical basis pre-
conditioner. In Section 3.5, we estimate the extra cost for the wavelet transform
and discuss the implementation issues of how to simplify the algorithm. In Section
3.6, we present several numerical examples to compare different methods.

3.2 Fast Wavelet Based Approximate Inverse

Since we are only interested in the application of wavelets to constructing ap-
proximate inverses, we only mention a few features of wavelets. See, for example,
Daubechies’ book [41] for more detail description of wavelets.

Given a set of orthogonal wavelet basis functions, there corresponds an or-
thogonal matrix W that transforms vectors in the standard basis to those in the
wavelet basis. Furthermore, if v is a vector of smoothly varying numbers (with
possibly local singularities), its wavelet representation & = W, will have mostly

26

small entries. We can also represent two dimensional transforms by W. Let A be
a matrix in the standard basis. Then A = WAWT is the representation of A in
the wavelet basis. This wavelet representation A is also called the standard form
[11] of A. Nonstandard form [11] of A also exists but will not be discussed here.
Assuming A-! is piecewise smooth, our idea is to apply a wavelet transform to

compress A-! and then use it as a preconditioner. Observe that
= WA IWT = (WAWT)t = A,

where W is an orthogonal wavelet transform matrix. Thus we can first transform
A to its wavelet basis representation A and then apply, for example, Grote and
Huckle’s method $o find an approximate inverse for A, which is the preconditioner
that we want to compute. In other words, we do not need to form A-! but are
still able to compute its transform.

We next show how we adapt the wavelet transform in the least squares ap-
proach. Consider equation (3.3) again. Let W be an orthogonal wavelet transform
matrix, i.e. # = Wz is the vector z in the wavelet basis. (Note that W can be
1-level or full log, n-level wavelet transform matrix.) Then

n}/}n”AM ~Iig = H%}HHWAWTWMWT —Ii|F (3.5)
= min “AM - IHF)
M

where A = WAWT and M = WMWT are the representations of A and M in the
wavelet basis respectively. Thus, our n least squares problems become

min || Ari; — ¢, i=12,...,n (3.6)
™j

Note that A is sparse (but probably denser than A) since A is. Because of the
wavelet basis representation, if M is piecewise smooth, we would expect M, ne-
glecting small entries, to be sparse too. Therefore, the sparse solution of (3 6)
would hopefully give rise to a more effective approximate inverse than the origi-
nal approach without the wavelet transform. We justify our claim numerically in
Section 3.6.

We snmmarize our algorithm as follows:

Algorithm 3.1: Wavelet Based Approx. Inverse

(a) Wavelet transform A to get A = WAWT.

(b} Apply standard approx. inverse algorithm (e.g. SPAI) to A and obtain M.
(c) Use M as preconditioner to solve: A% = b, where b= Wb.

(d) Apply backward wavelet transform to £ to obtain z = w7z,

27

It should be noted that if we know the sparsity pattern of the large entries of
M a priori, then it is more efficient and also much simpler to use that pattern to
solve the least squares problems (3.6) instead of using Grote and Huckle’s adaptive
approach.

3.3 Theoretical Aspects

The effectiveness of the wavelet based approximate inverse preconditioners re-
lies on the ability of wavelets to change (local) smoothness to small wavelet coef-
ficients. In this section, we combine the classical result of Beylkin, Coifman and
Rokhlin [11] and our construction to derive a residual estimate for our precondi-
tioner.

In the discussion below, we follow the notation in [11]. Define the set of dyadic
intervals on [0,1] by:

T={[27k,27(k+1)]: 0 <k <2 — 1,0 < j < log,n}.

Let Iy = [277k,2-9(k +1)] € Z. Then |I;;|=length of I; is defined as: 2-9(k +
1) — 2-ik = 2-%. In order to bound the size of the elements of A=! in the wavelet
basis, a sufficient condition is the following smoothness assumptions on the Green’s
function G(z,y):

1
Gz, < 3.7
|Gz,)| P— (3.7
C
m i < ™ .
0 Gz, y)| + 107Gz, y)] < Ty (3.8)

for some m > 1 and C,, > 0.
The following result of Beylkin, Coifman and Rokhlin [11] gives an estimate of
the size of the entries in A~1.

Theorem 3.1 Suppose the Green’s function G(z,y) satisfies the smoothness as-
sumptions (3.7) and (8.8). Let A=! be the discrete operator of G(z,y) in the
wavelet basis. Then the (k,[)th entry of A~ is bounded by:

s () ()™

where I, I, € Z, |I,] < || and d(I}, I;)=distance between I, and I;.

From the above bound, we can see that the lengths and positions of [and
I, determine the size of (A~1),;. By the definition of dyadic intervals and as

28

mentioned in [11], d(,, ;) is equal or close to 0 at O(nlog,n) locations only. In
other words, effectively A=! has only O(nlog,n) number of elements for large
enough n. More precisely, let € > 0 be given. Define a sparsity pattern & to be:

§={(k,1): (A1), > ¢},

Then we have the following result by Theorem 3.1.

Theorem 3.2 The number of elements in S = O(nlog,n).

With this result, we are able to estimate the quality of our approximate inverse.

Theorem 3.3 If we choose § as our sparsity pattern, then
|AM — I||p < ni|Al|pe. (3.9)
Proof. We first define an intermediate matrix N which is essentially the trun-

cation of A1 by:

0 otherwise,

(ﬁsz{(ﬂ*nj(anes,

and denote the jth column of N by fi;. The inequality (3.9) is a direct consequence

of (3.5), (3.6), the definition of least squares solution and the definition of N and
is derived as follows:

IAM - 1|3 = [lAM — 1|}

n ~
= 2 llA%; — el
=1

Z; |A%i; — e;l2
J:
AN — I|[%

A& — A=,
n|Alze.

IAIA

O

Remark: Similar bound for the residual matrix can also be found in [67]. Our result
is different in that we have an O(n log, n) estimate for the number of nonzeros of

the computational approximate inverse M while that in [67] does not have such a
bound.

29

" The result of Theorem 3. 3, however, is mainly of theoretical interest. First of all,
the sparsity pattern § is not known in genera& Besides, O(nlog, n) elements for M
may be still too dense for practical purposes. Furthermore, because of the special
finger-like distribution of the nonzero elements of M given by S, the amount of
comnpiutation for solving the least squares problems may differ substa,nulaﬂy from
column to column. Thus in our implementation, we only choose a subset of §
which corresponds to those entries near the main diagonal. We find that the
preconditioning quality is still promising, as will be shown in Section 3.6. The

implementation details will be discussed in Section 3.5.

3.4 Connection to HB Preconditioner

Because of the hierarchical structure of wavelets, there is a natural connection
between the wavelet approximate inverse and the approximate inverse given by
the hierarchical basis preconditioner [103, 150}, The wavelet approximate inverse,
denoted by MWAI can be considered as an approximation to the transformed A~1.
That is,

MWAI — WT MPV,

M = approz(A-1), {3.10)

where approz (A~1) is an approximation of A-1. In our case, it is given by the
solution of the least squares problems (3.6). We can also express the approximate
inverse, MHB corresponding to the hierarchical basis preconditioner, in a similar

form [103]:

MHEB = STHS,

M = (approz(A)), (3.11)

where S7 is the non-orthogonal transformation matrix from the hierarchical basis
to the standard basis, A = SAST, and approc (A) is another approximation of A,
for instance, a coarse grid a,pprommatzon of A.

These two approximate inverses are similar in that both possess a hierarchical
structure. In fact, the hierarchical basis can also be considered as a special kind of
wavelet since it consists of a hierarchy of piecewise linear functions and they are
precisely the *hat” functions in the wavelet terminology. Our wavelet approximate
inverse is more general in the sense that one is allowed to use other kind of wavelets,
in particular, the orthogonal wavelets with compact support by Daubechies [40].
On the other hand, one could apply the hierarchical basis transform in a more
general domain.

The main difference between the two approximate inverses is the way they
approximate the original matrix A. For the approximate inverse given by the

30

hierarchical bagis in (3.11), we first approximate A, for instance, by a block diagonal
matrix, and then compute its exact inverse. For the wavelet approximate inverse,
we compute A exactly and then approximate its inverse by solving the least squares
problems as discussed in Section 3.2. Typicaﬂy, the approximate inverse given by
the hierarchical basis is block diagonal with zero bandwidth except for the coarsest
block while the one by wavelets can have nonzeros anywhere. If we choose the
same block diagonal for the nonzeros of M, it will reduce to the same form (but
probably with different values on the entnes) of M. Connections between wavelets
and hierarchical basis are also made by Vassilevski and Wang [135, 136].

3.5 Complexity and Iinplementation

The naive algorithm in Section 3.2 needs quite an amount of overhead for
doing the wavelet transformation. In this section, we will analyze each step of the
algorithm and discuss some implementation issues of how to simplify and speed
up the procedures. Meanwhile, we also analyze the sequential complexity of each
step. We show that it is essentially O(n), except step(a) which requires O(kn)
operations, where k is the number of levels of the wavelet transform.

In the following discussion, we assume that the wavelet used is orthogonal and
of compact support, [40, 41]. Orthogonal wavelets are used so that the formulation
developed in Section 3.2 makes sense. However, one could also use non-orthogonal
wavelets, Compact support, on the other hand, is indispensable so that the wavelet
transform is only O(n) and A does not become dense.

Step (a). In general, to compute the wavelet transform of a vector requires O(n)
operations. Computing A = WAWT is equivalent to transforming the columns and
then the rows of A (or vice versa). Thus it will cost O(n?) operations. However,
since A is sparse, if we assume that there are only O(1) nonzeros in each column and
cach row, the cost will be reduced to O(kn). In fact, in the parallel implementation,
we do not need to form A explicitly in each processor. Notice that solving each
least squares problem only need a few columns of A. We just form those columns
and the cost will be reduced to O(n).

Step (b). In each level of the transform, we will introduce a fixed amount of
nonzero entries. Even though there are only O(1) nonzeros in each column and
row of A, there will be O(k) nonzeros in each column and row of A. We could
choose k so small that the number of nonzeros introduced is acceptable. We may
also reduce the cost significantly by taking advantage of the fact that for smooth
coeflicient problems, the Green’s function typically has singularity only at a point.
In other words, A~ only has singularities along the diagonal, together with a
few number of additional artificial singularities due to the wrapping of the 2D
discrete Green’s function to an one dimensional array in each row. Hence it is
reasonable to fix the sparsity pattern of M to be block diagonal. In fact, our

31

current implementation already assumes block diagonal structure for M. This
assumption saves an enormous amount of time used for searching for the next
nonzero entries adaptively. By the way, adaptive searching procedure is usually
less amenable to parallel impiementation We may further reduce the cost to O(n)
by adopting the concept of local inverse in [130].

Step (c¢). When we solve A% = b by an iterative method, we need to perform A
times a vector. If we do it directly, the cost will be O(kn) as A has O(k) nonzeros
in each row. Note that

Av = W(A(WTv)).

If we first backward transform v, apply A and then transform it back, the overall
process will still be O(n).

3.6 Numerical Results

In this section, we compare our preconditioner with SPAI (by Grote and Huckle
[67]) to show that the wavelet sparse approximate inverse preconditioners gains
both the efficiency and storage for PDE problems. The convergence results of
ILU(0) are also compared to show that the wavelet sparse approximate inverse
preconditioners are as efficient as ILU(0) and sometimes even better, in addition
to the advantage that their parallel implementation is much easier than ILU(D).
We choose several matrices arising from different elliptic PDEs. The inverses of
all these matrices are piecewise smooth and the singularities are clustered around
the diagonal. For efficiency, instead of applying SPAI to solve for M adaptively
in step (a) of our algorithm, we specify a block diagonal structure a priori for M
and then solve (3.6) by the QRF as discussed in Section 3.5. In all the tests, we
use the compact support wavelet D, by Daubechies [40, 41]. We apply 6 levels of
wavelet transform to matrices of order 1024 and 8 levels of transform to matrices
of order 4096. Note that the number of levels is arbitrary. One could use different
number in different situations.

We apply these preconditioners to GMRES(20). The initial guess was zp =
0,7, = b and the stopping criterion was ||r,||/||ro|| < 10-¢. All the experiments
were done in MATLAB in double precision.

We remark that GMRES was used because the matrices we are interested in
are, in general, nonsymmetric and hence we do not adapt to using the conjugate
gradient method even if A happens to be symmetric positive definite (Example 1
and 2). Nevertheless, it is true that our algorithm does not, in general, preserve
symmetry. However, the conjugate gradient method can still be used if we replace
M by (M + MT)/2 when M is known to be positive definite. We also remark
that another approach is to use factorized approximate inverses as described in
[9, 88, 89, 92] for symmetric problems.

32

Example 1: We use two simple 1D matrices to show the benefit from using wavelet
transforms. The first one is a near tridiagonal symmetric positive definite matrix
of size 1024 x 1024, modified from an artificial periodic boundary value problem:

- 2.00001 -1 -1 7
-1 2.00001 -1
-1 2.006001 -1
Ao s (3.12)
-1 2.00001 -1
L =1 -1 2.00001.

The second matrix is the 1D Laplacian operator derived from the following:
w'(z) = f(z), in (0,1),
w(0) = 0, «(1) =0

Neumann boundary condition at = = 1 is used so that there is no decay in the
Green’s function near the boundary.

The bandwidth is 0,0,5,5,5,5 for the 1st to 6th level of the block diagonal
structure of M respectively.

Example 2: In this example, A is the 2D Laplacian operator with size 10241024
and 4096x4096. TFor n=1024, we choose the bandwidth of M as before. For
n=4096, we choose the bandwidth = 0,0,0,0,5,5,5,5 for the 1st to 8th level of the

block diagonals respectively.
Example 3: Consider the following PDE with variable coeflicients,
(1 + 22)uy)e + Uy, + (tany)?u, = —100z>.

We solve the 32x32 and 64x64 grid cases. The bandwidth of the block diagonal
of M is the same as before.

Example 4: In this case, A comes from a PDE of helical spring:

3
YUorn —I— u'yy -} mﬂx — QG)\ = 0,

where G and A are some constants. Same setting as before.

Example 5: Finally, we show an example where our wavelet preconditioner does
not work well. The matrix A comes from a discontinuous coefficients PDE:

(a(@; y)uz)e + (b(z,y)uy)y + tiy + vy = sin(mzy),
where the coefficients a(z,y) and b(z,y) are defined as:

1072 (z,y) € [0,0.5] x [0.5,1]
a(e,y) = b(z,y) =< 10° (@,y) €[0.5,1] x [0,0.5]
1 otherwise.

33

The bandwidth is chosen to be 5,5,10,10,15,15 to make the number of nonzeros
comparable to that of SPAI(0.2). Such modification is made so that sparsity is not
a factor for the failure.

The convergence of GMRES(20) with different preconditioners in each example
is shown in Figures 3.1-3.4 and is sumnarized in Table 3.2. In Example 1, we can
see that SPA1(0.4) and SPAI(0.2) converge very slowly in this somewhat artificial
but illustrating case. On the other hand, the wavelet based preconditioner con-
verges much faster. This shows the advantage of wavelet transform in the case
where A-1 is smooth with singularity only along the diagonal. We do not show
the convergence of ILU(0) since it only takes 3 iterations to converge. This is
exceptional because of the special near tridiagonal structure of A. Table 3.3 shows
the number of nonzeros for each preconditioner. The wavelet based preconditioner
requires much less amount of memory than SPAI does.

In Examples 2-4, the wavelet based preconditioner is most efficient in terms of
convergence and storage. Although the convergence of the wavelet based precon-
ditioner still depends on the mesh size (Figure 3.5), the dependence is less than
that of ILU(0) and much less than that of SPAI. However, we would like to point
out that this comparison is very rough since the preconditioners SPAI and ILU(0)
take up many more nonzeros.

Besides rapid convergence, we can also see a tremendous gain in storage for
the wavelet based preconditioner as n increases. This gain essentially comes from
the wavelet compression. The larger n is, the more compression we can get. It is
because the effect of singularity becomes less and less prominent as the singularity
is only located along the diagonal.

Table 3.4 gives a comparison of the total operation counts for each method.
The count estimate consists of the number of GMRES(20) iteration, the cost of
matrix-vector multiply, application of the preconditioner and the number of inner
products/saxpy operations. Since the number of inner products/saxpy operations
depends on the iteration number, the operation count estimate for one GMRES(20)
iteration, on the average, is:

count = nnz(A) + nnz(M) + 21n,

where nnz(A) and nnz(M) are the number of nonzeros of the matrix A and the
preconditioner M respectively and n is the size of the matrix. The count for ILU(0)
is normalized to one. The wavelet preconditioner shows a superior operation counts
over all the other methods in Examples 2-4. In fact, the results are even better
when n is larger. ILU(0) is exceptional good for the one dimensional problems in
Example 1 as explained before. Despite that, the wavelet preconditioner still takes
mmuch smaller counts than the other two approximate inverses.

Finally, Figure 3.6(a) shows that the wavelet based preconditioner does not
always work. As mentioned before, we assume that the singularity of the Green’s
function is only at a point so that the wavelet transformed inverse has large entries

34

near the main diagonal and our implementation can capture those successfully as
shown in previous examples. However, for discontinuous coefficient problems, the
Green’s function has addition singularity along the discontinuities of the coeflicients
as shown in Figure 3.6(b). Hence the inverse is not as smooth as before. Thus
our block diagonal structure may not completely capture the significant elements
of the exact inverse., We should remark that the failure is mainly due to our
current implementation. In principle, if we can locate the significant elements
by some adaptive procedure (e.g. the one given in [67] and [37]), we should be
able to obtain an effective approximate inverse preconditioner. However, such a
sophisticated adaptive searching technique has not been fully developed yet for

this class of problems and further investigation is needed.

10°

wavelel SPA]
- SPAI0.4)
-~ =~ SPAl02)

wavalet SPAI
-------- SPAI(D.4) 9 10

- SPAI0.2)

-
e\
b

b

-
>

L

(=

g of relative residuzal norm
log of relative residual norm

-
o|

0 5¢ 100 150 200 [+] 50 100 180 200
of iteraton # of iteraton

Figure 3.1: Convergence behavior of GMRES(20) where (a) A=artificial matrix
(b) A==1D Laplacian with Dirichlet and Neumann boundary conditions.

Example || n | Wavelet SPAT | SPAT{0.4) | SPAI(06.2) | ILU(0) | No precond.

la 1024 32 >200 >200 3 >200

1b 1024 71 >200 >200 1 >200

2 1024 26 62 34 28 116
4096 47 160 63 57 >200

3 1024 26 100 40 34 >200
4096 66 >200 129 93 >200

4 1024 26 84 36 31 183
4096 68 >200 126 89 >200

5 1024 >200 64 34 21 >200

Table 3.2: Number of GMRES(20) iterations

35

10°
wavelet SPAI wavelet SPA]
-------- SPAJ0.4) 107 e SPAIC.4}
—~~ SPAD.2) -~~~ SPAID.2)

g A\ B0} g 10% I U{o)
g H
E s—+=~- Tone c —°T mona
8 - -
B a0 T ———
8 _ - N
g > :
= . =
% \.\. g 0
k] T B
o ~ o
k= . & .5

-~ 107

~.
~
107°
107 . 107 . L
4] 20 49 80 100 Q 20 40 80 80 100
of iteraton # of iteraton

Figure 3.2: Convergence behavior of GMRES(20) where A=2D Laplacian with size
(a) n=1024 (b) n=4096.

10" g 10* .
\\ . wavalst SPAI | wavelet SPAI
o \‘ N SPAIDA wE e SPAI(0.4)
(RN o e SPAID2)
\ S - == SPAI0.2) ces LU
~.
gm" " ~, AV} e ARSIl T nane
AR R N
a 3 . F= I Y PO
210°% |\ . 3 -
g a S 8
] A\ S 2
T10™ " T k]
e " - e
s ! N s
Bl 2 ~_] g
1 -
Y e
W 1
100k - AN
" 7
. : 1o .
Rl 50 100 160 200 [50 100 350 200
of teraten # ot iteraton

Figure 3.3: Convergence behavior of GMRES(20) where A=variable coefficient

operator with size (a) n=1024 (b) n=4096.

Example || n | Wavelet SPAT | SPAI(0.4) | SPAIL(0.2) | ILU(0)

la 1024 3h44 5120 21504 3072
1b 1024 3h44 5121 25425 3072
2 1024 3544 4624 16440 4992

4096 6616 19472 69688 20224
3 1024 3544 4514 17260 4992

4096 6616 18618 73936 20224
4 1024 3544 4624 16387 4992

4096 6616 19472 69628 20224
5 1024 13464 5677 18952 4992

Table 3.3: Number of nonzero in approximate inverse

36

=)
1

)

log of refative residual norm
=l

wavelst SPAl

- SPAI0.4)
SPA0.2)

. HU©)

log of relativa residual norm

wavelet SPAI
SPAN0.4)

~ - - SPAl0.2}
R 117}

100
of itaraton

o 50

0 50

100
of iteraton

200

Figure 3.4: Convergence behavior of GMRES(20) where A==Helical spring operator
with size (a) n=1024 (b) n=4096.

250 250
wavelet SPA! ——— wavalat 5PAI
- SPAID.4) - SPAlD4)
200 . sRAIGD) 20N L. sPAID®)
...... ERE) s ILAHD)
5 ss0t 150}
& 8
[- &
= e =
G . 5]
< 100F 5 o0}
50} 50}
a o
0 10 20 ac 40 50 50 70 o 10 30 40 50 60
1h 1/

Figure 3.5: Iteration number vs 1/h, h=mesh size, for (a) variable coefficient (b)

Helical spring.

Example | n | Wavelet SPAI | SPAI(0.4) | SPAT(0.2) [ILU(0)
1a | 1024 10 >72 >111 1
1b 1024 72 >215 =362 1
2 1024 0.95 2.65 2.02 1

4096 0.78 2.79 1.54 1
3 1024 0.73 2.90 1.63 1
4096 0.63 >3.12 1.98 1
) 1024 0.80 2.68 1.58 1
4096 0.68 2.23 1.97 1
5 1024 >12 3.11 2.33 1

Table 3.4: Operation count estimate. The count for ILU(0) is normalized to 1.

37

wavalst SPAI

,,,,,,,, 2OAIN Ay 0.8
i SPAGS;

Y - -~ SPAIC.2) 0.6
LT L. LU

o 0.4
O T none

i
o

0.2+

log of relative residual nomm
4

o i : =023
\ B [1]
\ y
1

a 50 100 150 200 1o y
of teraton

Figure 3.6: (a) Convergence behavior of GMRES(20) where A=discont. coeffs.
(b) The Green’s function of A at the point (0.1,0.5)

3.7 Concluding Remarks

We have extended the potential applicability of approximate inverse to a larger
class of problems, namely, matrices with piecewise smooth inverses. There are two
main factors concerning our preconditioner: choice of basis and sparsity pattern.
We have shown that for our block diagonal implementation, the wavelet basis is
suitable for matrices with piecewise smooth inverse and singularity mainly along
the diagonal. Moreover, significant amount of storage can be saved. We should
remark that other choices of basis are also feasible to solve specific problems, for
example, higher order wavelets [41] and basis derived from multiresolution methods
[76].

If the essential singularity of A-! is along the diagonal, we have shown that
block diagonal structure is sufficient. However, for more general situations, e.g. dis-
continuous coefficients, where the singularity is not necessarily near the diagonal,

more sophisticated adaptive searching procedure is needed to locate the sparsity
pattern correctly.

38

CHAPTER 4

4.1 Model Problem

In this and the next three chapters, we focus on a specific and yet very impor-
tant class of problems in scientific computing, namely, second order self-adjoint

elliptic PDEs:

-V-aVu = f in) (4.1)
u = 0 on o8,

The domain @ € R4, d = 1,2, or 3, is a polygon. Traditionally, a is assumed to be
smooth and uniformly positive on Q. Here we only assume that ¢ is positive on
2, and it is allowed to be oscillatory or discontinuous with large jump across the
interfaces.

Let H1(§}) be the standard Sobolev space on €& and H}((2) its subspace whose
functions vanish on 8Q. The variational formulation of (4.1) is to find u € HI()
such that

a({u,v) ={f,v) Vv e H} (),

where the bilinear form a(-,-) and the linear form (-, -) are defined as

a(u,v)zfna(:c)Vu-V'udm, (f,v):Lf(ac)v(:c)da:.

Let T* = {7}} be a triangulation of {} = U7} with simplexes k. Define the linear
finite element space to be

Vi = {vh € H}(Q): vh|,» is linear Vi},

and denote the set of nodal basis by {qﬁ? ", The finite element approximation to
the solution of (4.1) is the function u* € V%, so that

a(uh, v*) = (f,v") Yoh € Vh, (4.2)
Let uh = 3%, pidh and f = 7, B;¢%. Then (4.2) is equivalent to a linear

system:

Aby = M*, (4.3)

39

where gt = (ptg,...,)7 b = (By,...,B,)7, At is the stiffness matrix, A%, =
a(@, q’);?), and M" is the mass matrix, M}, = (¢, qS?)

While ILU and wavelet sparse approximate inverse preconditioners are applica-
ble to general linear systems and in particular (4.3), their convergence may not be
optimal; the convergence rate decreases with the size of the linear systems. Among
the optimal methods, multigrid is one of the most efficient and popular methods
for the solution of (4.3).

The success of multigrid hinges on the choice of the coarse grids, the smooth-
ing procedure, the interpolation operators, and the coarser grid discretization. In
standard multigrid, full coarsening, Jacobi or Gauss-Seidel smoothing, and linear
interpolation are usually used. Classical convergence theory {13, 14, 15, 73, 97,
121, 148, 149]. shows that these simple ingredients are enough to achieve optimal
convergence for smooth coefficient problems. In general, however, these choices
may lead to slow convergence. In the next sections, we give a general overview of
the role that each multigrid component plays within the whole multigrid process,
and how their choices may depend on the underlying PDE. In Chapter 5, we pro-
pose a robust parallel smoother for multigrid, which are effective for anisotropic
coefficient PDEs on structured and unstructured grids. In Chapter 6, we study
a special coarsening technique for discontinuous coefficient problems. The impor-
tance of coarsening for discontinuous coefficient problems has not been emphasized
in the literature, and the geometric interpretation presented in Chapter 6 sheds a
new insight into robust multigrid for discontinuous coefficient PDEs. In Chapter 7,
we propose and analyze both theoretically and numerically a new interpolation for
rough coefficient problems based on energy minimization. This energy-minimizing
interpolation highlights the main theme of robust multigrid methods.

4.2 Smoothing

The idea of multigrid consists of two main components: smoothing and coarse
grid correction. The smoothing process, usually carried out by a relaxation method,
damps away the high energy error components. The coarse grid correction process,
carried out by an interpolation, approximates the low energy error components on
the coarser grids. The idea is that the combination of the two will result in a
significant error reduction independent of the problem size and hence lead to a
fast solution procedure. Moreover, we gain efliciency since the coarse grid solve is
less expensive than the fine grid one.

Relaxation methods such as Richardson, Jacobi and Gauss-Seidel are often
used as smoothers for multigrid, although other iterative methods, for instance,
ILU [77, 146] and (preconditioned) conjugate gradient [5, 25], or even ODE solvers
[80] such as Runge Kutta methods, have also been used for specific problems.
The relaxation methods are particularly useful for multigrid since they all have

40

a common property of removing the error eigencomponents corresponding to the
large eigenvalues. A number of different smoothing analysis for relaxation methods
can be found in the literature. For instance, Brandt [17] used a local mode approach
which essentially came from the Fourier analysis for hyperbolic PDEs, whereas
Hackbusch [73] and some othcrs adopted a more functional analysis approach.
Ruge and Stuben [112] etc. used a purely algebraic approach. In the following, we
give a different algebraic smoothing analysis for the relaxation methods. Although
the results used in the analysis are known, they are not usually discussed in the
context of multigrid smoothing. The error reduction results in Theorem 4.2 and
Theorem 4.3 are new, however.

4.2.1 Richardson

Richardson iteration is theoretically simplest and its analysis is also clearest.
Let A be symmetric and positive definite and let 0 < Ay < +-- < A, be its
eigenvalues and {v;} the corresponding eigenvectors. The error e*+1 of the k + 1st
Richardson iteration is given by

1
eftl = (I — X—A)ek. (4.4)

Let the eigendecomposition of e# be: ef = 37 . £5v;. By (4.4) and a direct com-

putation, we have
ki3

A; e
= 3 (1 -)k = 3o e,
£=1 n g=1
where ¢8+! = (1 — Aif Az)EE. Thus, for 1 — n, &80 = 0, and for © — 1,£50 — &5,
Hence the large eigenvalue components are eliminated while the small eigenvalue
components are retained by an iteration of Richardson.

4.2.2 Jacobi and Gauss-Seidel

The smoothing effect of the Jacobi iteration is much more subtle. In contrast
with Richardson, it is not clear how each eigencomponent is damped by a Jacobi it-
eration. Nevertheless, we can show that the A-norm of the error in the next Jacobi
iteration is minimized in some sense explained as follows. The following analysis
is based on a well-known result [121, Lemma 1, Section 5.2] in the domain decom-
position context and was also presented in the subspace correction framework by

Xu [149].

41

Lemma 4.1 Consider the minimization problem

minla” — (2* + g (4.5
where o* is the exact solution, =¥ is an approzimation of x* and f; is a vector of
zeros with 1 at the ith entry. Then the minimizing solution p; is given by

Ack),
w= 0k, (46)

where (Aek); is the ith component of the vector Ae* and A;; the (i,1)th entry of A.

Lemma 4.1 implies that if we want to modify the ¢th component of z* so that
the error is minimized in the A-norm, the update is given by (4.6).

Theorem 4.1 Let g = (g, ..., p,)7T, ft; given by (4.6). Then the new approzimate
zF 4y is the same as that given by one iteration of Jacobi:

k= gh 4y = aF + D1 AeF,
where D is the diagonal of A.

Proof. By Lemma 4.1, we have

n i A kg
p= pmfi=) (Ae. .) fi= D7 Aek.

=1 i=1

Hence Jacobi iteration minimizes the A-norm of the next iterate along each
component. Moreover, we can compute precisely the amount of the error in the
A-norm reduced by an iteration of Jacobi.

Theorem 4.2 The error reduction in the A-norm of a Jacobi iteration is
le¥112 — lleF*1{|% = (e¥)T AD-*(2D — A) D~ Ae. (4.7)

Proof. Noting that the iteration matrix for the error of the Jacobi iteration is
I — DA, we can show by a direct computation that

(I - DYA)A(I ~ DYA)=A— AD1(2D - A)D~'A. (4.8)
The equality (4.7) follows from multiplying ¢* to the left and the right of (4.8). 0O

By Theorem 4.2, we readily derive a sufficient condition for the convergence of
the Jacobi iteration.

42

Corollary 4.1 The Jacobi method is convergent if 2D — A is positive definite.

Remark: [t is not clear from the above analysis whether Richardson or Jacobi
iteration is a better smoother. In practice, however, Jacobi is much more effective.

The smoothing effect of Gauss-Seidel can be understood similarly. However,
instead of minimizing the entries at a time as in Jacobi, they are minimized one
by one using the latest updated value for each entry. Hence, intuitively speaking,
Gauss-Seidel smoothing should be more effective than Jacobi. Moreover, we can
also compute precisely the error reduction in the A-norm in a similar way as in
Theorem 4.2.

Theorem 4.3 The error reduction in the A-norm of a Gauss-Seidel iteration is

leF1 — lle¥+[| = (eF)TA(D — L)TD(D — L)' Ae®.

Again, by Theorem 4.3, we can derive a sufficient condition for the convergence
of the Gauss-Seidel iteration.

Corollary 4.2 The Gauss-Seidel method is convergent for symmelric matrices
whose lower triangular part, D — L, is nonsingular and whose diagonal eniries
are all positive. In particular, Gauss-Seidel is convergent for symmetric positive
definite matrices.

4.2.3 Other Smoothings

Relaxation smoothers are efficient for smooth coefficient problems. They may
be very slow, in general. For instance, for anisotropic problems:

€Uy + tyy = [, ek 1, (4.9)

we often use the block version of the relaxation methods instead. The analysis by
Zhang and Bramble [152] shows that the convergence of the resulting multigrid is
independent of the anisotropy e. For discontinuous coefficient problems, Wesseling
[144, 143], for instance, proposed to use ILU smoothers.

Another issue of smoothing is the parallel efficiency. In practice, Gauss-Seidel is
usually the most effective smoothers among other relaxation methods. A drawback
is that it is a very sequential algorithm. A parallel version of it may be obtained
by a special ordering of the unknowns, for example, red-black ordering for the
five-point stencil operator on a square grid. Jacobi method, on the other hand, is
a very parallel method, but its smoothing efficiency is not as good as Gauss-Seidel.

43

In Chapter 5, we propose a new class of sparse approximate inverse smoothers.
It has a similar smoothing efficiency as Gauss-Seidel and it is independent of or-
dering. Moreover, for hard problems, we can improve the smoothing efliciency
by adaptively adjusting the quality of the approximate inverse, for instance, by
adding more nonzeros.

4.3 Coarsening

The basic setting of multigrid is a hierarchy of grids. For structured square
or triangular grids, it is very natural to define a subsequence of coarser grid; see
Figure 4.1. Sometimes, it is more convenient to refer to the grid points than the
grids themselves, in which case, we call the process of selecting a subset of coarse
grid points coarsening. For structured grid problems, it is not hard to see that
a set of coarse grid points defines a coarse grid, and vice versa (Figure 4.1). For
unstructured grid problems, however, it is not as clear. Nevertheless, we may
still use the coarse grid points to define a coarse grid, or more precisely, a coarse
subspace; see Chapter 7.

e 35 5 5)] @ &)

() hv \‘ ’) ()

@ r 3 35 & G v &

® <5 & &5)

O LT) {,J O O Fany O
{(a)

e & & o) € & o

C\ k-‘ \\ o \.)

C‘ \.\ \\ \-:‘ \) (\ \\)

(\ \\ \.\ k\ \)

& & & o] G &5 &
(b}

Figure 4.1: Standard sequence of grids, (a) square (b) triangular. The coarse grid
points are denoted by o.

In the literature, coarsening is less emphasized among other issues of multigrid
since the simple standard coarsening (Figure 4.1) already produces a fast multigrid

44

method, For anisotropic problems, a special coarsening technique called semi-
coarsening [48, 124] is often used to recover the fast convergence of multigrid.

In Chapter 6, we show numerically that coarsening may also play an important
role to improve multigrid convergence for discontinuous coefficient problems. In
some special case, it may be mandatory to use a carcfully sclected set of coarse

grid points.

Jan | P . h
~ ! J ' N
x2i~2 xzi-l x2i x2i+1 x2i+2

Figure 4.2: Interpolation for noncoarse grid points. The coarse grid points, the
known values and the unknown values are denoted by o, ® and x, respectively.

4.4 Interpolation and Coarse Grid Basis

After a few smoothing steps on the fine grid, we transfer the fine grid residual
function onto the coarse grid. This is called the restriction. On the coarse grid,
after the error is solved either exactly or approximately, we transfer the coarse grid
error back to the fine grid, and it is called the prolongation. If the Galerkin process
is used, the restriction operator is just the adjoint of the prolongation operator.

The prolongation is essentially an interpolation: to determine the values at the
noncoarse grid points from the values at the coarse grid points; see Figure 4.2.
Typically, linear interpolation is used:

1 1
Uzio1 = Glziz + o Ui
That is, the value of u,,_; is given by a linear combination of values of uy;. ., and
tg; With weighting 1/2. Moreover, the interpolation used uniquely determines the
coarse grid nodal basis functions and vice versa. Consider a linear element on the
coarse grid, ¢f (Figure 4.3). It has a value of 1/2 at the noncoarse grid points
Tg;.q and zy;. Write ¢ff as a linear combination of three fine grid basis functions:

1 1
9‘5? 5 S+ 1 ¢k 9 ‘?5}211"

45

The weightings for the terms ¢f._ and ¢4, are 1/2, which are precisely the weight-

ings given by the linear interpolation. As a result, once we know the coarse grid
basis functions, the prolongation and the restriction can be defined accordingly.

' [
xzi-2 x2i-1 x2i x2i+1 x2i+2

Figure 4.3: Coarse grid basis function as a (linear) combination of fine grid basis
functions.

Good choices of interpolation have been the key in designing robust multigrid
methods. For structured grid problems, Alcouffe et. al. [1] used special harmonic
averaging techniques to define the interpolation weightings for discontinuous coef-
ficient problems. Dendy [46] derived a Black Box Multigrid method in which the
interpolation is defined solely from the nine-point stencils. Brandt, McCormick and
Ruge [18] introduced purely algebraic techniques for defining interpolation solely
from the given matrix. Since then, this approach has been studied extensively,
for instance, by Ruge and Stuben [112]. Another related approach, which real-
ized interpolations as matrices, led to the so called matrix-dependent interpolation
[151].

The Black Box Multigrid approach exploits the underlying PDE, but is re-
stricted to topological square grid problems. The algebraic or matrix-dependent
approaches do not have any geometric restriction and hence may be applied to
more general problems. However, since they pay less attention to the underlying
PDE, it may lead to slower convergence rate for structured grid problems where one
can easily take advantage of the geometric information and the special structure of
the resulting matrix. In Chapter 7, we propose and analyze a robust interpolation
through the construction of special coarse grid functions based on energy mini-
mization, which has the advantage of exploiting the underlying PDE without any
geometric restriction while maintaining the same efficiency on structured grids.

46

CHAPTER 5

Sparse Approximate Inverse Smoother

5.1 Introduction

In Chapter 4, we show that relaxation methods are effective for reducing the
energy norm of the errors, and hence they are popular choice of smoothers for
multigrid. In practice, Gauss-Seidel is usually more effective than the other re-
laxation methods. A drawback, however, is that Gauss-Seidel is a very sequential
algorithm. A parallel version of it may be obtained by a special ordering of the
unknowns, for example, red-black ordering for the five-point stencil operator on a
square grid. The Jacobi method, on the other hand, is a very parallel method, but
its smoothing efficiency is not as good as Gauss-Seidel. It is also well-known that
Gauss-Seidel smoothers do not work well for anisotropic problems and discontin-
uous coefficient problems. In this chapter, we propose and analyze a new class of
smoothers derived from sparse approximate inverse (SAI) preconditioners. It has
a similar smoothing efficiency as Gauss-Seidel and it is independent of ordering.
Moreover, for hard problems, we can improve the smoothing efficiency by adap-
tively adjusting the quality of the approximate inverse, for instance, by adding
more nonzeros. Hence, this new technique is more robust than the Gauss-Seidel
smoothers. Our numerical testings verify this statement.

We remark that Huckle [79] independently experimented with a sparse ap-
proximate inverse smoother for multigrid by modifying the standard Gauss-Seidel
iteration. Specifically, instead of using the exact inverse of the lower triangular
matrix, he used a sparse approximate inverse of it computed by the techniques
described in [67] (cf. Chapter 3). In our approach, we do not restrict ourselves to
Gauss-Seidel only. Indeed, we replace the Gauss-Seidel smoother completely by a
spare approximate inverse smoother. The resulting multigrid is efficient, and we
have more flexibility of improving the smoothing quality for hard problems.

In Section 5.2, we describe the construction of the sparse approximate inverse
smoother. In Section 5.3, we analyze the smoothing property of the proposed
smoother analytically and numerically for constant coefficient PDEs. Some tech-
niques to improve the smoothing character for the anisotropic problems are pre-
sented. Finally, in Section 5.5, we show the effectiveness of the sparse approximate
inverse as a smoother for multigrid by a variety of problems including anisotropic
problems, discontinuous coefficient problems and unstructured grid problems. Fi-
nally, concluding remarks are made in Section 5.6.

47

5.2 SAI smoother

Various techniques have been proposed for an effective sparse approximate in-
verse preconditioner [7, 9, 36, 39, 68, 67, 88, 89, 131]. However, the goal of con-
structing an effective smoother is very different from finding a good preconditioner.
For a powerful preconditioner, the capability of removing both the high and low
energy errors is essential. In contrast, a good smoother may just remove the high
energy errors effectively. In this respect, much of the weakness of SAI precon-
ditioners [131] becomes the strength of SAI smoothers. Our new proposal is to
explore them to construct a powerful smoother.

Most sparse approximate inverse approaches seek a sparse matrix M so that

the error of the residual
E =AM — 1T

is minimized in some measure. The sparsity constraint often limits the effective-
ness of M as a preconditioner due to the locality of the sparse approximation.
The lack of a global approximation has created many difficulties for an effective
preconditioner. Various additional techniques are required to improve the quality
of a SAI preconditioner [33, 131]. The requirement for a good smoother, on the
other hand, can take advantage of the locality of the sparse approximation. In
this chapter, a simpler form of approximate inverse — local least squares approvi-
mation is studied, whose cost of computing a sparse approximate inverse is among
the least of all others. Its construction is based on the Frobenius norm approach
described in Chapter 3:

min[|AM ~ T2,

subject to some constraint on the number and position of the nonzero entries of
M. The minimization problem is equivalent to:

minflAm, = el F=1en. (5.1)

We observe that the matrix A in (5.1) can be replaced by a submatrix of itself
without changing the least squares problem. First, only those columns of A which
correspond to the nonzero entries of m; are needed. Second, the submatrix of A
consisting of those columns often has many zero rows which can be deleted. As
a result, we end up with a small submatrix A’ for the least squares problemns.
Conversely, if we are given a submatrix of A4, it will define a least squares problem
for m;. In this case, the nonzeros of my is given by the corresponding columns
of the submatrix. In the following, we describe a systematic way of constructing
submatrices of A which are used to define least squares problems for the m,’s. The

48

advantage of this modified Frobenius norm approach is that we have direct control
of the the number and location of the nonzeros of m.’s as well as the complexity
of the least squares problems.

A sparse matrix A can be represented by a digraph § = (0, E) [60]. For finite
clement methods, the graph often is the mesh on the PDE solution domain. Define
£,,(0;), the k-level neighbor set of node o;, the nodes which are a distance k+1 or
less from o;. The use of level concept to define the sparsity pattern for incomplete
factorizations is widely used for ILU preconditioning [71, 42]. The 0-level neighbor
set L,(0;) contains all the nodes which directly connect to node o;. For PDE
problems with a second order finite difference/finite discretization, Lolo;) is just
the set of stencil points. Similarly, define W;(0;), the kth-wavefront of node o, as
the set of nodes which are a distance k + 1 from the node o;.

Tt can be shown that the elements in a discrete Green’s function decay in
a wavefront fashion for many problems [129]. In particular, £,(0;) includes the
k most influential wavefronts. That is the motivation to choose Ly(o;) for the
sparsity pattern to approximate the discrete Green’s function at node o;. The
computation of these locations is also inexpensive. A good choice of the sparsity
pattern has a significant impact on the quality of the SAL

The rectangular submatrix

An = A(Ly(0;), Li(o)) (5.2)

is defined as the (k,)-level local matrix of node o;. This matrix takes rows corre-
sponding to nodes £;(0;) and columns corresponding to nodes L;{0;) from A. We
introduce the (k, [)-level local least squares approzimation of an inverse as follows.
For each node o;, the least squares solution! z of

AMJL' = 80'. (5.3)

is taken for the nonzero values at the corresponding location £;{o;) of the sparse
approximation M at node o;. More precisely, we inject each element of the least
squares solution z into a zero vector of size of the matrix A at the locations in
L£,(0;) and use this sparse column to approximate the column corresponding to the
node o; of the inverse matrix A=t

We show the construction by an example. Consider the following constant
coefficient second order elliptic PDE:

U Uy + w2uyy + SUy + tuy = f(.'L', y) ('T"ﬂ y) € Q
ulp = g(=,¥);

on an m X n regular grid, the resulting matrix is a penta-diagonal matrix A of size
(m x n)?, using the conventional finite difference or finite element method. The

1In (5.3), €0, is a unit basis vector of size |£1(0;)| with one in the o; position and zeros in the
rest of the location in Li(o;).

49

difference equations can be written as:

bug g+ du; iy +oaug; 4oy e = P, 1<i<m 1<y <n

The (1,0)-level local least squares problem for an interior grid point becomes:
a e\ {0
a d 0
a b 0
e 0
e d b e a T, 1
c Ty 0
d ¢ z3 | =10 (5.4)
d Ty 0
b d Ty 0
b 0
e 0
e 0
\e ¢/ \0/

Tt is clear that the sparsity pattern of the approximate inverse is determined
by the locations £;(0;). A higher level ! implies a denser approximation. The
locations L;(0;) control the quality of the approximation given by z. A higher
level k often produces a smaller error of the residual at the locations £4(0;). The
(0,0)-level approach was used by Benson [7] originally, and was not a good choice
for either preconditioner or smoother. Our experiences indicate that the (1,0)-
level local least squares approximation provides a good trade-off between cost and
efficiency in general. However, for difficult problems such as PDEs with anisotropic
coefficient, higher level SAI smoother is required. This adaptable quality makes
the SAI smoother a robust technique.

To compute these local least squares solutions is an easy task and can be
implemented in parallel efficiently. For any constant coefficient PDE on a regular
mesh, we may further simplify the computations as follows. We observe that the
local least squares problems and hence the solutions corresponding to the interior
points are identical (cf. (5.4)). However, they may be different near the boundary.
We simply use the least squares solutions obtained from the interior points for
the solutions at the boundary. Thus, we only need to solve one least squares
problem. Our test and analysis indicate that this simple approach does not bring
any noticeable penalty in performance. Various techniques can also be adopted to
save the cost to compute the SAL For example:

¢ The shape of the Green’s function for different positions inside the solution
region does not vary much for a PDE with constant coefficients. When an un-
structured mesh is used, we may compute one approximation of the discrete

50

Green’s function accurately and use interpolation to obtain the approxima-
tion for all other mesh point.

o For smooth variable coefficient PDEs, the use of one local least squares so-
lution for several of its neighbors is feasible.

¢ For anisotropic problems, a higher level SAI smoother is required. However,
the cost of the local least squares problems grows rapidly. A priori drop
tolerance techniques [131] can significantly reduce the computations.

5.3 Smoothing Factor Analysis

We present an smoothing analysis for constant coefficient PDEs on a two di-
mensional rectangular region; see the example in Section 5.2. The analysis is only
for the simplified {1,0)-level local least squares SAI smoother described above.
However, we show by two numerical examples afterwards that the performance of
the original and the simplified local least squares SAI smoothers are practically
the same. We note that a related analysis techniques for discretization matrices
with periodic boundary conditions are given by Chan and Elman [28].

Since (1,0)-level is used, the resulting sparse approximate inverse is also a penta-
diagonal matrix. The smoothing analysis is based on the following result.

Lemma 5.1 Given two tridiagonal matrices
B = tridiag(b,d’,¢)yn, C = tridiag(d,a”,e)mym,
where b, c,d and e are non-negative, the eigenvalues of the matriz

B® Ly + Luxn @ C (5.5)

are

a -+ 2\/35(:03

kw g)
n_§_1+2\ﬂd_6COSm—H, IS}CSTL, 1§3<m,

where a = o' + a”. The corresponding eigenvectors are

. ksm . gim
sin sin , 1<s<n 1<t<m,
n+1 m 1

This result was used in many books and articles, for example, “Iterative Solu-
tions of Large Linear Systems” by David Young.

In Lemma 5.1, we assume that b,¢,d and e are non-negative. If a is negative,
then —A is an M-matrix and hence the solution values zy, 25, T3, T4 and z5 in (5.4)

51

are all non-positive. Denote by S the simplified stnoother of matrix A. The matrix
S can be written in the form of (5.5) where —z,, —%,, —23 and —z, correspond to
b,e,d and e and —z5 = a’ + a”. Thus the eigenvalues of S can also be given by
Lemma 5.1.

Corollary 5.1 The eigenvalues of the matriz S are:

km Jw
R + 2,/z T4 co8 o

, 1<k<n 1<j<m,

—Zg -+ 24/To, COS

and the corresponding eigenvectors are

. ksm . girm
sin Sin , 1<s<mn 1<{<m.
n+1 m+1

Consequently, we have the following result.

Theorem 5.1 The eigenvalues of the iterative matriz I — SA are

P :
1 - (((—m5 + 2./T x5 CO8 - _:-1 + 2,/T4%, cos mji 1)

.)
(a-|—2\/Ecos " + 2v/de cos il)),

n+1 m-+1

where 1 <k<n,1<j7<m.

Proof. Since S and A have the same set of eigenvectors, they can be simulta-
neously diagonalizable. The result follows directly from Lemma 5.1 and Corollary
5.1. 0

We illustrate the implication of Theorem 5.1 by the Laplacian example. In this
case, b=c=d=e=1 and a = —4. The solution of (5.4) gives:

6 17

Ty =Ty =Tz =8y = — 7 and msz_a.

For k — n,j — m, the corresponding eigenvalues of S and A approach 5/61 and
8, respectively. Thus, the corresponding eigenvalue of I — SA approaches 1/3
approximately. Hence the high energy errors are efficiently damped away by a
factor of 1/3. This analysis can also be generalized to three dimensional problems.

The above analysis is for the simplified (1,0)-level local least squares smoothers.
We show numerically that the eigenvalues of the iteration matrix corresponding
to the (1,0)-level local least squares smoothers are very much the same as the
simplified version. We consider the Laplacian operator on a 20 x 20 grid. The

52

Eigenvaiue distribution for {0,1) local smeother Eigenvalue distribution for simplified smoother

1 1
G.8r oo
G.8r 1 O8f
0.7r 1 07
0.6F 1 086p
0.5F 0.51
04F 041
03r 03r
021 1 02r
0.1} 1 0d4r

Q . - : " - - ¢

[4] 50 400 150 200 250 300 380 400 0 50 100 150 200 260 300 360 400

Figure 5.1: Comparison of the eigenvalue distributions. (a) (1,0)-level local
smoother, (b) simplified smoother.

eigenvalues of I — SA for 5=(1,0)-level local least squares smoother and S=the
simplified smoother are shown in Figure 5.1. There is no apparent difference
between the two sets of eigenvalues.

For the single-direction anisotropic problem

100y, +uy, = flz,y) (2,9) €9 (5.6)
ull’ = 9(37;:9’),

the difference in the eigenvalue distributions between the simplified SAI and the
local least squares SAI can be seen in Figure 5.2. However, this difference does
not have any significant impact on the smoothing factor, if the local least squares
smoother is replaced by the simplified smoother.

In addition to the above Fourier analysis, we compare the smoothing efficiency
of our SAI smoothers and the Gauss-Seidel smoother using an eigen-analysis. Ifig-
ure 5.3 shows the errors after two smoothing steps of different smoothers. The
x-axis represents the eigencomponents with respect to the Laplacian matrix, and
the y-axis represents their magnitudes. For Laplacian matrices, the small and large
eigenvalues correspond to the low and high frequencies, respectively. From the
plots, there is no significant difference between the (1,0)-level local smoother and
the simplified smoother as explained by the Fourier analysis above. Moreover, they
both damp away high frequencies more effectively than the Gauss-Seidel smoother.

5.4 Complexity

Let n; be the average number of indices in the k-level neighbor sets Ly (o;).
Then the number of nonzeros of the sparse approximate inverse given by the (k,1)-
level SAI smoother is n;n, which is also the complexity of applying one step of
the (k,[)-level SAI smoother. For instance, the complexity of the (1,0)-level SAI

53

Anisotropic problem

Gor
o.8r
0.7r
0.6f
0.5F
0.4}
0.3f
0.2r
o1r

T T

100 150 200 2560 300

350

400

Figure 5.2: Comparison of the eigenvalue distributions. The solid line denotes the
eigenvalues of the simplified smoother and the dashed line denotes the eigenvalues
of the (1,0)-level local smoother.

&0 10 150 200 250 306

sigancemponent

350 400

B0 108 160 200 250

sigencomponant

ano as0 400

80 100 160 200 250

sigancomponant

200 350 400

Figure 5.3: Errors after two smoothing steps of (a) (1,0)-level local smoother, (b)
simplified smoother, {c) Gauss-Seidel smoother. The dotted line denotes the initial

error.

o4

and Ganss-Seidel smoothers is the same as one matrix-vector multiply. Another
additional cost of the SAI smoothers compared to Gauss-Seidel is the construction
cost. For the SAI smoothers, we have to solve a least squares problem of size
ng Xy, ng > ny, for each column. Thus, the construction complexity is: O(nynin).
For the simplified SAI smoothers, since we solve one least squares problem only,
the complexity is reduced to: O(n;n?). Hence, for low level methods where k
and [are small, this extra cost can be easily compensated by the faster multigrid
convergence.

5.5 Numerical Results

In this section, we demonstrate the effectiveness of the proposed SAI smoothers.
Examples 1-4 show that the SAT smoothers work when the Gauss-Seidel smoothers
do or do not work. Example 5 shows further that we may improve the quality of
the SAI smoothers by using higher level of fills in the approximate inverses for
anisotropic problems. Thus the SAI smoothers are more robust than the Gauss-
Seidel smoothers.

In all the examples, Dirichlet boundary conditions are used. In the multi-
grid procedure, a V-cycle is used with one pre- and one post- smoothing, unless
otherwise stated. Linear interpolation is used for structured grid problems and
a specialized energy-minimizing interpolation [140, 141] is used for unstructured
grid problems. The number of multigrid levels is such that the coarsest grid is
3 x 3 for structured square grid problems, and a total of four levels for general un-
structured grid problems. The iteration was terminated when the relative residual
norm was less than 10~8. The results are summarized in the form of a table where
the number of V-cycles and the average convergence rate are shown.

Example 1: We compare the performance of different Gauss-Seidel and SAI
smoothers by solving the Laplace equation on a 33 x 33 square grid. The results
are shown in Table 5.1. We see that SAI is slightly better than GS in addition to
the fact that it is much easily parallelized. In this simple case, SAl is slightly worse
than GS(rb); maybe because of the special geometry. We will see in Example 4
that SAI performs better for unstructured grid problems. As described in Section
5.2, ”SAI(1 pt)” is the low cost simplified version of SAI for constant coefficient
PDEs, and it essentially performs the same as SAL

Example 2: Table 5.2 shows that result for a discontinuous coefficient problem
with a square interface on a 33 x 33 square grid. The jump across the interface is
10¢. We get a similar result as before. However, this time SAI(1 pt) does not work
since the coefficient is not constant anymore, and in fact it changes enormously
across the interface.

Example 3: In this example, we present the results for a number of variable coef-

55

Smoothers | Tteration | Conv. Rate
GS 14 0.25
GS(rb) 10 0.16
SAI 12 0.19
SAI{1 pt) 13 0.21

Table 5.1: Laplace equation. GS: Gauss-Seidel with natural ordering, GS(rb)
Gauss-Seide]l with red-black ordering, SAI: sparse approximate inverse smoother,
SAI(1 pt): SAI generated by a single interior point (see Section 5.2).

Smoothers | Iteration | Conv. Rate
GS 16 0.30
GS(rb) 13 0.22
SAI 13 0.22
SAI(1 pt) * *

Table 5.2: A square interface problem. GS: Gauss-Seidel with natural order-
ing, GS(rb) Gauss-Seidel with red-black ordering, SAL sparse approximate inverse
smoother, SAI(1 pt): SAI generated by a single interior point (see Section). *
indicates convergence more than 50 iterations.

ficient problems including a helical spring problem, a viscosity PDE problem, and
a discontinuous coeflicient problem where the interfaces now consist of a horizontal
and a vertical line; see Chapter 3 for details of each problem. Table 5.3 shows that
SATI may converge while the other two do not.

Problems Iteration Conv. Rate
GS [GS(rb) | SAT || GS | GS(rb) | SAI
Variable coeff. || 10 8 8 0.14 | 0.08 | 0.08
Helical spring 9 7 7 0.11 | 0.06 |0.07
Viscosity 9 7 7 0.1r | 0.06 | 0.07
Discont. coefl. * * 22 * * 0.40

Table 5.3: Variable coefficient problems. GS: Gauss-Seidel with natural order-
ing, GS(rb) Gauss-Seidel with red-black ordering, SAI: sparse approximate inverse
smoother. * indicates convergence more than 50 iterations.

Example 4: We show the effects of unstructured grids (Figure 5.4) on the smooth-
ers by solving the Laplace equation. In this case, red-black ordering is not defined.
Instead, we use a generalized red-black ordering for general sparse matrices, which
is essentially a greedy coloring algorithm. We still denote the resulting Gauss-
Seidel by GS(rb). Table 5.4 shows that SAT is slightly better than GS(rb), which
is better than GS.

Example 5: We show how SAI smoothers can improve the convergence of multi-

56

3

v v
VY
) X KOOTEOC K]
AT s
XI5
KLk

4

VAN g Taw

MAVONTAR BB e

A TAWATAYAY, Trad

KD AN RNy
S

b o S i

NN\
2

a0
ol A
R

vy

D ARACKASIRIREY
04s RIS
IRV s
AR AR :
TR 7]
AN R AA
0.4
0.8 1
\
o7]
0.2
08
0 0
5 LAY
0.4 2 4
y
0.3 NN
04 02 ¢
04 2
08| AT ; APavav: EERRE
0 0.2 0.4 (1] 0.8 k] [3 0.2 ¢4 0.6 08 1
1 T Y T T e o W e B A B B) Tl
HEEERNER
[¢X:] 4 E B
il
o8} 1 ol X X
T f \e/ f LY g
0.7k 1 o7 %
gl K
bl
o06f 1 osf
il ||
0.5 - —
0.4 } -
X
0.3 ; 5
0.2F 1 1]
ol]
] 02 04 06 0.8 1 03 04 06 08 1

Figure 5.4: The unstructured grids for Example 4 and 5. Row 1 left: airfoill, row
1 right: airfoil2, row 2 left: airfoil3, row 2 right: square, row 3 left: parc, row 3
right: spiral.

a7

Grids Heration Conv. Rate

GS | GS(tb) | SAL || GS | GS(rb) | SAI

airfoill || 16 15 14 | 035 | 0.32 |0.29

airfoil2 || 15 14 13 |1 0401 0.39 | 0.3

airfoild | 27 26 27 Ho6tl 059 061

square || 16 13 11 |1 0.36 | 0.28 | 0.20
parc i8 11 10 || 036 | 0.18 | 0.16

spiral || 12 9 8 ([022| 011 |0.08

Table 5.4: Laplace equation on different unstructured grids. GS: Gauss-Seidel
with natural ordering, GS(rb) Gauss-Seidel with generalized red-black ordering,
SAIL: sparse approximate inverse smoother.

grid for solving anisotropic coefficient PDEs. We consider two problems:

Problem 1: The single-direction anisotropic problem in (5.6).

Problem 2: There are anisotropic structures in both the z and y directions:

a(z, Yy g, + bz, y)u,, =1,
where the coefficients a(z,y)} and b(z,y) are defined as:

oz, y) = 100 (z,y)€[0,0.5] x [0,0.5] or [0.5,1] x [0.5, 1]
Y= 1 otherwise.

bag) = | 100 (5:1) € [0,05]x[05, 1 or 0.5, 1] x [0, 0.5]
Y=Y 1 otherwise.

The convergence results are shown in Table 5.5 and 5.6. The first three rows show

the results of problem 1 on a 32 x 32, 64 x 64 and 128 x 128 grid, respectively.
Similarly, row 4 and 5 show the results of problem 2. The last 4 rows show the
results of problem 1 on unstructured grids.

As it is well-known, multigrid with Gauss-Seidel smoother is very slow for these
problems, except for the results on the unstructured grids airfoill and airfoil2. Sim-
ilar results are also obtained for Gauss-Seidel with red-black ordering, and hence its
results are omitted. For problem 1 on a square grid, a usual technique to improve
the multigrid convergence is to use block relaxation methods. As indicated in the
table, block Jacobi is quite effective for small grids, but eventually slows down for
bigger grids. Moreover, it is costly to invert each block. The previous (1,0)-level
SAI smoother is not very effective in this case. We improve the performance by
using higher level SAI smoothers {Section 5.2). For higher levels, however, the
approximate inverse is much denser. We control the amount of fill-in by dropping
small elements. SAI(k, ¢) denotes the smoother with (k + 1, k)-level and element
whose absolute values below € are dropped at the end. We may also drop small el-
ements in the matrix A before we compute the approximate inverse. SAI(e;, k, €,)

o8

indicates that elements of size < ¢; are dropped in the matrix A, and elements of
size < €, are dropped in the the approximate inverse.

Grids Iteration
GS | BJ | SAI(3,e,) | SAI{4,e5) | SAl(€s,4,60)

problem 1 {32 x 32) * | 8 21 15 15
problem 1 (64 x 64) x| 27 27 20 19
problem 1 (128 x 128) i = | * 37 27 27
problem 2 (32 x 32) * | # 49 13 13
problem 2 (64 x 64) * | * 25 20 19
airfoill 18 1 — 9 8 8
airfoil2 23 1 — 12 12 12
parc 46 i — 11 9 10
spiral * I — 18 21 21

Table 5.5: Anisotropic problems on different grids. GS: Gauss-Seidel with natural
ordering, BJ: Block Jacobi, ¢,=2, e,= 0.0004 for the airfoil2 and spiral grid and
0.0008 for others. See text for the definitions of SAI(3,e,) and SAI(¢;,4,¢p).

Table 5.5 and 5.6 shows that the (4,3)-level SAI performs similarly as block
Jacobi for problem 1 on structured grids and better for the other problems. The
(5,4)-level SAI performs the best in general. Also, the SAI smoother does not
deteriorate if the small elements of A are dropped first. Hence, we may afford to
use higher level SAI if we drop small elements beforehand.

For problem 2, because of the anisotropy in both directions, block Jacobi does
not improve the multigrid convergence. The SAI smoothers, which do not require
the concept of direction, perform as well as in problem 1. This feature allows us
to capture the anisotropy easily by adjusting only one number-the level of fill-in,
with no need to track geometrically the anisotropic directions which are often hard
to determine.

For unstructured grid problems, blocks defined along the direction of the an-
isotropy no longer exist. Thus we do not test block Jacobi in these problems.
Gauss-Seidel does surprisingly well on some of the grids, but still very slow on the
others. SAI smoothers are effective on all the grids.

Example 6: Finally, we show that SAI, like other standard smoothers, give rise
to a multigrid method whose convergence rate is independent of the mesh size; see
Table 5.7.

5.6 Concluding Remarks

We have presented a class of robust sparse approximate inverse smoothers for
multigrid. They are simple to construct and yet are robust for PDE problems. For

59

Grids Conv. Rate
GS | BJ | SAI(3,e,) | SAI(4,e;) | SAK(e; ,4,60)

problem 1 (32 x 32) * | 0.09 0.52 0.40 0.40
problem 1 {64 x 64) * | 0.62 0.51 0.51 0.50
problem 1 {128 x 128) * * 0.64 0.53 0.53
problem 2 (32 x 32) * * 0.77 0.31 0.31
problem 2 (64 x 64) * * 0.59 0.51 0.48
airfoill 0.38 | — 0.16 0.09 0.09
airfoil2 061 — 0.30 0.37 0.37
parc 0.71 | - 0.19 0.11 0.13
spiral * - 0.37 0.47 0.47

Table 5.6: Anisotropic problems on different grids. GS: Gauss-Seidel with natural
ordering, BJ: Block Jacobi, ¢,=2, e;= 0.0004 for the airfoil2 and spiral grid and
0.0008 for others. See text for the definitions of SAI(3,¢;) and SAI(e,,4,e,).

Grids Fteration Conv. Rate
GS | GS(rb) | SAT §§ GS | GS(rb) | SAI
32 x 32 14 10 12 #1026 0.16 021
64 x 64 14 11 13 §0.25 1 017 §0.22
128 x 128 || 14 11 13 4025} 017 ;0.22

60

Table 5.7: Laplace equation on grids of different mesh size. GS: Gauss-Seidel
with natural ordering, GS(rb) Gauss-Seidel with red-black ordering, SAI: sparse
approximate inverse smoother.

constant coefficient problems, we gave a simplified version of SAL. We analyzed
theoretically and numerically that the simplified SAI is essentially the same as
SAI. In the numerical experiments, we have demonstrated that SAT is robust for
discontinuous coefficient problems, anisotropic problems and unstructured grid
problems. For anisotropic problems, we have shown how the quality of SAI can
be improved by increasing the number of levels whereas other smoothers such as
Gauss-Seidel do not have such property.

61

CHAPTER 6

Interface Preserving Coarsening for Highly Discontinuous Coeflicient

PDEs

6.1 Introduction

The standard multigrid method converges slowly for PDE problems whose co-
efficients have jumps of several orders of magnitude [1, 6, 46, 73, 86]. The finite
element /difference discretization has to be handled carefully [4, 91, 127]. Despite
this, suppose the discretization is properly done. We want to derive a multigrid
method which is as insensitive to the jumps as possible.

A typical approach of improving the convergence is to define a sophisticated
interpolation such as in black box multigrid [46, 47]. The idea is to capture the
discontinuous behavior of the derivative of the solution along the interfaces, or
equivalently to preserve the continuity of the flux across the interfaces [1, 46, 47,
73]. However, these methods usually only apply to structured grid problems.

As discussed in Chapter 4, a successful multigrid method depends not just on
interpolation but on all components as a whole. Qur key observation is that coars-
ening can play a crucial role for interface problems. Specifically, the coarse grid
points should resolve the shape of the interface in a certain sense to be described
later. Intuitively speaking, experiences from the literature [1, 65, 73] indicated that
the parts of the solution on the regions of different constant coefficients behave in-
dependently and are glued together through a Neumann boundary condition on
the interfaces. Theoretically speaking, convergence analysis for interface problems
[16, 49, 148] often require that the discontinuities are preserved on all coarser grids.
In view of these, we propose an interface preserving coarsening algorithm so that
all the coarse grids will align with the interfaces for regular interface problems on
structured grids, and that the interfaces are resolved as much as possible for irreg-
ular interface problems. Consequently, linear interpolation is sufficient to obtain
fast multigrid convergence.

We remark that special coarsening techniques are quite common for anisotropic
problems. However, to the best of our knowledge, no coarsening strategy has been
studied specifically for discontinuous coeflicient problems. In algebraic multigrid
[112], coarsening is also done specially according to the notion of strong coupling.
However, their motivation is purely algebraic, and no geometric interpretation is
given. We also remark that much work has been done on domain decomposition for
discontinuous coefficient problems; see, for example [30, 121]. For many of these

62

methods, the subdomains are naturally divided by the interfaces. Thus the true
interfaces coincide with the computational subdomain interfaces. In multigrid,
however, we do not usually have large subdomains and hence the interfaces do not
generally align with the coarse grids.

Another approach for discontinuous coeflicient problems is to use conjugate
gradient preconditioned by diagonal scaling {66, 108]. It is very simple and yet
quite effective. Graham and Hagger [65] analyzed such approach theoretically,
and extended the analysis to additive Schwarz preconditioners. They showed that
the largest eigenvalues of the preconditioned system are bounded and that only
a finite number of small eigenvalues approach to zero as the size of the jump
increases. Thus the preconditioned conjugate gradient method converges with a
number of iterations which grows only logarithmically in the size of the jump.
In their analysis, the interfaces are not assumed to align with the coarse grids.
Another related approach by Ashby et. al. {2] is to use multigrid preconditioned
conjugate gradient.

In Section 6.2, we first discuss the issues of coarsening for discontinuous coel-
ficient problems and explain why sometimes it is mandatory to select coarse grid
points in a special way. We illustrate the idea in one dimension in Section 6.3. In
two dimensions, we discuss the regular and irregular interface case separately in
Section 6.4.1 and Section 6.4.2, respectively. The effectiveness of interface preserv-
ing coarsening is demonstrated by one-dimensional and two-dimensional examples
in Section 6.5. Finally, concluding remarks are made in Section 6.6.

6.2 Failure of Multigrid with Standard Coarsening

As mentioned in the previous section, robust interpolations have been the key
for improving multigrid convergence for discontinuous coefficient problems. How-
ever, in some circumstances, especially in unstructured grid computations, robust
interpolation is not enough. Sometimes, it is mandatory to employ special coars-
ening strategy.

Consider a square interface on a 5 x 5 triangular mesh as shown in Figure 6.1(a).
The circles denote the coarse grid points chosen by standard coarsening. The
jump in coefficient is indicated by the shaded area, and zero Dirichlet boundary
condition is used. Since it is a triangular mesh, it is natural to interpolate the
noncoarse grid points by the two (and only two) connected coarse grid points. The
robust energy-minimizing interpolation described in Chapter 7 is used along with
the Gauss-Seidel smoothing. The slow multigrid convergence is shown in Figure
6.1(b). The key observation is that the interpolated values at the two noncoarse
grid points marked by e are far from the true values of the errors. Figure 6.2(a)
and (b) show the error after smoothing and the error given by interpolation. Due
to the large jump in coefficient, the error has larger values at the region with large

63

© ot ') 0 5 10 15 20

Figure 6.1: (a) A 5 x 5 grid with a jump in coefficient shown by the shaded area.
Coarse grid points are denoted by o. (b) Standard multigrid convergence.

Figure 6.2: {a) Error after smoothing. (b) Error given by interpolation with stan-
dard coarsening.

64

coeficient and smaller values at the region with small coefficient. On the other
hand, the interpolated values at the two corners are zero since their connected
coarse grid points are on the boundary where the values are zero. In fact, even if
other more sophisticated interpolations were used, the interpolated values had to
be zero as long as they were inferpolated only by the two connected coarsc grid
points on the boundary. Thus the approximation of the error on the coarse grid is
very poor which leads to a slow multigrid convergence.

1 2 3 L] 5 3

Figure 6.3: (a) Nonstandard coarsening, denoted by o, at the four corners of the
square interface. (b} Standard multigrid convergence.

Figure 6.4: (a) Error after smoothing. (b) Error given by interpolation with non-
standard coarsening.

Based on this observation, a natural remedy is to select coarse grid points so
that the previous situation will not happen. For instance, if we choose the coarse
grid points shown in Figure 6.3(a), along with linear interpolation and Gauss-
Seidel smoothing, we obtain the usual rapid multigrid convergence (Figure 6.3(b)).
As shown in Figure 6.4(a) and (b), the true error and the interpolated error are

65

essentially the same, and hence the fine grid errors can be corrected accurately
by the coarse grid. In conclusion, a special coarsening is required to maintain the
efficient multigrid convergence in this case.

6.3 Interface Preserving Coarsening: One Dimension

The idea of the interface preserving coarsening is very intuitive. Since we want
to align the interfaces with the coarse grids, we simply assign the points at the
interfaces to be the coarse grid points. After that, for the remaining points, we
perform standard coarsening; we select every other points as coarse grid points
(Figure 6.5). The idea can be easily extended recursively to coarser grids (Figure
6.6). The algorithm is described mathematically as follows.

® } & + o—@ t D t H—8 t B

a1 az a3

Figure 6.5: One-dimensional interface preserving coarsening. The regions of dif-
ferent coefficient are denoted by ay,a, and a;. Coarse grid points are denoted by
o and the coarse grid points at the interfaces are denoted by e.

a1 az az

Figure 6.6: One-dimensional interface preserving coarsening on the coarse grid
points given by Figure 6.5.

aj ap as

Figure 6.7: One-dimensional interface preserving coarsening with optional Step 2
(cf. Algorithm 6.1) in effect. No two consecutive points are coarse grid points.

Let N* = {n},...,n¥ } be the set of fine grid points at level k. Let N} be the
set of coarse grid points and NE = NF\NE be the set of noncoarse grid points.
The algorithm consists of the following three steps; see Algorithm 6.1.

Step 1 selects the interface points as coarse grid points. Step 2 ensures that
no two coarse grid points are adjacent to each other unless they are both interface
points. Thus the number of coarse grid points is not more than half of the fine
grid points. The difference of applying and not applying Step 2 is shown in Figure
6.7 and Figure 6.5, respectively. The former has fewer coarse grid points but more

66

Algorithm 6.1: 1D Interface Preserving Coarsening

1. Set Nk = { interface points } = {nf,nf,...,n} }.

Assume nf = nf and nf ,, =n;, .
. (optional) Set N} = { neighbors of 7 : § € N§}.
3.forl=0%top
for j = nf to nf
if j ¢ NEU N§ then
Nt =NEu{j}, NE=NEU{ neighborsofj}
end if
end for

end for

[ab]

overlaps between basis functions and the opposite for the latter. Our default is
not to apply Step 2. Step 3 performs the standard coarsening between the selected
coarse grid points from Step 1.

The other multigrid components are standard. We use Gauss-Seidel as smooth-
er and linear interpolation. We remark that the coordinate information of the
computational points is needed to perform the linear interpolation due to the
nonuniformity in spacing of the coarse grid points.

6.4 Interface Preserving Coarsening: Two Dimensions

We describe separately the algorithm for the regular and irregular interface.
For the former, we may apply the one-dimensional technique. For the latter, we
need another algorithm to maintain low complexity while still being able to resolve
the interfaces.

6.4.1 Regular Interfaces

Suppose the grids are regular tensor product grids, and the regions of different
coeflicients are also formed by tensor products. More precisely, let

X = {z: zis the x-coordinate of an interface point},

Y = {y: yis the y-coordinate of an interface point}.

Let Q; be a region with a large jump in coefficient. If it is formed by a tensor
product, then Q, = [z,,2,] X [y1, ¥y} for some z,,z, € X and y,,y, € Y. Figure
6.8 shows an example of a regular interface problem.

The two-dimensional regular interface preserving coarsening is obtained by a
“tensor product” of the one-dimensional algorithm: A point z € X* is an

67

Algorithm 6.2: 2D Regular Interface Preserving Coarsening

Let ¥ be the set of grid points on level .

. Bet X* = {x:(2,y) € O}, Y* = {y: (z,9) € @*}.

. Set N&, = coarse grid points obtained from 1D coarsening on X k,
. Set N§&, = coarse grid points obtained from 1D coarsening on YE,
- Set Nk = {(2,1): 2 € Nk, y € N&,).

o G IND =

interface point if there exist a region with a large jump in coefficient Q; such that
0; = [z,%] x [y, 7] for some & € X* and y,§ € Y*. Thus # is also an interface
point in X%. The interface points in ¥* are defined similarly. A result of the
regular interface preserving coarsening is illustrated in Figure 6.8. We note that
an extension of the algorithm to three dimensions is straightforward.

@ i L)

& O & ©

Figure 6.8: Tensor product interface preserving coarsening for a regular two-dim-
ensional interface. Coarse grid points are denoted by o.

6.4.2 Irregular Interfaces

We can still apply the regular techniques if the interfaces are not too irregular.
For example, for the interface shown in Figure 6.9(a), we may apply Algorithm
6.2 to obtain a coarsening of the grid points; we collect the @ and y coordinates
and determine their interface points as before, and then coarsen along the 2 and
y direction independently. Figure 6.9(a) shows the resulting coarse grid points.
For less regular interfaces, however, this tensor product procedure may create
excessive number of coarse grid points to preserve the interfaces; see Figure 6.9(b).
Consequently, the overall computational cost may increase.

In general, we want to resolve the shape of the interface while maintaining
the coarse to fine grid point ratio to be 1:4 as closely as possible. The idea is as

63

@ &—& & & & e &

Figure 6.9: Tensor product interface preserving coarsening for (a) a less irregular
interface, (b) very irregular interface. Coarse grid points are denocted by o.

follows. We first identify the points where the interfaces are located. Then we
apply standard coarsening to these points and then to the remaining points. We
convert some of the noncoarse grid points near the interfaces to coarse grid points
so that the shapes of the interfaces are better resolved. We have not yet derived a
rule of conversion which can be justified rigorously. Nevertheless, we suggest two
heuristics to be discussed later.

The above procedures can be described mathematically as follows. Let 2+,
2~ be disjoint open subsets of £ such that) = QF U Q- Let I' = 8Qt be the
interface and I'N 99 = ¢. Let a{z,y) = at in OF and a(z,y) = ¢~ in - and
a— < a+. The case of multiple interfaces is treated similarly and hence is omitted.
The two-dimensional irregular interface preserving coarsening is given in Algorithm

6.3.

Remarks:
Step 1: Notice that the diagonal entries of the stiffness matrix A is

A =at [|VeHeda,

for all 2* € N*. If a* » a~, the set of points in N+ can be easily identified by
the large diagonal entries of AL

Step 2, 3: They are just standard coarsenings on the points in N+ first followed
by those in N-.

Step 4: Two sets of heuristic criteria are suggested to ensure that the noncoarse
grid points on T' are properly interpolated so that the discontinuous derivative
behavior of the solution is captured. Criterion a(i) & (ii) require noncoarse grid
points to be interpolated by at least one coarse grid point in the same region.
These conditions eliminate the situation given by the example in Section 6.2. The

69

Algorithm 6.3: 2D Irregular Interface Preserving Coarsening

Determine the set of fine grid points Nt in QF.
Full coarsening on N*.
Full coarsening on N~ = N\N*, N=set of fine grid points.

Either (a) or (b) is used. Change a noncoarse grid point z} to a coarse grid point,
if any of the condition is satisfied.

Ll A

Criterion set {a):
i. 2} € Nt and no coarse grid point #f € N7 is connected to z}.
ii. 2} € N~ and no coarse grid point 2if € N~ is connected to zf.
iii. x} is connected to one coarse grid point only.

iv. Coarse grid points in N7 do not interpolate those in N, and vice versa.

Criterion set (b):
i. 2% € N* and less than two coarse grid points =/ € N* connected to af.
it. ! € N~ and less than two coarse grid points a:JH € N~ connected to zf.
iii. = € 89 and no zf € Q is connected to z}.
iv. Coarse grid points in Nt do not interpolate those in N7, and vice versa.

purpose of criterion afiii) is to take care of a special case in unstructured grid
computations rather than for resolving the interfaces. If a noncoarse grid point
is connected to one coarse grid only, the interpolated weight at the noncoarse
grid point must be 1 due to the constant preserving constraint. In other words,
we have a local piecewise constant instead of piecewise linear interpolation there
which may affect convergence. Criterion a(iii) eliminates this case by making such
noncoarse grid points to coarse grid points. In Criterion set (b), the first two
criteria serve a similar purpose as a(i) & (ii), except that they require more coarse
grid point connections in the same region. Criterion b(iii) requires that noncoarse
grid points on the boundary must be connected to at least one coarse grid point
on the boundary. For both criterion sets, we eliminate the influence of coarse grid
points from the other region by criterion a(iv) & b(iv); we allow interpolation from
coarse grid points to noncoarse grid points in the same region only.

Figure 6.10 shows an example of the irregular interface preserving heuristics.
Since Algorithm 6.3 is based on the graph connection of a matrix, we use here
a triangular mesh for a better illustration. Compared to Figure 6.9(b), we need
much fewer coarse grid points. Moreover, within each constant coefficient region,
the coarse grid points are selected as if in standard coarsening. More coarse grid
points, especially in the case when the criterion set (b) is used, are selected near
the interface to resolve its shape.

70

b S 5 ®

Figure 6.10: Irregular interface preserving coarsening for an irregular interface
using (a) Criterion set (a), (b) Criterion set (b), in Algorithm 6.3. Coarse grid
points are denoted by o. The coarse grid points selected by either criterion set are
denoted by e.

6.4.3 Complexity Issue

Resolving the interface, in general, increases the total number of coarse grid
points which in turn increases the overall computational cost. However, if the
interface forms a simple piecewise smooth curve, the increase in the number of
coarse grid points is at most the total number of grid points on the interface, which
is only O(+) compared to O(3s) total number of coarse grid points. Suppose the
complexity, 7,, of one V-cycle multigrid with standard coarsening is estimated to
be:

1 1 1 4
0= Ol + i + g) = Olgga)

Then, the complexity, 5;, of one V-cycle multigrid with our special coarsening is:

1 1 1 1,1 1 1 1,11 1 1 1
mo= Ot p+ QP+t Q@@ tp T))
4 8
o O(W + ':"3”}";)
Thus the extra amount of work due to the increase in the number of coarse grid
points is asymptotically small compared to the standard one.

6.5 Numerical Results

We demonstrate the effectiveness of the interface preserving coarsening by three
examnples. The multigrid settings are standard. We apply two pre- and post-

71

Gauss-Seidel smoothings. Linear interpolation is used for the one-dimensional
problem and the two-dimensional regular interface problem. For the irregular
interface problem, since the tensor product grid structure is destroyed after one
level of coarsening, we have to use unstructured grid multigrid techniques for the
subsequent coarser grids. In particular, we use the energy-minimizing interpolation
described in Chapter 7. The multigrid iteration was terminated when the relative
residual norm was less than 10-9.

Example 1: We compare the convergence results of the multigrid method with the
one-dimensional interface preserving coarsening and linear interpolation and that
with the standard coarsening and flux preserving interpolation [73]. The model
equation 1s
d d
—aa(w)&;u(m) =1 in (0,1)
u = 0 at x =0 and z = 1,

where
10¢ ifz<1/4+h
a(z)=4 1 ifl/4+h<z<1/2+h
102 fz>1/2+h.

Here, h is the size of the fine grid. It is so designed that the interfaces will not
align with any standard coarse grids. The convergence results of the two multigrid
methods are shown in Table 6.1. There is no difference in performance for both
methods. Moreover, their convergence results are independent of the mesh size h
and the jump in the coeflicient.

h MG Method 1 | MG Method 2 | Standard MG
1/32 6 6 16
1/64 G 6 17
1/198 6 6 20
1/256 6 6 24

Table 6.1: Convergence of multigrid methods for a 1D discontinuous coeflicient
problem. Method 1 uses interface preserving coarsening and linear interpolation.
Method 2 uses standard coarsening and flux preserving interpolation.

Example 2: We show the effectiveness of the two-dimensional tensor product
interface preserving coarsening for regular interfaces. The equation is extracted
from Example 3 in Chapter 7:

—V -a(z,y)Vu =1,

where

a()m et 025<2<0.75 & 026 <y <075
LU= o= otherwise.

72

We fix ¢— = 1 and vary at from 10 to 10%. The convergence results of the multigrid
method with interface preserving interface and linear interpolation and that with
standard coarsening and energy-minimizing interpolation are shown in Table 6.2.
Apgain, their performances are essentially the same, and their convergences do not
depend on the mesh size nor the size of the jump.

MG Method 1 | MG Method 2 || Standard MG
h 10107 10* {1010] 10* || 10} 104 | 10*

1716 | 5| 5 | 6 || 6| 5 | 5 ||14] » | =
/32 |56 | 6 || 6| 6| 6 [[14] | *
1/64 [6| 6 | 6 || 6| 6 | 6 |14 = | *
17128 [6 | 6 | 6 || 7| 6 | 6 j14| * | *

Table 6.2: Convergence of multigrid methods for a 2D discontinuous coefficient
problem. Method 1 uses interface preserving coarsening and linear interpolation.
Method 2 uses standard coarsening and energy-minimizing interpolation. The
numbers 10,102,104 indicate the values of at. * denotes convergence more than
100 1terations.

Example 3: Finally, we present the results of an irregular interface problem. The
star-shaped interface is shown in Figure 6.11(a), and the irregular interface coars-
ening with criterion set (b) on the 16 x 16 triangular mesh is shown in Figure
6.11(b). Since the coefficient is assumed to be constant on each triangle, a wrin-
kleness is resulted on the interface. We can see that more coarse grid points are
selected near the interface and the remaining parts are coarsened in a standard
way.

The convergence results of the multigrid method using the irregular interface
preserving coarsening and energy-minhmizing interpolation are given in Table 6.3.
(Note that we cannot use the standard linear interpolation in this case since the
regular nested grid structure is destroyed after one level of coarsening.) First, the
convergence is independent of the jump. Second, for a fixed number of levels, the
convergence is independent of the mesh size. However, the convergence rate does
deteriorate with the number of levels. To alleviate this problem, we do not go
through many levels, if we can afford to solve exactly, for instance, a coarse grid
problem of size 100. In that case, it only needs about 20 iterations to convergence.

The “number of nodes” column shows the number of nodes at each level. As
discussed in Section 6.4.2, it is important to maintain a reasonable ratio between
the fine and coarse grid points so that the computational cost is not much higher
than that of standard multigrid. From the column, we see that the ratio is between
1:3 and 1:4, which is close to the standard ratio 1:4.

73

1

08

048

0.7

asf

G.5¢

o.4F

0.3

0.2

0.1

) x
a 0.2 0.4 0.6 OB 1

Figure 6.11: (a) A star-shaped interface is formed by: (z,y), z = 0.5 4 rcosb,
y = 0.5 + rsinf where r = 0.3 + 0.1sin(56), 0 < # < 2x. (b) The star-shaped
interface in (a) on a 16 x 16 triangular mesh.

Grid size | Level | # of nodes [at =10 | at = 10% [ot = 10° | ot = 10*
1/32 2 344 12 13 14 14
3 116 14 14 15 15
4 40 20 22 22 22
1/64 2 1261 13 13 13 13
3 367 14 14 14 14
4 102 18 18 18 18
5 28 30 37 39 39
1/128 3 1258 16 16 16 16
4 319 19 19 19 19
5 86 27 28 28 28
6 25 43 b2 b4 54

Table 6.3: Convergence of the interface preserving coarsening multigrid for the
star-shaped interface problem.

T4

6.6 Concluding Remarks

We have demonstrated numerically that coarsening can be an efficient alter-
native for robust interpolation to solve discontinuous coefficient problems using
multigrid. In fact, we have shown by an example that special coarsening some-
times is mandatory no matter what the interpolation is. We have shown that
multigrid with the proposed interface preserving coarsening and the simple linear
interpolation is an effective solution method for discontinuous coefficient problems
on structured grids. In general, we need to combine the interface preserving coars-
ening and an unstructured grid interpolation for irregular interface problems on
general domains, and we have shown by an example how this can be done.

75

CHAPTER 7

Energy-Minimizing Multigrid

7.1 Introduction

Sophisticated interpolation methods have been the key in designing robust
multigrid methods (cf. Chapter 4). In one dimension, a robust interpolation
[73, 109, 145] can be obtained by solving local homogeneous PDEs, which are
equivalent to minimizing the energy of the coarse grid basis functions. The ex-
tension to higher dimensions of this approach is not obvious. Nonetheless, many
attempts [1, 46, 73, 72, 86, 110, 145] have been made to set up similar local PDEs
for defining a robust interpolation. In place of setting up PDEs, we consider an
equivalent minimization formulation and derive a so-called energy-minimizing in-
terpolation with special emphasis on its stability and approximation properties
which are essential for optimal convergence. This approach to determining appro-
priate interpolation operators has also been used for iterative substructuring [50],
and algebraic multigrid [134]. It will be made more precise in Section 7.3.

Although it is well-known that the one-dimensional interpolation mentioned
above will produce a robust multigrid method, a convergence analysis has not
been given in the literature. In Section 7.4, we analyze the one-dimensional method
derived from the energy-minimizing interpolation. We prove the novel result that
the convergence rate is independent of the coefficient of the underlying PDE, in
addition to the mesh size. In Section 7.5, we give numerical examples mainly in two
dimensions, including a discontinuous coeflicient problem, an oscillatory coefficient
problem, and a Helmholtz problem. Finally, we summarize our experience by
several remarks in Section 7.6.

We now set up some notations to be used in the following sections. Let V = V%
and V; C V, C --- C V; = V denote a sequence of nested subspaces of V defined by
the span of nodal basis functions, {¢¥};*,,k = 1,...,J, at level k. The operator
AV =V is self-adjoint and induces the A-inner product: (-,-)4 = (4-,-). Also,
we define A; : V. = V. by (Au;,v;) = (Au;,v;),u;,v; € V. Correspondingly, we
have R, : V; — V;, which is an approximate inverse of A;. Let @; : V — V]
and P, : V — V, be the projection operators with respect to the L? and the A
inner product respectively. In the following analysis, the generic constant C' is
independent of the mesh size h.

76

7.2 Stability and Approximation Property

Before we explain the formulation of the energy-minimizing interpolation, we
first discuss our motivation from the classical results of multigrid and domain
decomposition methods. Twe key properties: stability and approximation, must
be satisfied by the coarse subspaces and the smoothers [73] in order to have optimal
convergence results. These two terms occurred frequently in the literature but
often appear in slightly different forms. For example, in the subspace correction
framework [149], these two properties are built into the estimate of a constant K,
which in turn is used to prove optimal convergence together with another constant
K. The definition of K; and K, are as follows:

K,: For any v € V, there exists a decomposition v = E;Ll v; for v; € V, such that

J
> (Btvg,v;) < Ko(Av,v), (7.1)
i=1
where R; is usually known as the smoother in the multigrid context.
Ki:Forany §c {1,...,J} x{1,...,J}and u,v; e Viori=1,...,J,
J T

S (T, Tyug)a < Ko (Tous,)) (O (Tyunvi)a)3, (7.2)

(i)€s i=1 i=1

where T; = R, A;P;.

Theorem 7.1 Let E; be the iteration matriz given by the V-cycle multigrid, i.e.,
u— ukbtt = By(u —uf),

where u is the exact solution and u* and ud+1 are two consecutive multigrid iterates.
Then
Ey= (I - TJ)(I - TJ—l) T (I - Tl)a
and
2 —uwy

ER<l— ot
” J”A—- I{O(1+K1)27

where wy = max; ;<7 p(R;A;).
Proof. See [149]. D

By Theorem 7.1, the convergence rate can be improved by producing a smaller
K, or K. In this chapter, we propose an interpolation that will potentially de-
crease the size of the constant K, by reducing its dependence on the coefficients
of the underlying elliptic PDE.

7

As shown in [149], the estimate of K| relies on two inequalities:

~ J ~ ~
ol + k}_: 1@k — Qe—)vllZ < Collvliy, (7.3)
”(Qk - @k_l)vli < O1hk||@kv|1m vk > 1, (7.4)

where Q) : V — V, is any linear operator onto V.

Inequality (7.3) appears in the Partition Lemma which is well-known in the
domain decomposition literature [51, 121]. In the multigrid context, however, this
inequality is usually only used implicitly. Intuitively speaking, (7.3) says that
given any v € V, we must be able to decompose v into the subspaces such that
the total energy of all the pieces v; is bounded by a small constant factor of the
original energy of v. Besides (7.3), we also require that functions on the coarser
grids approximate those on the finer ones to at least first order accuracy in fy.
This requirement is quantified by the inequality (7.4). If we have both (7.3) and
(7.4), we can bound K, by a constant independent of the mesh size A.

Lemma 7.1 Let wy = mingg;cy (p(A;)Auin(Rs)). Suppose (7.3) and (7.4) are
satisfied. Then

C
Ky < —,

Wy
where C is a constant independent of the mesh size.
Proof. For any v € V, let v = E;::l vy, be a decomposition of v given by (7.3),

ie. v, = (@ — Qr_y)v. In view of the definition of K, and for each k > 1, we
consider

p(Ax)
-1 S <
(Rk 'Uk,'Uk) — Amln(Rk) (vk7vk) — wD

by (7.4) and p(4;) = O(h7?). Substituting v by & = (@ — Qk_s)v in (7.4) and
rewriting ¥ = v, we have

100k = Qrv)vll < Chll(Qr — Qi_1)v]|a-

~ ~ C | «
1@k — Qu-1)vlf? < ;gll@xc'vllf;,

Hence,
. o
(R v, vg) < W_H(Qk — Qp-1)v[1%-
o
For k = 1, since R; = A7', we obtain instead

(Rl_lvhvl) = (R A)) oy, Agoy) = ””1”?4 = ||@1Uﬂi

78

Combining with (7.3), we have

J

J
> (Btuy,v) = ”Qz”“_i'i‘Z(R;lvkavk)
k=2

k=1

1Quoll + = 3 1(Qs = Gaa)oly

0 k=2

max (1,21 (z G~ Gua)ol)

¢
— 2!
max{l, wo} “'UHA

By the definition of Kj, the estimate follows. O

IA

(A

To summarize, if the stability and the approximation property (7.3) and (7.4)
are satisfied, optimal convergence follows. Thus these two properties characterize a
good coarse subspace. It is interesting to note that linear finite element subspaces
are not compulsory for the Vj, though they are typically used or assumed in the
classical analysis of multigrid methods. Moreover, the @, in the approximation
inequality (7.4) need not necessarily be the L2 projections). Linear finite element
and L? projections are simply two convenient and powerful tools for showing the
stability and the approximation property, but are not necessary the only choice.

Optimal convergence, however, need not mean rapid convergence. The reason is
that, in general, K, will depend on the PDE coefficients. The implicit dependence
of the coefficient of the underlying PDE in the convergence rate may cause the
multigrid method to converge very slowly, for example, when the coefficients are
not smooth. In the following section, we construct coarse subspaces whose basis
functions are, in general, different from piecewise linear finite elements but possess
the stability and the approximation properties. In addition, the resulting multigrid
algorithm is less sensitive to the coefficients than the standard multigrid method.
Furthermore, we show that these two concepts lead to an optimal convergence
for a one-dimensional multigrid method, and we illustrate how they motivate a
two-dimensional multigrid algorithm.

7.3 Energy-minimizing Interpolation

In this section, we introduce the energy minimization approach to construct-
ing the interpolation. The resulting formulation in the one-dimensional case is
well-known in the literature [73, 109, 145]. We explain the energy-minimizing
interpolation in one dimension first and then the higher dimensions in the next
section.

79

7.3.1 One Dimension

We consider the following model problem:

—%a(ﬂ")a—dgw(ﬂ") = f in (0,1) (7.5)

v = 0 atz=0and z=1,

where a(z) and f(z) are integrable and a(z) is uniformly positive.
Given a uniform grid with grid size b = 1/n, let 2% = jh,7 =0,...,n. Define
the fine grid linear finite element space to be:

Vi ={vh € H0,1): vhis Iigeaa: on [zh,zh 1,7 =0,...,n -1},

and denote the set of nodal basis by {¢%}7_,. The finite element approximation to
the solution of (7.5) is the function u* € V* so that,

a(uh,vh) = (b)) Voh e VA (76)
Let uh = 370, ,ujgb? and f = 37, ﬁjqﬁf. Then (7.6) is equivalent to a linear
system:
Afp = M"B,

where g = {p1,.. .,)T, b= (By,..., 8,)T, AP is the stiffness matrix and Mh* is
the mass matrix. Define A? to be the augmented stiffness matrix that includes
also the boundary points. Thus, A" is singular with the null space consisting of
constant functions, and A”* is a submatrix of it.

Let zf = zl.,i=0,...,n/2 be the set of coarse grid points. Now we define a
coarse subspace VH for multigrid by defining the coarse grid nodal basis functions
{¢H}. That is,

VH =gpan{¢¥ :i=1,...,m},

and m = n/2 — 1. Since {¢f} are nodal basis functions on the coarse grid,
¢ (ah) = 1 and ¢#(ah,_,) = ¢H(zk,,) = 0. We only need to define ¢ (b, |
and @7 (zh,) (see Figure 7.1). For example, if we let them equal 1/2, the basis
functions {¢#} are just linear finite elements, implying that the interpolation from
the coarse grid to the fine grid is piecewise linear.

Since {¢f} is a basis of V# which is a subspace of V%, there exists a unique

matrix I{I of size n X m such that

(617~ ¢E] = (8- 41T}

The matrix ZJ is usually known as the prolongation (or interpolation) matrix and
its transpose (ZF)T = I} as the restriction matrix in the multigrid context. Hence
the set of coarse grid basis functions defines an interpolation and vice versa. In

80

O]

/

unknown % 5

unknown
X
\ | , |
" k n b A
x2i~2 xzi-l x2i x2i+1 x2i+2

Figure 7.1: 1D coarse grid basis function ¢ on its support [zh_,, 2% .

the following, instead of deriving an interpolation method directly, we construct
an energy-minimizing basis.

Formulation. As noted above, the interpolation is uniquely determined if the
coarse grid basis functions {¢#} are known. We can define ¢f(z) by solving the

following local PDE problem i [z7 , ¢H] = [z4_,, zh]:

@) =0 in (o} 23, (7.7

dr 20—27""24
(@) =0, 41(ah) =1,

We observe that the PDE formulation of the basis functions has a “physical”
meaning attached to it. Specifically, it looks for basis functions which have small
energy. It is best illustrated by the following result.

Lemma 7.2 An equivalent formulation of (7.7) is

min a(‘ﬁ?a 9‘5?) mn [mgg_gamgg]a (7.8)
subject to ¢ (zl_) =10, ¢F(al)=1.

Thus, the solution of the local PDE minimizes the energy of the coarse grid
basis functions. This observation turns out to be very convenient to extend the
idea to higher dimensions.

The solution of ¢#(z} on [zh,_,,h] defines ¢ (xh,) implicitly. We can do
the same for ¢ (zf) in [2k, 2%]. The local PDE formulation calculates the
“harmonic” function ¢¥ which minimizes the energy on its support. If a(z) = 1,

¢H is a linear function and we get back linear interpolation, i.e. oH(zh) =

81

¢F(ah,) = 1/2. In fact, in this case, ¢ is harmonic in the usual sense and it has
minimum energy. In general instead of 1/2, we have

ke
a(¢2; 1?) _ A; —1,%
s h 3
G ¢2i—1) A21—1,2i—1

¢f (2l) =- (7.9)

where (A%) is the stiffness matrix. Since our interpolation depends on the ma-
trix A", sometlmes it is called a matrix-dependent interpolation in the algebraic
multigrid context. The resulting interpolation was also described in [73, 109, 145]
but from a different point of view. Qurs is novel in the sense that we interpret 1t
from the energy-minimization principle, which provides a clue to developing similar
interpolation operators in higher dimensions.

The approximation property (7.4) is closely related to preserving constant func-
tions. In fact, the coarse space VH constructed in this way automatically contains
constant functions on the fine grid.

Lemma 7.3

> 4f(e) =

Proof. Let ¥H(z) = 37 ¢H(z). By (7.7), for ¢ = 1,...,m, ¢¥ satisfies the
following:

d d

Cdz oz)da:
T)bH(2,;_2) = 11 "‘/JH(ifgz) =1.

By uniqueness, ¥ =1 on [z}, |, zk], and hence the result follows. O

"0 i [of,_p ot

Thus, the interpolation derived from the energy-minimizing coarse grid basis
functions preserves constants.

Remarks: (1) If a(z) is piecewise constant, this interpolation preserves the conti-
nuity of the flux, a(z)Vu, at the discontinuities [73]. (2) If red-black Gauss-Seidel
is used as smoother, the resulting multigrid method coincides with the cyclic re-
duction method in the numerical linear algebra context.

7.3.2 Higher Dimensions

The construction of the energy-minimizing interpolation described in this sec-
tion is valid for two and three dimensions. However, to facilitate understanding,

82

we focus on the standard structured grid on the square domain €: [0,1] x [0,1] in
two dimensions. The model problem is

=V -a(z,y)Vu(z,y) = flz,y), inf (7.10)

n R o ¥
w o= u OIL UQ,

with the same assumptions on a(z,y) and f(z,y) as before. Again, we use finite
element method to discretize (7.10).

Formulation. The extension to higher dimensions of the local PDE approach
is difficult because there is no natural analog between one dimension and higher
dimensions. For instance, in one dimension, the coarse grid points form the bound-
aries of the local subdomains so that well-posed PDEs can be easily defined. In
higher dimensions, however, the boundaries consist of both coarse and noncoarse
grid points and hence local boundary value problems apparently do not exist.
Nevertheless, several possibilities for setting up local PDEs are discussed in the
literature, for instance, the stencil or the so-called black-box multigrid approach
[1, 46, 47, 72, 73, 85, 86, 145, 151}, the Schur complement approach [58, 87, 110]
and the algebraic multigrid approach [29, 35, 134}, each of which mimics the one-
dimensional case in some way.

Our approach is based on the observation (7.8). The coarse grid basis func-
tions {¢f} should possess the least amount of energy while preserving constant
functions. The precise mathematical formulation is explained in the following.

1

0 | !
1 I l :
: | t

$ 1 b : !

& Q-
N P T
R e 7Y i -
T Ll Ll)
&

- & &---
| :
1 i

Figure 7.2: 2D coarse grid basis function ¢¥ on its support. ¢# is a linear combi-
nation of fine grid basis functions qﬁ?, J == J1ye 0y dg and ¢;.

Suppose a maximal independent set of the vertices of the finer grid is selected as
coarse grid points and denote the index set by M = {c¢,..., ¢}, m=(n/2 4+ 1)2
Write the coarse grid nodal basis function ¢ at node z,, as a linear combination

83

of the fine grid ones:
H _ i bh 1 Ak
¢ = > LT + ¢ (7.11)

je{tAl FONM

Thus, ¢# is a local combination of the fine grid basis functions whose corresponding
node is adjacent to node z, but not itself a coarse grid point. Figure 7.2 shows
the support of ¢f in two dlmensmns The indices 7 in the sum on the right-hand
side of (7.11) correspond to jiy...,Js. Since ¢H is a nodal basis function, the
coefficient of ¢ is equal to 1. We define the mterpolatmn by solving a constra.med
minimization problem for {@i}:

min - Z I¢F |15, subject to iqﬁf(m) =1in Q. (7.12)

%“1 i=1

Notice that the minimization problem is solved up to and including the boundary
of §. Usually, the grid points on the boundary with Dirichlet boundary condition
are treated separately, and no coarse grid point is placed there. However, in our
formulation, we compute all ¢ including the ones at the boundary, but only those
not on the boundary with Dirichlet condition are used in the interpolation.

In one dimension, this minimization reduces to (7.8).

Lemma 7.4 An equivalent formulation of (7.7) and (7.8) is the global minimiza-
tion:

1 m m
min - > l¢H[3 subject to > ¢H(z) =1 on [0,1].

2 =1 i=1

Thus, we see a way to naturally generalize the approach for generating a robust
interpolation from one dimension to multiple dimensions.

Remarks: (1} The values of the basis functions are defined implicitly by the
solution of (7.12) and are not known explicitly in general. However, for the Lapla-
cian, we recover exactly the bilinear interpolation on tensor-product grids, which
is known to lead to optimal multigrid convergence for Poisson equations.

Lemma 7.5 The solution of (7.12) gives the bilinear interpolation if a(z) = 1.

Proof. Let @5 = [pl;--- ;@] be the vector corresponding to the bilinear in-
terpolation. Thus, the n x 1 sparse vector @i, corresponding to the coeflicients
of qﬁh in the expansion of ¢¥, has nonzeros 1/4, 1/2, and 1 only. We verify by
dlrect substitution that ®, satisfies the Euler-Lagrange equation (7.15) with an
appropriately defined Ag.

84

Since ¢ iNS sparse, we may consider the nonzeros of ¢} only when computing
the product Abyi. Define

Q, = {3:2 : a:;: is an interior noncoarse grid point which does not connect to
any coarse grid poinis on the mesh.}
Q, = {zh:2!is an interior noncoarse grid point which connects to exactly 2

coarse grid points on the mesh.}

Q13 = {a?:z’is a noncoarse grid boundary point.}
By the definition of fif, after some calculation, we can verify that

_ D if a:;; c Ql
(Abpi)e =< 3/2 ifal e Q, (7.13)

Here .,Z{f' is the nine point stencil

-1 -1 -1
-1 8 -1
-1 -1 -1

The values at the coarse grid points are not considered because the solution @
must have a value of 1 there.
Let Ay be the vector of Lagrange multipliers defined by

(Ao =3 —3/2 ifa} €y
—3/4 if ak € Q.

First, from (7.13), we see that the values of fi?(pf) depend not on the location of
@i but on the location corresponding to the component k only. Second, B is a
column of restriction matrices that have either 1 or 0 on the diagonal. It is not
hard to see that @Q®, + BA, = 1. Hence, the result follows. 0

We also remark that if triangular grids are used, the linear interpolation is almost
recovered; numerical experiments show that the interpolation values are close to

1/2.

(2) Like algebraic multigrid, the construction of the interpolation operator is
purely algebraic. In other words, geometry and in particular the grid information
are not needed. Besides, the formulation of the interpolation is still valid if the
coarse grid points do not form an independent set. Independent sets are certainly
beneficial to efficiency but are not necessary. In some situations, we may want to
remove this requirement, for example, when semi-coarsening is used.

85

(3) Finally, we remark that we may generalize the formulation further by
putting in positive weights ; in front of {|¢#||%. Similarly, we have the follow-
ing equivalence.

Lemma 7.6 An equivalent formulation of (7.7) and (7.8) is the global weighted
menimization

min —Z 0,175 subject to Y ¢H(z) =1 on [0,1],
=1

1”“1
for any sets of positive 8;.

In our experience, special scalings, for instance, 8; = 1 /Ah ,;» may improve
the performance for problems such as discontinuous coefficient "PDEs where the
discontinuities do not align with any coarser grids. However, an optimal choice of
8, has not yet been fully analyzed, and hence we shall not discuss this generalization
further.

7.3.3 Solution of the Minimization Problem

We describe a solution procedure for the minimization problem (7.12) below.
For each 4, write ¢f = 3°%_ 1‘P3¢h and ¢ (c,oi, Let)T. By (7.11), ¢ is a
sparse vector. For exampie m two dimensions, ¢! has at most 9 nonzeros. For
structured triangular grids, ¢' has at most 7 nonzeros. Let ® = [pl;-- ;0™
be an mn x 1 vector obtained by appending all the ¢’s. Note that ||¢ff i3 =
| 2%, il = (¢ i)T Ahgi. (Recall that Ab is the augmented stiffness matrix on
the ﬁne gr1d without incorporating any Dirichlet boundary condition.) Thus, (7.12)
can be written as the following equivalent discrete linear constrained quadratic
minimization problem:

1
min —(DTQ(I’ s.t. BT = 1. (7.14)

The symbol 1 denotes a vector of all I’s. The mn x mn SPD matrix @ is block
diagonal with each block equals A"" which is defined as

(A’Zz)kl:{ A'i:! if ¢} # 0 and ¢} #0

&, otherwise.

The n x mn rectangalar matrix BT = [JT --- JT], where J; = JT is a matrix
corresponding to the restriction operator that maps v to v; such that (v), = (v;)
on supp(¢#) and (v;), = 0 otherwise. More precisely,

|1 ifk=1land ¢} #0
(T = { 0 otherwise.

86

It is clear that JT¢! = ¢ and hence BT® = 377" JT¢' = E”; cp = 1. We solve
the discrete hnearly constrained minimization problem (7.1) v the Lagrange
multiplier formulation, which is equivalent to:

o Bllel _TJo

BT o || A]T 1]
where A is an n x 1 vector of Lagrange multipliers. If A is known, ® can be
computed by solving:

(7.15)

Q% = —BA. | (7.16)

Since Q is block diagonal and inverting each block corresponds to solving a matrix
of at most 9 x 9 in size, it is trivial to compute ®. Thus the entire minimization
procedure is reduced to solving for the Lagrange multipliers A via

(BTQ-1B)A = —1. (7.17)

Note that B and Q-! are sparse matrices. We can solve the linear system by
conjugate gradient (CG).

The solution process of (7.17) could be costly. Depending on the conditional
number of Q-1, the CG iteration may converge slowly. We shall discuss how to
speed up the process. First, we need not compute (BTQ-15)~11 exactly since we
are merely computing the interpolation to be used in the multigrid method. In
fact, the numerical results in Section 7.5 indicate that A is usually accurate enough
when the relative residual of (7.17) is less then 1072

Besides, we have a readily obtainable initial guess for A. Consider equation
(7.16). Multiplying both sides by BT, we have

—(BTB)-1Q8.

Since B is the restriction operator, it is not hard to see that BTB is a diagonal
matrix. So this gives an easy way to compute an initial guess for A from ®.
Since the interpolation weights are between 0 and 1, the solution ® usually is not
very far from the linear interpolation. It may be advantageous to use the linear
interpolation as an initial guess for ®, which in turn provides an initial guess for
A.

Tt is interesting to note that A* is a free and natural preconditioner for BQ~15.
By the definition by B and Q, rewrite the product BTQ~1B as a sum of matrices:

BTQ-E = 3 T (A = 3o RIRAVRY) IR,
i=1 i=1

where R, is the submatrix of the nonzero rows of J; and it is sometimes known as
the restriction matrix in the domain decomposition context. Now it is clear that
BO-15 is an overlapping additive Schwarz preconditioner of A*. Unfortunately,

87

AP is singular in our case. A simple remedy is to use Ak 4 T instead as the
preconditioner.

Because of the potential high cost of computing ®, the energy-minimizing in-
terpolation is aimed at problems that linear interpolation does not work well.
Quite often, we may need to solve the same system many Limes, for instance, time
dependent problems, the expensive setup cost can be compensated by the rapid
convergence of each multigrid solve.

Remarks: (1) The solution of ® from (7.16) and (7.17) is equivalent to Newton’s
method for solving (7.14). (2) We may also solve (7.14) by projected steepest
descent method [95].

7.3.4 Connections to Other Approaches

As noted above, the entire procedure of constructing the interpolation is alge-
braic, and so it can be considered as a type of algebraic multigrid. In fact, it is
related to the one derived by Vanek, Mandel and Brezina [134]. In their approach,
groups of fine grid elements are agglomerated to form larger elements, or macroele-
ments. In each agglomerated region (which can be thought of a subdomain in the
domain decomposition context), a value of 1 is assigned to each node as an initial
guess of the coarse grid basis. Because of the high energy of the piecewise constant
basis functions, they are smoothed by a few steps of Jacobi iteration. Our energy-
minimizing coarse grid basis can also be thought of being formed by agglomerating
nearby fine grid elements, but the agglomeration only occurs at elements whose
node is a coarse grid node. Also there are overlaps among agglomerated regions
while there is none in the approach of Vanek et al. Moreover, the support of
their basis functions will increase when the Jacobi “smoothing” steps are applied
to the basis functions. In our approach, the supports are fixed and the energy is
minimized by solving the minimization problem (7.12).

Because of the agglomeration view of the construction, our approach is also re-
lated to the one derived by Chan et al. [29, 35]. They explicitly form the macroele-
ments by agglomeration using standard graph theoretical techniques. Then they
have several way of defining the coarse grid basis functions. One way is the fol-
lowing. The noncoarse grid points on the edge of a macroelement are assigned a
value using the graph distance, and those noncoarse grid points in the interior are
obtained by solving a local homogeneous PDE. Our approach does not prescribe
a value on the edges of the macroelements first and then solve for the interior
points. Rather, we take all the unknowns together and solve for all the values
simultaneously by solving the minimization problem.

88

7.4 Convergence Analysis

Much of the classical multigrid convergence analysis cannot be applied directly
to the proposed multigrid algorithm because the coarse spaces defined by the basis
functions arc not standard finite element spaces which is usually assumed in the
literature. The one-dimensional analysis is complete and will be presented first. It
is then followed by a two level analysis of the two dimensions.

7.4.1 One Dimension

First, we show the stability property (7.3). The proof is based on the observa-
tion that the coarse grid basis functions contain a hierarchy of A-orthogonal basis
functions; in other words, they are orthogonal in the A-inner product. Recall that
the ciarse grid points are chosen to be the even fine grid points (cf. Section 7.3.1),

1

— mk
l.e. T, 372%

Lemma 7.7 Foranyl<k,i=1,...,n,7=1,...,n/2, we have
a(¢l, ’;j_l) = 0. {7.18)

Proof. Let k be fixed. We first prove the case [= k — 1 using a technique
suggested by Xu [147]. In this case, (7.18) is just the direct consequence of the fact
that the equivalent variational formulation of (7.7) implies that a(¢f™, ¢k,) =0,

and the support of ¢¥~* is only on [ak o 2h L]
Now suppose it is true for / = k. By definition,

_ 2e+1 i
qﬁ?_lm Z aqu‘?:

j=2i—-1

where ap; = 1, oy 4 = qbk 1(:621 L) and @iy = qb?”l(mgi_‘_l) are given by (7.9).
Thus

(gbk 13 ¢2J_1) aZz—la(2{—1? ¢23 1) + OJ(247 23_1) + a21+1a(¢2%+11 ¢23_1) 03
gince all the terms vanish by assumption and the result follows from induction. 0O

Lemma 7.7 implies that the interpolation algorithm generates implicitly a set of
A-orthogonal hierarchical basis functions. The orthogonality property immediately
implies the stability of the nested subspaces.

89

Theorem 7.2 For any v € V, there ts a nontrivial decomposition v = Zizl Vg

with v, € V}, such that
J

Z(Ukvvk)/i = ('U, U)A' (71‘9)
k=1
Proof. For any v € V, Lemma 7.7 implies that there exists an orthogonal
hierarchical decomposition of v constructed as follows. We first define v; to be the
nodal value interpolant of v at the coarsest level V;. Then we subtract v; from v to
obtain w,. Because of the nodal interpolation, the values of wy at a},2 =1,...,ny,
are zero. We proceed similarly by defining v, to be the nodal value interpolant of
w, and so on. Formally, we have the following:

1

vy = »_v(zl)é? and v = 3 wi(zk)gk, k=2,...,d, (7.20)

=1 =1
where w, = v — Ef;; v;. Our decomposition implies that v(2*) = wk(x?) =
0,5 even. Therefore, by Lemma 7.7, the v}’s are A-orthogonal since if [< k,

gk

a(v,v) = a(i wz(il?i)ﬁbi: Z wk@f)ﬁﬂ“)

i=1 F=1
ny npf2
= Z wa(mﬂ)wk(mgj_l)a(i‘: lgcj_I)
i=1 j=1
= 0.

The equality (7.19) follows immediately from the orthogonality of v’s. O

Corollary 7.1 Let W, =V, and W, = V, & Vi_1,k = 2,...,J, in the A-inner

product. Then V can be expressed as a direct sum of Wp’s:
V=W oW,s ---& W,
Corollary 7.1 induces a projection operator Q. : V =V, defined by
Qv =0y + vy + -+ -+ v, (7.21)

where v = vy +- - -+vy, v, € Wy, is the unique representation of v defined in (7.20).
This operator §; will be used to prove the approximation property (7.4). Here we
do not use the L? projection , because Q) is a more natural and convenient
choice in the one-dimensional case. In view of Theorem 7.2 and Corollary 7.1, the
stability property (7.3) is satisfied.

In the literature, the approximation property (7.4) is typically proved by mak-
ing use of the fact that the interpolation preserves constant functions. In the two

90

level case, we have shown in Lemma 7.3 that constant functions are indeed pre-
served by the coarse grid basis functions. Using the same proof technique, we can
easily show that it is also true for the multilevel case.

Lemma 7.8 Forany k=1,...,J,
ng
S5 gHw) = 1.
i=1

With this result, we can now prove the approximation property.

Theorem 7.3 ForanyveV and any bk =2,...,J,
“(Qk - @k—tl)”” < Chk”@k’“”A- (7.22)

Proof. We compute the quantities on both sides explicitly to see how preserving
constant functions comes into play. Since @, is a projection, we can always change
v to Qv in the left-hand side of (7.22). Without loss of generality, we assume
v € Vi, Le. v =10 v;¢F. Thus, we need only prove

lo = @u-avll < Chillvlla
By the definition of Qy_; in (7.21),

Np—1

Qr_1v = Z V2z'¢f_1-

=1

Let w=v—Q,_v= Yok w;¢%. Then we can verify that

wy; = 0, i=1,...,n;/2,
Wy = Vaioy — (Qai g + Brg),
where a = ?:ll(a:’;i_i) and B = ¢§7'(z*,_). Because the coarse grid basis func-

tions preserve constant, we have « -+ 8 = 1 and hence

wyi1 = {a+ By — (avgy_o + Bry),
= a(”m'_l - V2i—2) - ﬁ(Vzi - Vzi—l)'

Now we estimate the L? norm of w on [zk,__, ok]:

k

o 9 Ty E 9
[wrds = [(il e

Tai—2 2i—2

2 %5 ko2
= Wi /a.-k (45,)dz

22

= w?_ M*

2i— 21—1,2¢~1"?

91

where M¥, 1201 18 the (2i — 1,2i — 1) entry of My which is the mass matrix with

respect to {qﬁk ™ . Using the formula for wy;_; and the elementary inequality:
(aA — BB)?2 < aA? + B2 for o+ = 1, we have that

l“"”zca‘) ros N / N1 £ oaah
L wide = M5, . fo(veiy — vaioe) — Blva — vaid) {7.23)
2i—2
< M§£_1,25~1[G(V2»;—1 ~ Ugi_g)? + ﬁ(VZi - Vzi—1)2]-
On the other hand, the A-norm of v is given by,
k
/ a(z){v')*da
:L‘2!_2
k 1
2i— !
= fk a(x)(y2i—2¢21 + Vo — 1@32@ 1)Zdw + (w)(VZt lqﬁzt + V2i¢§,')2d$
T2 zhi_4
21—1
= (V2c— - V21—2) / a(:r: 21_ d:ﬂ
2:—2

sz Vi 1)/ ﬁﬁkiﬂ_lﬁﬁ

i1

since ¢f,_,(z)+¢%_ (z) =1 on [zk_,, 2%], which implies ok _'(z) + ok, 1'(3;)
0. Snmla,r argument also holds for the second integral. Together with the formula
of @ and 3 in (7.9), we have

“’5;
fmk a(z)(v')?dz = [e(vyiy — Vyi_o)? 4+ B(ve; — Vyi1)?] AR 2ie1,2i—1"

2i-2

where A%, 2i1 18 the (2i — 1,2 — 1) entry of Ay which is the stiffness matrix at
level k with respect to the basis {#¥}i*,. Combining with (7.23), we have
zk, ME. k.
29 2i—1,2¢—1 2 2
Lk. widz < ——Ak fmk, a(z)(v')dz (7.24)
2§—2 2—1,2i— 2i—2
(7.25)
It is easy to show that
MG, 1,2i- / (¢5,_,)2dz < O(hy),
Tai—2

and
k

Agi—-l ,2i—1 = /kzi a(w)(qﬁ.__l’)gdm 2 O(h;l)

32
Thus, (7.24) becomes

& ok

Fa5 2i
/k wide < thja; a(z)(v')de,

Timt 22

92

where C is independent of hj;. Summing over 7, we obtain the approximation
property. O

Corollary 7.2 Foranyv eV and any k =2,...,J,

1(@x —~ Qe)oll < Chili(Qr — Qrt)lla-
Proof. Let & = (Q4 — Qy_)v and apply Theorem 7.3. O

Hence, by Lemma 7.1, Kj is bounded by a constant independent of the mesh
size h, although the constant may depend on the coefficient a{z). The coefli-
cient dependence comes from the bound given by the approximation property (cf.
Theorem 7.3). Tt turns out that we can eliminate the coefficient dependence by es-
timating K, directly from its definition (7.1) if the damped Jacobi or Gauss-Seidel
smoothings are used.

Theorem 7.4 Let RPY and RSS be the approzimate inverses of A given by the
damped Jacobi method and the Gauss-Seidel method, respectively:

DIy p) = b
o) = on)

(R§Sv,) = (H)T(DF - LE)71A,

(vF)T(Dy) 1ok,

where A% = Dk — L* — (L¥)T, DF = diagonal of A% and v, = 377, I/ch;‘af Then
Ky <3,

for the damped Jacobi smoothing, and
Ky =1,

for the Gauss-Seidel smoothing.

Proof. This proof is a modification of the proof of Lemma 7.1. For any v € V,
let v = Z;::l vy, be a decomposition of v given by (7.3), i.e. v, = (Qr — Q-
We first estimate K for the damped Jacobi smoothing and then for Gauss-Seidel
smoothing. In view of the definition of Ky, for each k > 1, we consider

((RDY) " vg, v3) = p((DF) T AF) (vF)T DA

From the calculations in the proof of Theorem 7.3, we showed that Vj? = (), 7 even.
Thus
(YDA = (YA = [

93

The estimate of p((DF)-tA¥) = p((DF)~1/2A(DF)~1/2) is purely algebraic. Note
that the product (D*)1/2A%(D¥)1/2 is simply the matrix obtained by the diagonal
scaling of A*. Hence, it is still tridiagonal and its diagonal elements are all 1s.
The element of the (i,i+ 1)th entry is given by A¥, ./ AF AF iy, Since A* is
SPD, it is easy to show that the (i,i + 1)th entry is bounded by 1 in size. By the
Gershgorin Circle Theorem, p((D¥)~1A¥) < 3. Hence

J J
D AREP Y o, v) = el + > ((BP) oy, v)
k=1 k=2
J
< llld 4+ 32 llollh
k=2
< 3wl

By the definition of Ky, the estimate follows.
Similarly for the Gauss-Seidel smoothing, we consider

(R§S)top,wy) = (WF)T(DF - LFy*
— %(Vk)T'Dkyk + %(yk)TAkyk
= (vF)T Akyk
sl
Thus Ky =1 since

J J
S ((BES) v, vp) = 3 llvelly = lloli%-
k=1

k==l

For the estimate for K, instead of V;,, we consider W}, defined in Corollary 7.1.
It is not hard to see that all the previous results still hold. In addition, we have
P.P; =0, for any ¢ # j.

Theorem 7.5 Let w, be the smallest constant such that

(Agvg, v) < wi (B g, vp) Yoy, € V.

Then
1{1 S Wi .

If R, = RDY, then w, = 1. If B, = RS, then w; <2.

94

Proof. The bound for K is a direct consequence of Lemma 4.6 in [149] and
the fact that PP, = 0 for i # j. If By = RP7, then

1
— e PP AR = L
A S ;

Pt

If R, = R¢S, then

(Akvk,?)k) N (Vk)TAkI/k

= < 2.
(RS) vy, o) L(vF)TDFWF + L(vk)T AFLF

Hence wy < 2. B

7.4.2 Two Dimensions

Since our interpolation is implicitly defined by the minimization problem, the
analysis is difficult and has not yet been fully investigated. Nevertheless, a two
level convergence analysis is presented. In this special case, only the constant
preserving property is used. The role of the minimization is explained afterwards.

In contrast to the one-dimensional analysis, a more classical approach is adopted
for the following analysis, where techniques in Sobolev space and finite element
methods are heavily used. The proof is based on the analyses given by Xu [147]
and Chan, Xu and Zikatanov [35]. In [35], fine grid elements are agglomerated
to form macroelements which are defined explicitly in their algorithm. It turns
out the set of coarse grid basis functions {¢#} constructed in Section 7.3.2 also
implicitly defines a set of macroelements.

Lemma 7.9 The set of coarse grid basis functions {¢X} defines a set of macroele-
ments covering 3. If Q is a regular triangular mesh obtained by successive refine-
ments, the macroelements are precisely the standard coarse iriangular elements.

Proof. For any ¢, let S; be its support. Let G, = {S;}r,. Take finite
intersections of elements in G to form another set of subsets:

G, = {(uG; : G; € G}

Cleatly, G, O G,. Now remove the large redundant subsets from G, and keep only
the elementary ones:

QS = gz\{G e gz : G = UiGivGi 7é G, G'i € gg}

In general, elements in G may overlap. We agglomerate the overlapped macroele-
ments to form a bigger macroelements. Then, the resulting set, G, consists of
nonoverlapping macroelements covering (2.

95

Suppose { is a triangular mesh obtained by successive refinements. For any
standard big triangular element, we have three coarse grid basis functions at the
vertices associated with it. The intersection of their supports is exactly the big
triangular element. Thus it is in G,. It is in fact in G5 since no other coarse grid
basis function whose support intersects with this elemeut. Hence § = G5 consists
of all such triangular elements and only them. 0O

Remark: In Lemma 7.9, we construct G from G5 by agglomerating overlapping
macroelements. In the worst case, we may obtain a singleton-the domain 2.
However, in practice, the number of overlap is very small. Hence, we assume
that the number of overlap is bounded by a constant independent of the mesh
refinement.

Once the macroelements are defined, the convergence can be analyzed in a
classical way. Let V# and V¥ be the coarse and fine space as before. We assume
that for any GH € G obtained from Lemina 7.9, there exists an auxiliary big
triangle K¥ of diameter H containing GH and its neighboring elements in the fine
grid. Also, we assume that H/h is bounded by a constant. We verify the stability
and the approximation properties (7.3), (7.4) which are equivalent to (7.26), (7.27)
in the two level setting.

Theorem 7.6 There ezists an interpolant I¥ such that for any v € Vh C HL(Q),

[Ifolig < Colvlia (7.26)
o —Ifolloq < Cihlvle, (7.27)

where ||{loq, [|]l1.0 and |-|1,o are the usual L2, H! and H'-semi norms, respectively.

Proof. The following proof is based on [35]. Define an averaged nodal value
interpolation similar to that in {117] as follows. For any coarse grid point :r:;q , let
e; be an edge on the fine grid which contains mf . Let 1, be the linear function on
e; such that

(v, %;)o,e; = v(:cf) Vv € Py(e;),

where Pj(e;) is the set of piecewise linear functions on e; and (-,)o., is the L?
inner product on e;. Define I7 : VA — VH by:

(I#0)(z) = é<v,¢j)o,ej #(2).

We now prove (7.27). Let G¥ € G be a macroelement obtained from Lemma
7.9. By assumption, there exists an auxiliary triangle K¥ containing GH and its

neighboring elements. Let Fxa : K — K¥ be an affine mapping that maps the

96

standard reference element K to KH. Define G = FI;}; (GH) c K. Similarly, we
have

o(#) = v(Fyar(£)) Vie Kk
and Ay = [Hy,

(Note: v is extended by zero if K¥ is outside {2). By the trace theorem, it can be

proved that N
16— IHdllp e < Clid

Since the macroelements are nonoverlapping and the coarse grid basis functions
{¢H} preserve constants, constant functions are invariant under I¥ and so are

1,k

under I7, Hence

It

o= Téllyg = igfllo +e= TG+ Dlog
Cinf |19+ 2l &

01611,}%'

A

IA

Transforming back to K, we have
llv = IHv|lo,gu < CHIvly g

Summing over the macroelements, we obtain

o= THol2o = > v — Tl a
GHeg
< CH*). Wff g
KH:)GH ’
< CHwl} g

By the extension theorem in finite element theory, we may assume that v € Hj (R2)
satisfies:
vl ,ge < Clvlyg

Hence, inequality (7.27) follows.
Inequality (7.26) can be proved similarly using the H* norm instead and hence
is omitted. [

By the convergence theory of Bramble, Pasciak, Wang and Xu [14] and Theorem
7.6, we conclude that the two level convergence is independent of the mesh size h.

Remark: The convergence analysis for two dimensions is only proved for the two
level case. However, the numerical results in Section 7.5 show that the optimal
convergence is in fact true for multilevel. Furthermore, optimal convergence 1s also
demonstrated for unstructured grids in Chapter 5.

97

In the two level setting, it turns out that the stability and the approximation
properties are implied by the constant preserving property only. In our experience,
however, constant preserving is not sufficient to guarantee optimal convergence in
the multilevel case. We need also control the energy of the basis functions.

The role of the minimization can be shown by estimating [[I7v||,. Here I’
is the nodal value interpolant. For easy illustration, we assume that (7.10) has
a positive lower order term b(z,y)u. By the triangle and the Cauchy-Schwarz -
inequalities, we have

Holla = iIE e la
< Zi|¢f||A1v(mf’>|
Z ”¢H|IA)1/2 Z |U($H)|2)1/2

E(Z 211l

¢ Hij2 \1/2
< m(? o211%) || 4-

TH

[A

A

Although the bound may not be sharp, the minimization problem essentially min-
imizes the constant C, in the stability inequality (7.26).

7.5 Numerical Results

In this section, we present results of numerical experiments mainly in two di-
mensions to verify that the multigrid algorithm resulting from the energy-mini-
mizing interpolation has optimal convergence behavior and is robust with respect
to the coeflicients of the PDEs. In all the numerical examples, the computational
domain is Q = [0,1] x [0,1] with homogeneous Dirichlet boundary condition. In
the multigrid procedure, a V-cycle is used with two pre- and two post- pointwise
Gauss-Seidel smoothings. The iteration was terminated when the relative residual
norm was less than 10-8. The number of multigrid levels is such that the coarsest
grid is a single point, or as otherwise stated.

In Section 7.3.2, we mentioned that it is not necessary to compute the Lagrange
multipliers to machine precision. In all cases discussed below, we used piecewise
linear or bilinear interpolation as our initial guess for the minimization problem. In
the numerical results, we show how the accuracy of the Lagrange multipliers affect
the efficiency and convergence of the resulting multigrid method. Moreover, as
discussed in 7.3.3, the augmented stiffness matrix A*, or more precisely, Ak 49T,
is a free preconditioner for solving the Lagrange multiplier equation (7. 17). In the
numerical examples, this preconditioner is used with n chosen as 10-5.

98

Example 1: In the appendix, we proved that the energy-minimizing interpola-
tion recovers the bilinear interpolation if ¢(z) = 1 in the case when the structured
square grid is used. But linear interpolation is not exactly obtained in the trian-
gular grid case. In this example, we solve the following Poisson equation:

—Au=1,

on the triangular grid. The result is shown in Table 7.1. We vary the grid size
from h = 1/16 to h = 1/64 and the number of multigrid levels from 3 to 6. We
see that both the linear and the energy-minimizing interpolations give convergence
rate independent of the mesh size and the number of multigrid level.

Linear Energy-min

h 3(4|5[6(3|4]5]|6
160717 - -7 7]-1-
/3216 |717|-16(7|7]-
1/64 |6 |77 |7)6|717|7

Table 7.1: Number of V-cycles using linear and energy-minimizing interpolations
when a(z) = 1.

Example 2: In this example, we verify numerically that the convergence does
not depend on the number of levels. Here we consider the following PDE with a
smooth coefficient:

-V-(1+zexp(y))Vu =1,

Table 7.2 shows the number of MG iteration to convergence. We denote the
multigrid method with bilinear interpolation by MGBL and our energy-minimizing
multigrid method by EMMG(e) where € specifies the stopping criterion for the con-
jugate gradient (CG) method applied to the Lagrange multiplier equation (7.17).
More precisely, the CG iteration stopped when the relative residual norm is less
than e. We see that when the optimization problem is effectively solved (e = 10-12),
the convergence is independent of the mesh size h and the number of levels. In
fact, we observe that same convergence can be achieved even if the optimization
problem is solved approximately (¢ = 10-1). Thus we may reduce the cost by
applying significantly fewer number of CG iterations as shown in Table 7.3 which
gives the number of CG iterations at each multigrid level to solve (7.17).

We remark that this example is used to illustrate the optimal convergence of
EMMG(¢) and the effect of varying ¢ only. It is not cost effective to use energy-
minimizing interpolation when bilinear interpolation works well.

Example 3: We compare the multigrid method using bilinear interpolation with
that using energy-minimizing interpolation by solving the following discontinuous
coefficient problem [1, modified Example IJ:

-V -a(z,y)Vu =1,

99

MGBL || EMMG(10~") || EMMG(10~")
o | 4[5(6]7|4]5]6] 7 ||[4][5]6] 7
i/16 [5]--1-|5|-]- Bi-1-| -
1/32 |55 5|5 55~ -
1/64 ||5]5|5]-115|5|5] - |6]5[5] -
1/128|515|5|5]5:5|5] 5 |5]|5|5] 5

Table 7.2: Number of V-cycles using bilinear and energy-minimizing interpolations
when a(z) = 1 4+ zexp(y).

h | level | EMMG(1071) | EMMG(10~'%)
1/16 1 53
22
98
33
22
180
53
22
309
98
33
22

1732

1764

17128

B B A ~IERD s CH D O O b A
e N I R N Y

Table 7.3: Number of CG iterations at each multigrid level with varying e when
a(z) =1+ zexp(y).

100

where

a(z,y) = { at 025<z <075 & 0.26<y<0.7h

’ a~ otherwise.

We fix a— = 1 and vary e+ from 10 to 10%. The convergence results are given in
Table 7.4. Same notations are used as in Example 1. Here x denotes convergence
beyond 100 multigrid iterations. Consisted with the classical theory, the conver-
gence rate of the standard multigrid does not depend on the mesh size h. However,
the convergence rate deteriorates substantially as the jump of the discontinuity in-
creases. On the other hand, the convergence of the energy-minimizing multigrid
method does not depend both on the mesh size and the size of the jump. Again,
EMMG(10-1) shows similar convergence as EMMG(10-12).

Table 7.5 shows the average number of CG iterations on the fine grid, in place
of the number of CG iterations on each grid level shown in Table 7.3 does. It
is computed as follows. One CG iteration on the first coarse grid is counted as
1/2 CG iteration on the fine grid and so on. By applying only three extra CG
iterations to construct the energy-minimizing interpolation, the convergence of the
multigrid is improved significantly. This demonstrates that extra cost of solving the
minimization problem is justified by the much faster convergence of the multigrid
method.

MGBL EMMG(10-Y) EMMG(10-12)

h 10102 (0% [10f[f10]10%[10° 107 [10] 107 | 10° | 10*
1716 [[14] * | * | = | 6| 5 | 6 | 6 |65 |55
1/32 || 14] = * * 6| 6| 6 | 6 6| 6 6 | 6
1/64 || 14 | = # * 6 6 7 7 6 6 6 6
1/128 | 14 | * * * 7 7 7 7 7 6 6 6

Table 7.4: Number of V-cycles using bilinear and energy-minimizing interpolations
for the discontinuous coefficient problem. The jump at = 10,102,103, 10%.

EMMG(10™!) || EMMG(10~"?)
h 10 10* 10 10*
1/16 {1 3.00 | 3.00 | 3.00; 5.50
1/32 || 2.50] 2.50 [2.50 | 3.63
1/64 |[2.25| 2.25 {225 | 2.88
17128 || 2.13 | 213 | 213 | 2.44

Table 7.5: Average number of CG iterations on the fine grid for the discontinuous
coeflicient problem. The jump ot = 10,104..

Example 4: We solve another PDE to demonstrate the robustness of the energy-
minimizing multigrid method. This time, the coefficient is oscillatory and the

101

equation is [78, Example 7.4]:

1
v (2 + Psin(z/e))(24+ P sin(y/e))vu
We chose P = 1.99 and e=0.1 and 0.01. The results are shown in Table 7.6 and
7.7. This time, the coefficient is very rough and the minimization problem is more
difficult to solve. In this case, EMMG(10-1) is not accurate enough to have good
convergence. However, with an slightly increase in the accuracy, EMMG(10-2)
recovers the same rapid convergence of EMMG(10-12).
We remark that the nonuniform number of V-cycles to convergence for the
case ¢ = 0.01 may be because the mesh size & is not small enough to resolve the
coefficient a{x,y) for the first couple of values of .

=1

MGBL || EMMG(10-) || EMMG(1072) || EMMG(10~%)
L If01]006Lf01] 001 jo01] 001 Jjoi] 0.01
716 | « | 4 || 7 5 7 5 7 5
/32 [61| * | 23| 14 7 14 7 14
1/64 |65 | 58 11 7 7 7 7
1/128 || 66 | * 11 7 10 7 10

Table 7.6: Number of V-cycles using bilinear and energy-minimizing interpolations
for the oscillatory coeflicient problem. € = 0.1, 0.01.

EMMG(1071) [EMMG(10~?) || EMMG(10~"%)
h 0.1 | 0.01 0.1 0.01 0.1 0.01
1/16 | 38751 1.75 | 42.25 | 1.75 || 90.75 | 56.75
1/32] 13.63 | 63.88 || 62.38 | 71.00 i 124.13 | 184.13
1/64 || 3.81 | 82.94 | 115.94 [127.94 || 228.06 | 308.69
1/128 || 2.22 | 211.22 || 177.94 | 316.22 || 388.78 | 664.22

Table 7.7: Average number of CG iterations on the fine grid for the oscillatory
coefficient problem. € = 0.1, 0.01.

Example 5: We show by a one-dimensional Helmholtz equation that the energy

minimization principle is not restricted to positive definite second order elliptic
PDEs. The model equation is

Au 4 ou =1, (7.28)

where « is a positive constant. This operator is indefinite.

We use multigrid to solve the linear system AP. For this problem, we obtained
¢H from solving the local PDEs (7.7), not from the minimization problem (7.12),
since constant functions are not in the kernel of A*. The convergence results of

102

h Linear | Energy
1/32 * 5
1/64 * 5
1/128 * 5

Table 7.8: Number of V-cycles using linear and energy-minimizing interpolations
for the Helmholtz problem.

multigrid methods using linear and energy-minimizing interpolations are shown
in Table 7.8. The * in the first column indicates that standard multigrid takes
more than 100 V-cycles to convergence. The poor convergence comes from the
effect of smoothing and the way the interpolation is done. The eigenfunctions of
the operator A* corresponding to small energy are oscillatory whereas those corre-
sponding to large energy are relatively smooth. As a result of standard relaxation
smoothings (cf. Chapter 4), the errors become more oscillatory. Figure 7.3 shows
the effect of 4 and 8 iterations of Gauss-Seidel smoothing applied to a smooth
initial error. Such phenomenon was also discussed in [25]. Hence if we use linear
interpolation, it will not be able to approximate the oscillatory error on the coarser
subspaces. This causes the failure of the standard multigrid method.

On the other hand, the multigrid method using energy-minimizing interpola-
tion works fine and does not show any deterioration. It is because the energy
minimization captures the property of this type of operators and produces oscilla-
tory coarse grid basis functions (see Figure 7.4). This consistency enables a good
approximation on the coarser subspaces, and hence the multigrid convergence is
much better.

Remark: The coarse grid basis functions obtained by solving the local PDEs do
not preserve constants, an approach that is natural because the operator A does not
annihilate constant functions. If we were to extend our minimization formulation
to this case in higher dimensions, we would have to modify the constraint in (7.12).

7.6 Concluding Remarks

Through the analytical and numerical results, we have demonstrated that
energy-minimizing and constant preserving are two key properties of the coarse
grid interpolation required to have a robust multigrid method. An obvious draw-
back to the construction of the robust interpolation is the expensive solve of the
minimization problem. An inexact preconditioned conjugate gradient method with
the linear interpolation as initial guess is proposed to overcome this problem and
the numerical results showed that the setup cost is not too expensive, especially
when the system is to be solved many times. Nevertheless, more efficient methods
to solve the minimization problem need to be derived and studied.

103

PECH

1

0.9

0.8

07

o6

0.5

0.4

23r

0.2

a1

1)

5 10 i5 20 25 30 5 @0 15 20 28 a0 s 10 i85 20 25 30

Figure 7.3: Left to right: errors after 0, 4 and 8 Gauss-Seidel iterations when A”
is the Helmholtz operator.

0.5

5 10 15 20 25 n

Figure 7.4: A coarse grid basis function obtained by the energy minimization when
A" is the Helmholtz operator.

104

Finally, because of the algebraic nature of the construction of the interpola-
tion, we remark that our method is also applicable to complicated geometries, for
instance, unstructured grids; see Chapter 5.

105

CHAPTER 8

Application: Multigrid Methods for Differential-Convolution
Equations

8.1 Introduction

In PDE-based image processing, we often need to solve differential-convolution
equations of the form:

oR(u)(z) + [bz — y)uly)dy = f(z) in O, (8.1)

where u(z) is the recovered image, k(z) is the kernel convolution function, RB(u) is
a regularization functional and « is a positive parameter. Typical forms of R(u)
are:

u Tikhonov
R(u) =< —Au Isotropic Diffusion (ID)
—V - (Vu/|Vu|) Total Variation (TV).

The kernel function k(z) represents the blurring effect to the image u(x), which
makes the problem ill-posed. The functional E(u), on the other hand, regularizes
the ill-posedness of the problem, and the function f(x) represents the given blurred
and noisy image.

The discretization of (8.1} gives rise to a linear system of the form:

(cA+ K)u = f, (8.2)

with the following properties. The matrix A, corresponding to the regularization
part, is typically sparse, symmetric and positive-definite (positive semi-definite for
the TD and TV case because the boundary condition is Neumann). The matrix K,
corresponding to the convolution part, is typically ill-conditioned, symmetric and
dense but with a Toeplitz structure. In this chapter, we are interested in using
iterative methods to solve a large system of the form (8.2).

For the matrix K, various preconditioners have been proposed, for example,
circulant preconditioners [24, 26, 126], sine transform preconditioners [23], cosine
transform preconditioners [21], etc. For these types of preconditioners, the eigen-
values of the preconditioned system typically cluster around one which is a very
desirable condition for the conjugate gradient method. Recently, a MG precondi-
tioner [22] has also been proposed and optimal convergence is proved for a class of
Toeplitz systems.

106

The construction of preconditioners for the sum of operators L = aAd + K,
however, is difficult. Suppose M, and My are two efficient preconditioners for A
and K respectively. Then M; = aM4 + My would be a good approximation to
L. Unfortunately, M; is not easily invertible in general even if M, and My are.

A siinple strategy is to use either M, or My alone to precondition L. Oman
1102] and Vogel [138] constructed a MG preconditioner for L = aA + ~I which in
turn is used to precondition L, hoping that the matrix K is well approximated by
~I. A potential drawback is that vI may be a poor approximation to K.

In such situations, the operator splitting method of Vogel and Oman [139] may
be more effective. This preconditioner approximates the inverse of L by a product
of factors each involving only either A or K:

M = (K + D)2 (aA + 1)K + D)7,

where + is an appropriately chosen constant. This preconditioner is very effective
for both very large and very small values of & but the performance can deteriorate
for intermediate values of .

To alleviate this problem, R. Chan, T. Chan and Wong [21] proposed a class
of optimal fast transform based preconditioners to precondition L. The main idea
is to select as preconditioner the best approximation to L from a fast transform
invertible class of matrices by solving the following optimization problem:

min [|M — L|s,

where (' is the class of matrices diagonalizable by the cosine transform. Such
optimal fast transform based preconditioners have proven to be very effective for
convolution type problems [24] and they have also been extended to elliptic prob-
lems [20]. It turns out that the optimal M for L can be computed very efficiently
by exploiting the Toeplitz structure of K and the banded structure of A. Since
L is not ”split” in arriving at a preconditioner, the performance is not sensitive
to the value of a. However, even though the performance is very satisfactory for
Tikhonov and ID regularization, the convergence behavior for the TV regulariza-
tion case may still depend on the mesh size. This is caused by the highly varying
coeflicient in the TV operator.

In view of the effectiveness of MG for A and the fast transform preconditioners
for K, our idea is to combine the benefits of both. Specifically, we use the fast
transform based preconditioned conjugate gradient as a smoother for MG. Our
analysis and numerical results show that this is an effective smoother, whereas
the standard relaxation type preconditioners are totally ineffective for convolution
type problems. In the following, we focus on two one dimensional cases: (1) A =1
(identity) (2) A = —A (Laplacian operator). In section 8.2 and 8.3, we discuss
the difficulties of using MG for L = ol + K and L = —aA + K and how we
tackle it through the use of fast transform based smoothers. In section 8.4, we

107

discuss the total variation case which is much more difficult. Although we have
some encouraging results, we still have not arrived at an effective method. In
8.5, we estimate the complexity of some of the methods discussed. Finally, some
conclusions are made in section 8.6.

8.2 The Case A=17

In this section, we consider operators of the form L = af + K, where K arises
from the discretization of an integral operator of the first kind. It is well-known
that K is very ill-conditioned and MG with traditional smoothers does not work
well for K. The regularization term «f improves the conditioning by shifting the
spectrum a distance o away from zero. However, this is not enough to make MG
work well. The reason is related to the set of eigenvectors of K which is the same
as L and is explained as follows.

07 03

02|

0.5

04 0.1 ol

0.3 o 0,08/

0.2 0.04]
-0

a1

[-0.2]
002,
~0.1
-03) o
-2
0.4 0,028
-0 X .
20 40 [89 160 120 20 40 & ¢ w00 126 20 10 60 80 100 120

Figure 8.1: Rigenvectors corresponding to (a) the smallest (b) the middle (c) the
largest eigenvalue of I = 10—4I + K. The oscillatory eigenvectors corresponding
to the small eigenvalues.

Qur observation is that common relaxation methods, for instance, Richardson,
Jacobi or Gauss-Seidel, fail to smooth the error in the geometric sense. The reason
is that, unlike in the elliptic case, eigenvectors corresponding to small eigenvalues
are highly oscillatory while those corresponding to large eigenvalues are smooth.
It is known that relaxation methods reduce the error components corresponding
to large eigenvalues only and therefore they in fact remove the smooth error com-
ponents; see Chapter 4 Section 4.2.

We illustrate the smoothing phenomenon of the Richardson iteration applied
to L = al + K by a simple example. A typical choice for the parameters in
image processing is: a = 10-4, k(z) = & exp(—22/0.01),C = Jy exp(—22/0.01)dz,
(Gaussian blurring operator). Let 0 < A; < .-+ < A, be the eigenvalues of L
and vy,...,v, be the corresponding eigenvectors. Figure 8.1 shows the plots of
V1, Un/z and v,. Relaxation methods, for example, Richardson, essentially reduces

108

0.5 0.5
o.2r 0.2]
015} i a1
o1 0.1
0.05 .05
o [
~0.05 ~0.05|
=01} =01
.15 -0.18
-2 20 a0 &0 [00 120 -2 20 s 50 80 100 20
0.3 v - 0.
o.25} 0.25
0.2¢ 0.2]
015 2.15]
04 o1
0.05 0.05
o 0
-0.05 ~0.05¢
-0.1 -0.%
-nA5} ~0.15
o2 20 P [50 o o 02 26 a0 [B0 w0 im

Figure 8.2: Error vectors after 0 iteration (top left), 1 iteration (top right), 5
iterations (bottom left), and 10 iterations (bottom right) of Richardson smoothing
applied to L = 10-*] + K. Note that there is no smoothing effect.

109

012, T 0.3

o1

20 40 60 B0 100 120 20 40 [+ a0 100 120
40 BO

20 4 60 oy 100 120 20 G0 100 120

Figure 8.3: Error vectors after 0 iteration (top left), 1 iteration (top right), 5
iterations (bottom left), and 10 iterations (bottom right} of Richardson smoothing
applied to L = 10-4] + K. The smooth component is removed completely after
only 1 iteration whereas the oscillatory components persist. All the plots are scaled
so that the [,-norm of the vector is equal to 1.

110

the error components corresponding to large eigenvalues, not necessary the high
frequencies. Because of the special spectrum of L, these methods do not reduce
the high frequency errors. Figure 8.2 shows the plots of the initial (oscillatory)
error and errors after 1, 5, 10 number of Richardson iterations. No smoothing
effect can be seen. In facl, as shown in Figure 8.3, if the initial error consists
of low frequency and a small perturbation of high frequency vectors, after one
Richardson iteration, the low frequency components will be removed and the error
is left with high frequency only.

0.16]

014 - 02
0.2 o8 uz
04 9
a1
=01

0.08

.08} -0z o
0.04 03 0.1

002 04
-0z

o 05
03

.02 -0.5

20 W0 e 80 100 0 60 w80 e 120 %0 40 e & w0 1%

Figure 8.4: Eigenvectors corresponding to (a) the smallest (b) the middle (c) the
largest eigenvalue of I = I — K. The oscillatory eigenvectors correspond to the
largest eigenvalues.

In contrast, MG converges rapidly for integral operators of the second kind of
the form L = I — K and this can also be explained by the smoothing argument.
Figure 8.4 shows the eigenvectors of L = I — K with K as before. Because of
the minus sign, eigenvectors corresponding to small eigenvalues are smooth while
those of large eigenvalues are oscillatory as in the standard elliptic case. Thus the
Richardson iteration has no difficulty removing high frequency errors as shown in
Figure 8.5 and 8.6.

With the above understanding, it is clear that MG does not work well for
L = of + K because the standard smoothers are not effective and we need to de-
vise smoothers which can remove high frequency error components more effectively.
Our approach is based on two observations. First, fast transform preconditioners
are effective for clustering the eigenvalues of I around one. Second, conjugate gra-
dient annihilates efficiently error components corresponding to clusters of eigen-
values, in addition to those at both ends of the spectrum. Hence we propose to
use PCQ with fast transform preconditioners as smoother in the MG cycle.

Figure 8.7 shows the eigenvectors of the preconditioned system using the cosine
transform preconditioner. It is interesting to note that low frequency vectors are
located at both ends of the spectrum while high frequency vectors concentrate at
the cluster. Figure 8.8 shows the smoothing effect of PCG using the cosine trans-
form preconditioner (PCG(Cos)). We remark that MG with the optimal circulant

111

.15
2.4
0.05
i)
-0.051
=01
-~0.46

20 40 60 2] 160 120 : 20 £l 60 B0 100 120

0.2 T T 0.5
0.15]
odk
oifr
0.05[
0.05
[
0
008 4 L 005 . N N
20 40 &0 80 100 120 5 20 40 80 B 100 120

Figure 8.5: Error vectors after 0 iteration (top left), 1 iteration (top right), 3
iterations (bottom left) and 10 iterations (bottom right) of Richardson smoothing
applied to I = I — K. The oscillatory components are quickly smoothed out.

112

012 ¥ T 012

oaf 3]

ceal 008

008 005

004 { o4

0.02 0.02
20 40 60 80 00 120 20 40 60 g e 1

0.12 . - 042

LR g 0.1

0,08 0.08

0,08 0.95|

0.04 0,04}

002 0.02]

. N o . 1
20 49 ol ac 100 120 20 40 (2] ao 100 120

Figure 8.6: Error vectors after 0 iteration (top left), 1 iteration (top right}), 5
iterations (bottom left) and 10 iterations (bottom right) of Richardson smoothing
applied to L = [— K. The smooth components remain after many iterations.

08
o2 0.15
0.15 1 04
01 g
o4t) ; 1]
oostl 1 i i i 02
0,05 i
o o Py
;i L] |
.05 -oask I LA #H ‘ i % i ‘ \‘/~'
‘ IR 1 EEHEEL 0.2
-0, ‘ e
-04
-0.18) 0.4
0.15
0.2
. o
20 40] 80 we 0 20 40 50) 100 120 20 4 0 86 100 120

Figure 8.7: Eigenvectors corresponding to (a) the smallest (b) the middle (¢) the
largest eigenvalue of the cosine transform preconditioned system of L = 10~ + K.
The oscillatory eigenvectors are clustered in the middle of the spectrum.

113

0.3 T T 0.8

0.25
04
0.2
.15
02
[X:
0.05 b 0
0|
-0.2!
-0.05
-0,4
04
-0.45
0.2 08
20 40 60) 100 120 26 40 50 0 wo 120
LE 03
02 m 02t
o1 p 04
0 o
-0 -0
-02 { -02
-03 2 > -03 .
20 w0 0 80 109 120 20 40 60 80 0 120

Figure 8.8: Error vectors after 0 iteration (top left), 1 iteration (top right), 5
iterations (bottom left) and 10 iterations (bottom right) of PCG(Cos) smoothing
applied to L = 10~4J 4+ K. The smoothing cffect is much improved over Richardson
in Figure 5.2.

114

preconditioner also produces similar plots and hence we do not show it. Table
8.1 shows the MG convergence (MG(*)) of different smoothers specified in the
brackets. The Richardson smoother is denoted by R and the PCG smoother with
the cosine transform preconditioner is denoted by PCG(Cos). The convergence
of PCG(Cos) alone is also given for comparison. Here we use two pre-smoothing
and no post-smoothing step. The iteration is stopped when the relative residual is
less than 1019, The matrix K is the Gaussian blurring operator as before. From
the table, we see that PCG as smoother is much more efficient than standard re-
laxation methods in all cases. For large o, MG with PCG as smoother is about
as efficient as PCG alone, taking into the account of two smoothing steps in each
MG iteration. But for small @, M@ is significantly better. In fact, its performance
improves as the mesh size approaches zero whereas that of PCG alone remains
constant.

a |k 1764 | 1/128 | 17256 | 1/512
MG(R) * * * *
1072 | MG(PCG(Cos)) | 5 4 4 4
PCG(Cos) 8 8 8 8
MG(R) * * * *
1073 | MG(PCG{Cos)) | 6 5 4 4
PCG(Cos) 11 i1 11 11
MG{R) * * * *
10-* | MG(PCG(Cos)) | 11 7 6 6
PCG(Cos) 18 18 18 18
MG(R) * * * *
10~° [MG(PCG(Cos)) | 40 | 18 | 14 | 11
PCG(Cos) 33 37 36 38

Table 8.1: Convergence of different MG and PCG with varying o and mesh size
h. I = of + K. # indicates more than 100 iterations. The results show that
PCG(Cos) is an effective smoother.

8.3 The Case A=-A

In the following, we assume Neumann boundary condition for the Laplacian
operator. The situation of L = —aA + K is much more complicated. First of all,
the regularization term oA does not simply shift the spectrum; it actually alters
the spectrum. For large o, the eigenvectors of L resemble those of A and for small
o, they resemble those of K, where the high and low frequency vectors are flipped
over each other. For « in between, it is a mixture but the precise nature of the
mixing is not known. We pick three different size of a to illustrate the changing
spectrum of L in Figure 8.9, 8.10 and 8.11.

115

N

20 40 B0 a0 100 120 20 40 & 80 100 120 20 40 &0 B0 100 120

Figure 8.9: Eigenvectors corresponding to (a) the smallest (b) the middle (c) the
largest cigenvalue of I = —A+ K. When a is large, the eigenvectors of L resemble
those of —A.

016 .18

Py LA

G5 008

1] & 0;
~0.05 -0.05 ~0.05
0.1
=01 =01
~0,15|
0.5} 0,45
20 40 &0 80 100 120 20 40 60 80 100 120 20 40 &0 B0 100 120

Figure 8.10: Eigenvectors corresponding to (a) the smallest (b) the middle (c) the
largest eigenvalue of I = —10~*A + K. For intermediate value of «, the eigenvec-
tors corresponding to large eigenvalues resemble those of —A and the eigenvectors
corresponding to small eigenvalues are oscillatory and resemble those of K.

016
0.2 0,45
.15 044
A1
012
01
01 0.08 !
008, i
008
o o
.06 i
y 1 ii
~0.05 oM 0,05 11
-0 002
-6
048 o
o2 002 -0.15
20 40 80 30 w0 120 20) &0 S w0 120 20 40 60 ae we 120

Figure 8.11: Eigenvectors corresponding to (a) the smallest (b) the middle (c) the
largest eigenvalue of L = —10-8A + K. When o is small, the eigenvectors of L
resemble those of K.

116

The numerical results for this case is given in Table 8.2. As expected, MG with
standard relaxation methods as smoother deteriorates when o« decreases because
L approaches the convolution operator K which we have shown in section 8.2

that standard smoothers do not work well. Again, MG(PCG(Cos)) shows better
performance over PCG(Cos) alone for small values of « and f.

o |k 1764 | 1/128 | 1/256 | 1/512
MG(R) 18 | 19 | 20 | 21
1072 | MG(PCG(Cos)) | 3 3 3 3
PCG(Cos) 6 6 6 6
MG(R) 7 | 18 | 19 | 20
1072 | MG(PCG(Cos)) | 3 3 3 3
PCG(Cos) 7 7 7 7
MG(R) 35 | 32 | 32 | 32
10~* [MG(PCG(Cos)) | 4 | 4 3 3
PCG(Cos) 8 8 8 8
MG(R) * * * *
107° | MG(PCG(Cos)) | 4 4 3 3
PCG{Cos) 9 9 9 9

Table 8.2: Convergence of different MG and PCG with varying « and mesh size
h. L = —aA + K. The results show that PCG(Cos) is an effective smoother.

8.4 MG for TV deblurring

In this section, we discuss our preliminary experience in solving the TV based
deblurring problem [27] by MG. The governing differential-convolution equation 18
slightly different from (8.1) and is given here:

aR(uw)(z) + K*K{u) = K*z,

where R(u) = —V-(1/]Vu|)Vu, Ku = [y k(z—y)u(y)dz, K* is the adjoint operator
of K and z is the observed blurred and noisy image. Basically, the convolution
operator is replaced by a product of itself and its adjoint. The corresponding
linear system becomes:

(¢A+ KTK)u = f, (8.3)

which is similar to (8.2) with K replaced by K7K. The additional challenges of
solving (8.3) are two fold. First, the matrix A now comes from an elliptic operator
with highly varying coefficient (which is 1/|Vu|). It is not known if MG can
handle this case efficiently. Second, the product KTK is no longer Toeplitz which
complicates the implementation. For instance, while it is trivial to construct the

117

Jacobi preconditioner for K, it is not so for KTK at the first place, although 1t
turns out that it can also be done in O(n) operations. Moreover, the conditioning
of KTK is worse than K alone.

In this case, MG with PCG as smoother does not work well. A natural way
to improve its performance is to use it as a preconditioner for conjugate gradient.
However, this is not feasible as MG with PCG as smoother gives rise to a non-
stationary preconditioner. One solution to this problem is based on the following
observation. The success of PCG as smoother is that CG takes advantage of the
clustered eigenvalues of the cosine transform preconditioned system. We notice
that it is probably advantageous but not necessary to apply CG (which gives rise
to a nonstationary preconditioner) to the preconditioned system. An alternative is
to use standard relaxation methods on the cosine transform preconditioned system.

1.5 15 1.5

0.5 0.6 &5

- (] 0z 0.4 LX) 08 1 "0'0 9.2 0.4 1] 08 i _0'50 02 04 06 08 1

Figure 8.12: (a) Original image (b) Blurred and noisy image (¢) Recovered image.
Gaussian blur is used and SNR=13.

We have tested out several possibilities and the results are shown in Table 8.3,
8.4 and 8.5 for a TV deblurring example. The original and the blurred noisy 1D
image together with the recovered image are shown in Figure 8.12. The signal-to-
noise ratio SNR=13. Here we have used the Gaussian blur again. For each grid size
h, we use the optimal «,, for L which is chosen so that the recovered image has
the specified SNR, if it were to be blurred and added the same noise. We test three
cases with varying o a = 10#% @y, & = ¢,y and a = 0.1k ayy, and the results are
shown in Tables 8.3- 8.5 respectively. In each table, the second to fourth column
show the convergence in the first fixed point iteration and the fifth to seventh ones
show the convergence at the 11th fixed point iteration. (For our examples, the
fixed point iteration has already converged at the 11th iteration.) We show these
two sets of results because the coefficient 1/|Vu| is quite different for the two cases;
see Figure 8.12. In the first fixed point iteration, the coefficient is very oscillatory
whereas at the eleventh iteration, it is almost piecewise constant. With the same
notation as before, the bracket followed PCG specifies the preconditioner used for
CQ and the bracket followed MG specifies the smoother. Here GS+Cos denotes the
Gauss-Seidel (GS) method applied to the cosine transiorm preconditioned system.

118

Similarly for J+Cos where J denotes the Jacobi method.

1st fixed pt. ifer. 11th fixed pt. iter.
10 * o 1764 1 1/128 [1/256 §j 1/64 | 1/128 | 1/256
PCG(Cos) 42 85 108 13 49 75
PCG(MG(GS)) 20 | 29 35 12 | 17 21
PCG(MG(GS+Cos)) | 14 | 28 | 37 4 11 12
PCG{MG(J+Cos)) 17 51 79 13 17 22

Table 8.3: Convergence of PCG with varying h. a = 10 * ;.

1st fixed pt. iter. 11th fixed pt. iter.
ot 1764 | 1/128 | 17256 || 1/64 | 1/128 | 1/256
PCG(Cos) 38 81 98 42 92 106
PCG(MG({GS)) 17 28 37 16 21 24
PCG(MG(GS+Cos)) | 14 | 26 | 34 || 13 [15 14
PCG(MG{J+Cos)) 17 45 73 20 28 28

Table 8.4: Convergence of PCG with varying h. o = agy.

1st fixed pt. iter. 11th fixed pt. iter.
0.1 %ty 1/64 | 1/128 | 1/256 {| 1/64 | 1/128 | 1/256
PCG{Cos) 35 75 93 55 90 128
PCG({MG(GS)) 19 35 54 15 21 25
PCG(MG(GS+Cos)) | 13 24 33 15 19 17
PCG(MG(J+Cos)) 16 43 67 22 35 36

Table 8.5: Convergence of PCG with varying h. o = 0.1 % gy

We see that PCG(MG(GS)) and PCG(MG(GS+Cos)) are the best. They
are not sensitive to a and their deterioration with smaller 2 is slow. Besides,
PCG{MG(GS+Cos)) is better than PCG(MG(GS)) for smaller & which shows
that cosine transform is effective in dealing with K. However, we have not come
up with an efficient implementation for these two methods. For PCG(MG(GS)),
Vogel [137] has also made a similar observation independently. Note also that
PCG(MG(J+Cos)) shows a degradation over PCG(MG(GS+Cos)), similar to that
of the ordinary GS over Jacobi. We should also remark that PCG(Cos) is quite
effective among the methods we have tested.

8.5 Computation Complexity

Here we estimate the complexity of one iteration of some of the methods that
we have described in section 8.2 and 8.3.

119

PCG(Cos): This method has been estimated in [21]. The construction of the
preconditioner is O(n) and the cost of the preconditioning is O{nlog, n}.

MG(R): On each level, the cost of a Richardson smoothing is essentially the
cost of matrix-vector multiply. For the sparse matrix A, it can be done in O(n;)
operations and for the Toeplitz matrix, it can be done in O(n; log, n;), where n, is
the size of the matrix at level [. Here we assume that K is Toeplitz at all levels.
If the linear interpolation is used, the matrix K, indeed, is Toeplitz [22]. The
construction of the coarse grid matrices can also be done in O(n). Thus the overall
complexity of an iteration of MG(R) is O(nlog, n).

MG (PCG(Cos)): The method is almost the same as MG(R) but with different
smoother. The cost of applying the PCG(Cos) is O(nlog, n) and hence the overall
complexity is O(n log, n).

We remark that we have not come up with an eflicient implementation of the
methods in the TV case and so we do not discuss the complexity issue of those
methods here.

8.6 Concluding Remarks

We have shown in section 8.2 that standard smoothers do not work for matrices
of the form af + K arising from convolution operators. We have proposed to
use PCG as smoother and demonstrated numerically that it is effective to reduce
oscillatory errors. We have also tested the matrices of the form —aA 4 K and the
PCG smoother works as well.

For the TV image deblurring, the situation is complicated by the highly varying
coefficient and the product of convolution operators. We have proposed several
multigrid preconditioners and the numerical results are satisfactory. However the
implementation issue is still left open. Further investigation is needed to devise a
practical and efficient multigrid preconditioner in this case.

120

CHAPTER 9

Linear Systems with Multiple Right-Hand Sides

9.1 Introduction

After a series of study in preconditioners, we consider another fundamental
issue of iteration method, namely, linear systems with multiple right-hand sides.
For direct methods such as Gaussian Elimination, it can be done efficiently relative
to the LU factorization. For iterative methods, however, we may have to start anew
for each right-hand side, which may be very inefficient if there are many right-hand
sides. In this chapter, we analyze the effectiveness of a class of Krylov projection
methods, and propose a block generalization of it.

We consider solving the following systems:

AX = B, (9.1)

where A is a real symmetric positive definite matrix of order n and the mairix
B = [b(1} ... b(V)] contains a number of right-hand sides to be solved. For iterative
methods like conjugate gradient (CG), we may have to solve the system N times.
This process can be speeded up if we can find good initial guesses for the unsolved
systems and find some efficient refinement process to correct the initial guesses.
If the right-hand sides are arbitrary, we nearly have no hope to do that. For
example, if the right-hand sides are eigenvectors, there is hardly any information
sharable among the right-hand sides when the systems are to be solved by CG.
Yet in practice, for example in wave scattering problems [123], in time marching
methods for PDE’s [57] or in structural mechanics problems [56], the right-hand
sides are not arbitrary. They are nsually discrete values of some function b(t). In

other words,

Assume that b(t) € C¥ and let 2() be the solution of Az() = b(9). Then z{) can
be shown to be discrete values of some function z(t) € C*. Hence, the z()’s are
close if the bl¥)’s are.

There are several approaches to solve equation (9.1) more efficiently. An ob-
vious approach is to solve the right-hand sides one by one using the CG method
with initial guesses given by extrapolation of the previous solutions. This method
is effective only when the b(#)’s are close, which may impose a severe restriction
on the step size £. Another approach is to select one seed system and solve it by

121

the Lanczos or the CG method. Then one performs a Galerkin projection of the
residuals onto the Krylov subspace generated by the seed to obtain approximate
solutions for the unsolved ones. The approximate solutions are then refined by
Lanczos or CG again with hopefully fewer steps. This Lanczos-Galerkin scheme
was discussed by Farleti [105] and Saad [114]. In addition, they modified the re-
finement process so that each refinement continues previous Lanczos run instead
of starting a new Lanczos process. However, this method requires a lot of memory
storage for the Lanczos vectors.

Based on this projection idea, various approaches have been introduced to get
rid of the storage requirement if the right-hand sides are available simultaneously.
Papadrakakis and Smerou [104] used the Lanczos vectors to do the projection
but derived a recursive update for the solution of each right-hand side so that no
storage for the Lanczos vectors is needed. Van der Vorst {133] used the residual
vectors generated from CG to do the projection. Smith, Peterson and Mittra [123]
gave a simplified CG version by using the direction vectors to do the projection.
They also introduced a systematic implementation of the seed method and discuss
some seed selection strategies. Similar ideas were also discussed by Smith [122]
and Joly [81]. Mathematically, all these methods are equivalent. They only differ
in the way of implementation.

We may also use the block CG method proposed by O’Leary [101] and discussed
by Nikishin and Yeremin [100]. Similarly, one may use the block Lanczos method
[62] but we then have to face the storage problem again. Simoncini and Gallopoulos
[119, 120} combined the idea of the seed method and hybrid techniques to solve
nonsymmetric linear systems.

Among all these methods, we observed that the class of Galerkin projection
methods are very efficient which leads us to a more detail analysis of the single
seed method. There are several practical advantages. First, we observe a super-
convergence behavior of the CG process of the seed system when compared with
the usual CG process. Another advantage is that if the right-hand sides are close,
it usually only takes very few number of restarts to solve all the systems. Moreover,
it requires no storage for the Lanczos or the direction vectors doing the projection.
These features, especially the first two, make this method very effective. In this
chapter, we analyze these two properties and give analytical explanations for them.
Furthermore, we combine the advantages of the seed method and the block CG
method and propose a block generalization. Instead of selecting a single seed, we
select several systems as seed. This block seed method enjoys the fast convergence
of the block CG while preserving the basic properties of the single seed method.

In Section 9.2 and 9.3, we present and analyze the single seed algorithm. In
Section 9.4 and 9.5, we present and analyze the block seed algorithm. Numerical
experiments are given in Section 9.6. Finally, conclusions are made in Section 9.7.

In this chapter, we adopt the following notations. The eigenvalues and the
normalized eigenvectors of A are denoted by); and z; respectively, and 0 < A; <

122

Ay < -+ < A,. The acute angle between vectors a and b is denoted by £(«,), and
similarly the acute angle between a vector a and a vector subspace V is denoted
by /(a, V). We use O(h?) to denote a scalar, a vector or a matrix whose norm is
of order O(h#) for convenience.

9.2 Single Seed Method

The idea of the single seed method, proposed by Smith, Peterson and Mittra
[123], is that for each restart, a seed system is selected from the unsolved ones
and is then solved by the CG method. Meanwhile, an approximate solution for
the non-seed systems is obtained from the space of direction vectors p; such that
the residual is minimized in the A-norm in the direction p;. In other words, the
approximate solution is obtained by Galerkin projection of the residuals onto the
Krylov subspace generated by the seed system. After the seed system is solved
to desired accuracy, a new seed system is selected and the whole procedure is
repeated; see Algorithm 9.1.

Algorithm 9.1: Single Seed Method

for k=0, 1, 2 ... until all the systems are solved
Select the k& + 1th system as seed
for i=0, 1, 2, ... mpp % CG iteration
forj=k+1,k+2,k+3,.., N % each remaining unsolved RHS
if j=k + 1 then perform usual CG steps

I (i R [e R
Pt = bR paPipht

Gf : = (??;E)Tﬁ;k{ﬂ (P Ap}*
iy, = o p

i = rikgbt Appt

else perform Galerkin projection
k,j BT ki e, Bk kK
n o= (Pi.)T"”f."'/ (") Ap;

s = o
T =T dnf Ap}*
end if
end for
end for
end for

Here, we assume that the k+ Ist system is the seed for the kth restart. We use
the first superscript to denote the kth restart, the second superscript to denote the
jth system and the subscript to denote the ith step of CG. We also assume that
my, steps are used to solve the kth system within a given tolerance.

123

What is so special about this method is the interesting phenomena shown in
Figure 9.1, We apply the above algorithm to solve Az = b(') and Az = b(2), where
A=diag(1,...,100) and b(1), b2} are random vectors. Suppose the first system is
solved and an approximate solution for the second system is computed by the
Galerkin projection. The result of using this projected solution as an initial guess
and that of using a random initial guess having the same residual norm is shown
in Figure 9.1(a). We see that the former converged much faster than the latter.
This is the super-convergence phenomenon that we referred to earlier. The reason
is that the projection process kills off the extreme eigenvector components of the
initial error. More precisely, we know that the Ritz values approach the extreme
eigenvalues rapidly in a few steps of the Lanczos process [106]. Usually, the Krylov
subspace generated by the first few steps also contains the extreme eigenvectors
well. As a result, after the Galerkin projection, the effective spread of the spectrum
of A is reduced, which in turn increases the rate of convergence. We prove this
claim in Section 9.3.2.

10' 16
+0° .. projscted soiution
\i_. as inikal glass
10 \‘ - - - .Tandom inifial guess
10°F N
\
E \
S 167 AN | E
= \ =
E]
% 10" . g]
\ 7]
g ~ 2
B 1o N 5
g to \ 4 1
5 . a
10® N E
.
.
-7 | Al
10 ~.
= ~
16° “]
157! " & N N .
] 10 50 60 10 Q 10 20 &0 60 70 a0

an 40 a3 40
of CG iteration # of CG fteration

Figure 9.1: (a) The convergence behaviors of the CG process with projected solu-
tion as initial guess and with random vector as initial guess. (b) The convergence
behaviors of all the systems when the right-hand sides are cyclic rotation of its
elements.

Another special phenomenon is the small number of restarts needed to solve
all the systems. Consider the linear systems with A as before and b.gj)(t) = sin(t +
(147 —2)At),i=1,...,100; j = 1,...,10, where At = 27/100. In other words,
b4 is obtained by shifting the components of 40-1) by one position and the first
component is replaced by the last one. The result is shown in Figure 9.1(b). The
single seed method only needs one restart to solve all the systems. The explanation
is that if B has rank k, then the single seed method only needs about k& —1 restarts
to solve all the systems. One can easily prove that the right-hand sides B generated
by cyclic rotation of the components is only rank 2. We prove this claim in Section

124

9.3.3.

9.3 Analysis of the Single Seed Method

In this section, we analyze the two properties of the single seed method de-
scribed in the previous section. Before we go on to our analysis, we state some
facts about the Lanczos algorithm which will be used in the following analysis.
Details of which can be found in [63].

9.3.1 Lanczos Connection

Suppose we solve Az = b by the Lanczos algorithm. Let the columns of ¥, =
fvy -+ -v;] be the orthonormal Lanczos vectors of the i-dim Krylov subspace, K,
generated by 7 steps of the algorithm. Then we have the following well-known
recurrence:

AVm - Vme ‘!‘ ﬁm+lvm+1€£, m = 1, P ,n — 1 (9.2)
where T,, = VT AV,, is a tridiagonal matrix, e,, is the mth column of the identity
matrix and 3,1 is a scalar. Moreover, the solution at step m is given by

Ty = To + Vo IV I,
where z, is the initial guess and ry = b — Az,. Suppose we have another system:
A% = b. Then the solution obtained from projection onto K, is given by

Ep = &g+ Vi, TUVIF, (9.3)

where #, is the initial guess and 7, = b — A#,. See [114] for proof. The following
is a useful lemma for our later analysis.

Lemma 9.1 The projected solution of the non-seed systems given by the formula
in the single seed algorithm is
Iy b _ y
z! I = ghd 4 Vik(Tik) 1(1/?;)1*7,33’
where VF is the Lanczos vectors generated by 1 steps of the Lanczos algorithm. if
the kth system were solved by the Lanczos algorithm instead.

Proof. Smith, Peterson and Mittra [123] proved that the formula given in
the algorithm computes the projected solution in the subspace generated by the
. . k& . .
direction vectors {p;"" }. But this subspace is exactly the subspace spanned by the
columns of V¥ [63]. So, the result follows immediately from the formula (9.3). O

In the following sections, the superscript k for V¥ and T# is assumed to be the
restart number and so it is dropped.

125

9.3.2 Rate of Convergence of the Seed System

Now, we prove the super-convergence of the single seed method. More precisely,
we prove that if the previous Krylov subspace contains the extreme eigenvectors
well, then the initial convergence rate of the seed is increased in a way as if the
extreme ends of the spectrum of A is cut off. The technique of the proof is similar
to that by van der Shuis and van der Vorst [132], in which they estimated the rafe
of convergence of the CG process. We compare the error reduction after steps
of the CG process with the error reduction of another CG process starting with
an initial error vector obtained from the error vector of the original process by
deleting the first | eigenvector components.

Remark: Saad also discussed the convergence of the seed system but from a dif-
ferent point of view; see [114].

Lemma 9.2 Consider only the first two systems: Az() = b)) and Az(?) = b2},
Suppose the first system is solved in m; CG steps. Let 2y be the solution obtained
by the projection of b on K,, and let 25 be such that 2@ — 3y is the projection
of (@ — zt*® on span{z, : k € I}t where z;, is the unit eigenvector corresponding
to the eigenvalue A, and I={1,...,1}. Let Z;* be the ith iterate of the CG process
for Az(® = b2} with £ as initial guess. Then, for any i, we have

le® — 2}l < Jle® — a}?3 + 6, (94)

where
by = 1Pz @12 3 Aep2 (M) sin? (2, K,
kel

P;n'-l =I1-V, T ! anlA, is the A-orthogonal projection onto K% , P; 18 a polynomial

M1~ m
of degree at most ¢ and constant term 1.

Proof. Let 2(2) solve the second system Az(2) = b(2) and 2yt = z! be the m,th

CG iterate. Then the error of z,” is given by

™1 "

e — g’ =1 -V, TAVE A)e® = PL 2. (9.5)
Let the eigen-decomposition of z(2) — 25? be

2@ —zg? = 3 bz (9.6)
k=1

By the definition of #y?, #(2) — &5 = >ty Przi- 1t is well-known [63] that there
exists a polynomial ;(¢) of degree at most ¢ and constant term 1 such that

=2 A el = S RO
k=41

126

This implies that ||z(? — 3;%||2, = nep1 PR)43 . Since pi(t) is a polynomial
of degree at most ¢, by the minimization property of CG, we have

l2® — 2?3 = minlp(A)(e® — z5")]} (9.7)
< (A (@ — 29"

= 2 ()P
k=1

= 3 BOVEN + DR

k=41 kel

= [le® — &% + 3 5)¢
kel

From (9.5) and (9.6), we can calculate ¢, to be
|65 = (P, 2®) - 2] < 1P 2@l sin £z, Ko,).
Substituting into (9.7), we obtain inequality (9.4). 0

Lemma 9.2 implies that if §; is small, the convergence rate will be increased in a
way as if the first ! eigenvalues of A have been removed. Since the Lanczos process
captures the extreme eigenspaces, the Galerkin projection will kill off the extreme
eigenvector components. Hence, /(z;, K, } is small for £ close to 1. The estimates
given by Parlett [106] and Saad [115] can be applied to bound sin £(z, K,).

Lemma 9.3 Let 0, = £(b(1, z;) and 7, = 22281 1 | Then

Mot —An
sin £(z, K,) < wy tanéy, (9.8)
where , 1y
Wy = L = k=1,...,1

Tm1~k(}' + 2Tk) p:]_ Ap - Ak
and T,(x) is the Chebyshev polynomial of degree q.

Proof. Since
sin £z, K.} < tan £(z;, K.,),

the result follows from Theorem 12-4-1 in [106] and Theorem 6.3 in [115]. O

First, we observe that 6 is fixed. Thus, Lemma 9.3 implies that sin /(z, K,)
is bounded by a constant times w, which decays exponentially with m,. Using
these two lemmas, we show that the bound for the convergence rate is the classical
CG bound with a reduced condition number, plus a small perturbation term.

127

Theorem 9.1 The bound for the A-norm of the error vector afler i steps of the
CG process is given by

21
K -1
2@ — 22?2 < 4l — 232 (YR) 46,
B TA\VFRT L)

where

8 = [Py a@P 3] A tan by,
kel

and the bound for &, is independent of the number of ileration i. Here, kg = fi‘;

is the reduced condition number.

Proof. From Lemma 9.2, we have the following inequality:

o — 21?3 < [lo® — 2% + 6y, (9.9)
& = [P =@ Aep(Ae) sin® £(2, Ko,)-
kel

The term ||z(® — z}*||2 can be bounded by the classical CG error estimate,

i
1, _1, VEr—1
||3;(2) - 3/'11 2”?4 < 4“33(2) — ;gé2”§1 (TR:;M{) . (9.10)

Now we analyze the §, term. By Lemma 9.3, we can bound é; by,

& < HPnth(?)”? Iﬂgfﬁ?()\k)%)‘k”i tan® 0. (9.11)

Recall that §, is the optimal CG polynomial when solving Az(?) = b(%) using 75’
as an initial guess (cf. proof of Lemma 9.2). It can be shown that p;(?) has the
following form [19, property 2.8]:

(@ —). (8 —)
g0 .. g0

ﬁi (t) =)

where é&") < 9‘5“') < e < 67,(’:) are the Ritz values of A with respect to K, the
Krylov subspace generated by 7? = b — Azy®. By a property of Ritz values,
Apr < 675-”) <X, §=1,...,1. From the formula of 5;(t) above, for 0 <t < Ayy4,
we have 0 < p;(t) < 1. Thus maxge; p?(A) < 1. The desired inequality follows
from substituting (9.10) and (9.11) into (9.9). O

Since the Krylov subspace of the previous seed system contains the extreme
eigenvectors well, w;, and hence &, are small. On the other hand, the quantity

128

| Pt 2@)|| is bounded by [lz(®)]|. (If we make additional assumptions on b1} and
b®, we can estimate the bound for ||FL z(?)|| more precisely; see Section 9.3.4).
Thus the whole perturbation term is neghglble which implies the initial rate of
convergence can be as fast as if the spectrum of A is reduced. This explains the
super-convergence behavior shown in Figure 9.1(a).

Remark: For the proof of the lemmas, we have made no assumptions about the
right-hand sides. Thus, the single seed method may be useful to solve general
multiple right-hand sides.

9.3.3 Convergence Analysis of the Non-seed System

We come to our second analysis. We prove that the systems are almost solved
after k— 1 restarts of the CG process if the rank of B is k. This result is the central
idea of the following analysis that explains why the single seed method only needs
a few restarts to solve all the systems if the right-hand sides are close to each other.

Theorem 9.2 Suppose B = [b®).--6V)] and rank(B) = k < N. Then there
erists a > 0, independent of the iteration numbers m.,, such that the residual of
the non-seed systems after k — 1 restarts of the single seed method satisfies

. k
Hr"’:g,‘?“ 5a2|ﬁm,,+1|a j=k+1,...,N, (‘9'12)
p=1

where B, 11 comes from the Lanczos recurrence formula (9.2) if the pth seed is
thought of solved by the Lanczos algorithm, p=1,..., k.

Proof. Let B = Ek ouw! be the outer product form of a singular value
decomposition of B, Where o;, u; and w; are the singular values, left and right
singular vectors of B respectwely So the Jth system, bU), can be written as:

3
b0 =" o(wle;)uy, (9.13)

i=1

where e; is the jth column of the identity matrix I. Let

'Fg"? _ b(J)’ NO’J O J = 1: 2) L :Nﬂ (914)
(= guTe;, ug = u;, i=1,2,...,k
Notice that _
|C?J|§o-i, j=1,...,N. (9.15)

129

We take the first system as seed and suppose that it is solved in m, CG steps. By
Lemma 9.1, the approximate solution of the non-seed systems obtained from the
Galerkin projection is

=hd ~0:1 1 1 T~OJ P
;u(), - ' { fynlrpmlTj;nl U’ ,:I, 15-..,]\[,

and

Fol = pU) — AzgY (9.16)
(I V. VT)~03)Bm1+1'vm1+1€T T- 1vT ~0,J

m1 7 my m1T M1 M

We want to express 7o’ in terms of 75" since (I — V, VT)”0 1 = 0. Without loss
of generality, we may assume that

¢91] = max [¢2). (9.17)

1<i<k

From (9.13) and (9.15), we write 73° as

~0=J Cl,suo + ZC W 0

In particular, for 7 = 1, we have
l 'U.O _I_ Z CO 1 0

0,5 e .0,1
Now we rearrange the terms of 7" and rewrite it in terms of 7'

k . .
FO9 = ¢ 4 YOI — I T (9.18)
Y
Let
Cél’j — C:')'j _ Cf’j((j?'l)“l ?,1 i=2,...,k.

Then formula (9.18) becomes

. . k .
R = I+ 3 (e (9.19)

PRy

Moreover, by (9.15) and (9.17), we have

G < IG L+ 161167 Q| < 20

130

Combining (9.16) and (9.19), we have

'Fﬁl),j = (I Vm1 V,-g; ZC ’JU‘G + 71 m1+15

where

Li . eT 1T 70
N = =By mlel le Y=o By

and
ay = —eL TVT i,

mi ™y T
We now show that oy is independent of m,. Obviously, eﬁl 1s bounded by 1.
Besides, it is well-known [63] from the interlacing property of the eigenvalues of
the consecutive T/s that the spectrums of T!s are bounded by the spectrum of A.
Thus, |7,71]] < ||A). Next, since the columns of V,,, are orthogonal, we have
[Vi |l < 1. Finally, it is clear that

176”| < {IB]]-

Thus a is bounded independent of m;. In other words, it does not grow unbound-
edly as the iteration goes on. Let

ul = (I =V, VT)u?l.

m1 " my

1,5

Then we further simplify the notation and write 73" as

"1’3 ZC ’Jul + f}fl Vppy 41 (9.20)

Hence, after one solve, the rank of the remaining columns of B is effectively re-
duced by one if 1 is small. We proceed in the same manner for the other seeds.
Inductively, after [— 1 restarts, the residual for the non-seed system is

i

~I,J Z C ’Jul _|_ z 7 H quVmTq)Ump+1? (921)

iw=i+1 p=1l g=p+1
where
i 1—1,' =1,/ =10\ _ z 1,
chi = 3 R(Cl) 1 ,

;o= — &y
ul.ﬂ(f VVT)%.

) my " my
Li — -1, I1,§ ¢ Al—1,0v_1 1—-1,4 .
’YPJ - 'Yp '7“" I (Cl) i 3 p—l,...,l—-l,
Li _ T q—1yT #-1d
"n —_ ""ﬁml_l_}_em! Tm! VTI’L! TO .

131

Notice that |C:3 | < 2'g; since \(7 1] < 216;, which can be derived inductively.
In particular, when [= k, we have from (9.21) that the first term vanishes and

k
i = Y‘fy i 11 (I =V VI o, 41, (9.22)
19—1 g=p+1 !

where 7§.j is a constant multiple of §,, ;1. As explained before, these constants
are independent of the m,’s. Thus we can find o > 0 such that

'
13| < 2B (9.23)
Moreover, for any ¢, [- quVn{q are projections and v,, 4, is of unit length. Hence
k
b II (2= VY VE Sl < 1. (9.24)
g=p+1
Finally, we obtain (9.12) from (9.23), (9.24) and (9.22). D

If B has near rank deficiency, then we have similar result but with an extra
perturbation term.
Corollary 9.1 Suppose the singular values of B are such that
0'120'22---2crk>620'k+12---20N2E}.
Then there exists o > 0, independent of the m,’s, so that
k. k
IFs”]] < o (Z]ﬁmp+1| +).
r=1
Proof. By (9.21}, with k = N, I = k, we have
k k
v.? Z Ci W k + E f‘){k ¥ H I quvgq)vmp+1. (9,25)
i=k-41 g=p+1
Since (| < 2%¢; and 0; <€, i=k+1,..., N, by Theorem (9.2), we get

Il < Z ["’Illukll+a2|ﬁmp+1l

i=k+1

(N — k)2Fe + az | B g1+

p=1

IA

132

The result follows if we let o = max(e, (N — k)2%). O

Remarks:
1. In practice, a stopping criterion of the following form is usually used:

lrzel] < tol {[BE)]].
It is well-known [63] that:
221 = [y 12, T2, |5
Hence |,,,+1| can be bounded as:
Binpallen, Tryer] < tol

If |e%pTﬂ:§el| is not small, then |3, .| is the same order of tol. Therefore, by

Theorem 9.2, the systems are solved to the order of accuracy of tolin only & — 1
restarts if rank{B)=k.

2. Consider the special case that B = [b(1) «.. b}, bl#) = b(t;} and
b(t) = ¢ (t)ay + -+ - + e (t)ay,

where c;(t) are some bounded functions, not necessary continuous and a; are some
linearly independent vectors. Then Theorem (9.2) implies that B is almost solved
after k — 1 restarts. In particular, if (%) is a polynomial of degree k£ — 1, then B
can be solved in about & — 1 restarts.

3. In general, if b(t) is not a polynomial, Corollary {9.1) ensures that we can still
have a similar result for () a continuous function. We rewrite this remark into
the following theorem.

Theorem 9.3 If b(t) is a continuous function on [t;,ty], then given € > 0, there
exist integers k < N and o' such that

) k
17671 < o (3 |Bmpaal + ©-
p=1

Proof. Since b(t) is continuous, by the Weierstrass approximation theorem
[118], there exists a polynomial f(t) of degree (k — 1) such that

I16(t) — F(B)ll. < e/VN Vi€ [ty,tn]- (9.26)

Notice that we can always find a polynomial of degree (N — 1) such that (9.26) is
true since B has only N columns. So, we always have & < N. We now estimate
the size of op4y.

133

Let }
B=[f(t:) --- f(tw)].

Then rank(B)=k. By the minimization property of o5, (see [63]), we have
Tip1 S [1B - Blf,.

But by (9.26), we have ||B — Bl|, < |B — Bllr < ¢. The result follows from
Corollary (9.1). O

This theorem points out an important property. If b(¢) is continuous and the
bi)’s are close to each other, then rank(B) < N. In other words, we can find
a low order polynomial to approximate b(t). Theorem 9.3 says that the single
seed method will automatically exploit this fact. Omne may suggest using a QR
factorization of B and then solving the linearly independent right-hand sides. But
this is only effective when the rank is much smaller than N. Otherwise, it is costly
to do the factorization and reconstruction. Furthermore, in practice, it is hard to
tell the numerical rank of B. The usefulness of the single seed method is that we
do not need to determine the rank by ourselves and it will automatically take care
of it.

The number k somehow reveals the effective rank of B. If the 5(1)’s are close
to each other, % is usually much smaller than N. Hence, the single seed method
only needs a few restarts to solve all the systems.

9.3.4 Error Analysis of the Initial Guess

In this section, we estimate the error of the initial guess given by the Galerkin
projection, assuming that b(¢) is smooth. Saad [114] also estimated the error of
the projected solution but in a more general context. Since the right-hand sides
of the non-seed systems differ from that of the seed system by O(h), we can show
that the initial guess given by the projection also has O(h) error.

Theorem 9.4 Assume that b= b(t) and 60) = b(t, + (§ — 1)k). Suppose we have
applied m; CG steps to the first system: Az = b(1) and obtain K. Let Fo7 be
the projected solution of Azl) = bU) onto K., and 2% be the solutwn given by
applying my CG steps to the jth system with initial guess 0. Then

"’lr f 1 —
|&6” — 202]| = O(h).
Proof. Since b(t) is smooth, the approximation of b7} by b(1) satisfies

b = B0 + O(h).

134

By Lemma 9.1, the projected solution of bl/) with 0 initial guess is
507 = Vi, T VI BV = 20 + O(h)

w1~ m,

Since 22! — %7 = O(h), the theorem is proved. O

This theorem shows that |[Pt z(@|| in Theorem 9.1 is only O(h} if the right-
hand sides have smooth dependence.

9.4 Block Seed Method

In this section, we propose a block generalization of the single seed method. In
the previous section, we notice that the initial guess given by the Galerkin projec-
tion requires h being small to have a good approximation since the approximation
is only of first order. Practically, however, we may need to take large steps. A
natural solution to this problem is to select more than one system as seed so that
the subspace generated by the seed is larger and the initial guess obtained from the
projection onto this subspace is hopefully better. Moreover, if we use the block CG
method to solve the seed systems, the convergence rate is also improved. These
statements will be: made more precise in the following sections.

The block seed algorithm is exactly the same as the single seed method except
the seed is a block of s systems. The seed is solved by the block CG method {101]
while approximate solution for the non-seed system is obtained by the Galerkin
projection onto the the subspace generated by the seed. The algorithm of the block
seed method is as follows.

A drawback of the block method is that it may break down when the matrices
(RE*)TREF and (Hk’k)TAﬂk’k become singular. On the other hand, in addition to
the fast convergence inherited from the block CG, the block seed method possesses
all the basic properties of the single seed method discussed in last sections. In fact,
the bounds obtained are better than those for the single seed method. Analogous
theorems are stated in the following sections.

From now on, we assume that the block size is s and the matrix A does not
have eigenvalues with multiplicity greater than s. After m steps of the block CG,
we let V,, = [U; -+ U,,] whose columns denote The orthonormal blocks of Lanczos
vectors and K, denote the subspace spanned by columns of V,,. Let P, and PL
be the A-orthogonal projection onto K, and Kk respectively. Lower case letters
denote vectors while upper case letters denote matrices.

9.5 Analysis of the Block Seed Method

In the following sections, we give the analogous results of the single seed case.
Since the techniques of the proofs are similar to the non-block case, we shall skip

135

Algorithm 9.2: Block Seed Method

for k=0, 1, 2 ... until all the systems are solved
Select the ks + 1, ..., ks + sth systems as seed
fori==0,1,2, ... my11 % block CG iteration
for j=k+ 1, k+2,k+3, ..., [N/s| % each unsolved block of RHS
if 7=k 4 1 then perform usual block CG steps
APE = (REFYRYS(REG)TRZ)
P = RPPRATEPDY
SPE = (REPYTRYE(PPMT AR
R = RNy pHt
else perform block Galerkin projection
B = (PPYT R (PP AR
i = RO-HP AP
end if
end for
end for
end for

Note: The second superscript for the matrices denotes the jth sub-block of B.

them.

9.5.1 Convergence Analysis of the Seed System

We show below that the bound for the convergence rate of the seed systems is
superior to that by the single seed method since the block Lanczos method gives
a better bound for the extreme eigenvalues than that by the classical Lanczos
method. Yet the statement and the proof of the theorem is analogous to Theorem
9.1. Before we go on, we state the minimization property of the block CG iterate
proved by O’Leary [101].

Theorem 9.5 Let X, be the approzimate solution given by the block CG and X*
be the true solution. Then X, minimizes tr[(X — X*)TA(X — X*)] over all X
such that X — X, € K.

Since the minimization property of the block CG algorithm is on all the systems
together, we only estimate the convergence rate of the seed systems indirectly; we
do not bound the error of the individual systems but by blocks instead. Same as
before, we show the effect of the first I eigenvalues.

136

Lemma 9.4 Consider two systems: AX(1) = B() and AX® = BX). Suppose the
first systems are solved to desired accuracy after my steps of the block C'G process.
Let X2%, X2, X%, XP® and 1 be defined similarly as in Lemma 9.2 and {9 be

k]

the solution of the jth system of X (). Then for any i, we have
(X — XIEACXE) — XI)] < tr{(X® — KIHTACXE — X 4 b, (9.27)

where

_ 63 = Z “'Pélili(”liz Z Akﬁ?(kk) Sil'l2 A(Zk, }le)

3=1 kel

We can also estimate sin Z(z;, K,) by the bounds given by Saad [113].

Lemma 9.5 Suppose that Pyz; are linearly independent for j=Fk, ... Jts-1; k <
I Let &, € K, be defined such that '

TS — .,
ZJ Tp = 6}”,

for =k, ..., k+s-1; k < 1. Let g, = L{zy, &) and Ty, = %:?fﬁ; k=1, ... ,l. Then

sin £(zg, K,) < &y tan b, (9.28)

where) A
Gy = . ek =1,...,1
T (4 27) ,\gk A=A

Here Ay is the set of the first k — 1 distinct eigenvalues.

Remark: Since |A; — Agps| = Ak — Apya], we have 7 > 7, which implies & < wy.
Moreover, the subspace V,,, is bigger than the subspace V,,,, we have |[PL 2()|| <
[P =@ (cf. Lemma 9.2, 9.3).

By these two lemmas, we may give a bound similar to Theorem 9.1 for the
convergence rate of the seed systems.

Theorem 9.6 The bound for the sum of the error vector in the A-norm after i
steps of the block CG process is given by

s 1%
X2 — XINTA(X@ — XD < 4) (_.__VKR) + 8,
where

§p= ”7)77{:1 22> A tan® 6.,
=1 kel

for some constant p;.

137

This bound looks almost the saine as the bound in Theorem 9.1 except w;, and
0, change to &, and ;. From the previous remark, & < w; and [PL 2@} <
| P @], This shows that the bound for the convergence rate of the seed systems
in the block case is better than that in the single seed case.

9.5.2 Convergence Analysis of the Non-seed System

We now state two other analogous theorems of the block seed method. It says
that all the systems are almost solved in [k/s] —1 restart of the block seed method
if rank(B)=k.

Theorem 9.7 Suppose we want to solve the same problem as in Theorem 9.2 by
the block seed method. Then there exists o > 0, independent of the m,’s, such that
the residual of the non-seed systems after [k/s] — 1 restarts satisfies

‘ [k/s1
7)< @ 3 Bl j=k+1,...,N,

p=1
where Em,, 41 comes from the recurrence of the block Lanczos algorithm [62],

AV, =V T, + Ump+1/§mp~;~1E£p, p=1,...,[k/s].

P
Finally, if b() is continuous, we can bound the residual in the same way as in
Theorem 9.3.

Theorem 9.8 If b(t) is a continuous function in t on [t,ty], then given ¢ > 0,
there exist integers k and o such that the residual of the non-seed systems, after
[k/s| — 1 restart of the block seed method, satisfies

kls
L
70"l < &' (32 Byl +)

p=1

The results of Theorem 9.7 and 9.8 are not surprising since each solve of the
block CG generates an s times bigger subspace than CG does. Thus the number
of restarts should be reduced by a factor of s for the block seed method.

138

9.5.3 Error Analysis of the Initial Guess

We point out in Section 9.4 that the initial guess given by the single seed
method is good only if the right-hand sides are really close. In fact, the initial
guess is only O(h) accurate to the mth iterate given by the CG process. We now
prove that the initial guess given by the block seed method is O(h*) accurate to
the extrapolate approximation of (¥} given by the solutions of the seed systems.

Theorem 9.9 Assume b} = b(t,+ (—1)k) as in Theorem 9.{. Suppose we have
apphed m, block CG steps to the seed systems: AX(®) = B() and obtain K. Let
19 be the projected solution of Az = b onto K,,,. Then &5’ is an sth order

appromzmatzon of the eztrapolution of the columns of X0 which are obtained from
applying m, block CG steps to the first sub-block of B.

Proof. Since b(t) is smooth, the extrapolate approximation of bU) by bli)’s,
i=1,...,s, is of order s. Thus there exist y, such that

BU) ="y, b0 4 O(he).
=1

Then, by the block version of Lemma 9.1, the projected solution of (%) with initial
guess 0 1s
iélf

iTm T
XV, TSIV + O(A?)

=1
= inmg?l + O(h#).
=1

Result follows from the fact that 327_, x;2(?) is actually the extrapolated approxi-
mation given by X1, O

Since the initial guesses given by the block seed method have higher order of
accuracy, the block seed method is useful in the case when the right-hand sides are
not close to each other.

9.6 Numerical Results

In this section, we present four examples to illustrate the analysis in Sections
9.3 and 9.5, and also compare the performance of these methods applied to an
acoustic scattering problem. All the experiments were performed in MATLAB
with machine precision 1016, The stopping criterion is: [|r]| < 10-8||640)|..

139

RHS befora projaction

10
10°F
]
F-
5 10
3
E
-1
s
£
5 105
2
w0*
4] . i
® a 20 40 60 a0 10¢
companent number
' RHE after projection . AHS after block projection
0 T + i0 T T
@° 10
% g % e
g 210
g g
% £
g
£ z
B 10° 3w’
k4 g
107 10
= . N 2 L N L
W o 20 40 &0 a0 140 1o a 20 40 60 80 i00
componamt number componant number

Figure 9.2: Size distribution of the components of (a) the original vector by, (b) b,
after the projection, (c) b, after the block projection.

140

e
°>
a

log of residual nonn
-
(=1

a & 10 15 20 25 30 9 5 20 25

10 15
of C& iteration # of block CQ iteration

Figure 9.3: The convergence behavior of the CG/block CG process with different
initial guess. (a) The single seed method, (b) The block seed method. Solid lines
denote seed/block seed method. Dotted lines denote the case I = 5. Dashed dotted
lines denote the case | = 10.

Example 1: In this example, we show the effects of projection to the error com-
ponents and the convergence rate of the seed systems. Our test problem is:

AX = B,

where A=diag(1,2,...,100) and B is a random matrix with 4 columns.

Let b; denotes the jth column of B. For the single seed method, we solve b; by
CG (in 55 iterations) and project the other 3 systems to obtain an initial guess.
Then each one is solved by CG again. We only consider the behavior of the last
system, b,. Before discussing the convergence behavior, we see from Figure 9.2(b)
and (c) that the first number of eigenvector components of b, are removed by the
projection. Thus the effective spectrum of A is reduced, which in turn increases
the convergence rate of CG. In Figure 9.3(a), the solid line denotes the convergence
of the last system using the projected solution as initial guess. The dotted line
denotes the convergence of the same system using the same projected solution as
initial guess but its error vector is such that the first [eigenvector components are
set to zero. We choose [= 5 since about five eigenvector components are removed
as shown in Figure 9.2(b). We see that the convergence behaviors of both initial
guesses are almost identical as predicted by Theorem 9.1.

For the block seed method, we solve b, and b, by the block CG method (in
40 iterations) and project the other two systems to obtain an initial guess. Then
the last two are solved by the block CG again. Again, we only consider the last
system. Figure 9.2(c) shows that more eigenvector components are removed by the
block projection. This implies more extreme eigenspaces are captured by one solve
of the block CG than by the usual CG. Figure 9.3(b) shows that the convergence

141

behavior of the last system is slightly better than the case [=5 and almost the same
as the case =10. This verifies that the block seed method has a better convergence
bound than the single seed method.

leg of residual nam

200

o 50

100 100 1
of matrix-vector multiply # of malix-vector multiply

Figure 9.4: The convergence behavior of all the systems (10 right-hand sides) when
solving Az(t) = b(t) where A=diag(1:100) and b(t)=a, + ta; + t2a, + t3a3 by (a)
the single seed method, (b) the block seed method.

Example 2: In this example, we show the convergence rate of the non-seed sys-
tems. Our test problem is

Aa(t) = b(2),

where A=diag(1,2,...,100) and b(t)=ay + ta, + t2a; + t3ag; ag,ay,a; and ag are
some linearly independent vectors of unit length. Thus rank(B)=4 in this case.
We choose t; = 1, At = 0.1 and ¢; = ¢, + (j — 1)At, j=1,...,10, and b; = b(¢;).

The convergence behaviors of all the systems are shown in Figure 9.4(a) and
(b). From the plot, each steepest declining line denotes the convergence of a seed
and also for the non-seed in the last restart. Figure 9.4(a) shows that four seeds
(corresponding to three restart) are used to solve all the systems. Figure 9.4(b)
shows that, in the block seed case, only two seeds (corresponding to one restart)
are used to solve all the systems. These results match precisely the results of
Theorem 9.2 and Theorem 9.7. Notice that we plot the residual norm against the
cost (the number of matrix-vector multiply) in place of the iteration numbers as
in Example 1 so that we may compare the effectiveness of these methods by cost.
In this particular example, the block seed method is slightly more efficient.

Example 3: In this example, we apply the single seed method and the block seed
method to solve an acoustic scattering problem. The object is circular and the
wave number is arbitrarily chosen as 5. The Helmholtz equation or the reduced
wave equation is solved by the double layer potential, using the trapezoidal rule to
discretize the integral. We show the efficiency of both methods and illustrate the

142

log ol rasidual nomm

log of residual norm
% A

1b 2..0 3‘0 4‘0 5}) &0 0 10 20 30 4:0 &0 60
of matiix-vector muliiply # of maldx-vector multiply

Figure 9.5: The convergence behavior of all the systems when solving Ax(t) = b(t)

where b(t) corresponds to the boundary data of a radar scattering problem and

At = 1° by (a) the single seed method, (b) the block seed method.

effect of At, the change of the incident angle ¢, on them. More precisely, our test
problem is

Aa(t) = b(t),

where A=AAT and A is a particular non-singular complex matrix of order 128 x128
arising from the acoustic scattering problem. b(t) is the right-hand side which de-
pends on the incident angle ¢ and corresponds to the boundary data that accom-
pany the circle geometry. The formula for the ¢th component of the right-hand
side 18

bi(t) = — cos(5 cos(t — 2(; — 1)m/128)) — v/—1sin(5 cos(t — 2(¢ — 1)7/128)).

We solve the problem in two cases. The first case corresponds to At = 1° and the
second case corresponds to At = 10°. The number of right-hand sides is still 10.

The result of the first case is shown in Figure 9.5(a) and (b). In our previous
analysis, we learn that the initial guess given by the block seed method is better
than that by the single seed method when At is small. Figure 9.5(a) and (b) show
that the residual of the initial guess given by the single seed method is O(10~1)
while that given by the block seed method is O(10~2). On the other hand, since the
right-hand sides are close for At small, the performance of the block seed method is
not particularly good since some matrices are near singular. In fact, both methods
solve the problem in about the same cost.

In Figure 9.5(a), we can easily see that the single seed method only takes 6
CG runs to solve all the systems. In fact, the first four CG runs almost solve
all the systems. The last two are just minor corrections of the unsolved systems.
Notice that the first 4 singular values of B are 35.24, 6.18, 0.37 and 0.02, and the
remaining ones are only O(10—4) or less. Thus, this experiment verifies that the

143

single (and the block) seed method will automatically exploit the rank deficiency
of B and hence save a lot of CG solves.

log of resicual norm

200 1] 50 200

100 160 100 150
of matrix-vesicr multiply # of matrix-vactor mulliply

Figure 9.6: The convergence behavior of all the systems (10 right-hand sides)
when solving Az(t) = b(t) where b(t) corresponds to the boundary data of a radar
scattering problem and At = 10° by (a) the single seed method, (b) the block seed
method.

For the second case, the result is shown in Figure 9.6(a) and (b). Since At is
large, the initial guesses given by the single seed method are not good. Also, the
b(9)’s are not close to each other, and hence the matrix B has full rank. These
unfavorable conditions weaken the performance of the single seed method. For
the block seed method, however, it uses two instead of one right-hand side to
generate a subspace in each restart, so the subspace is larger, which is good for the
convergence of the seed systems as well as for reducing the residual of the non-seed
systems by projection. Figure 9.6(a), (b) clearly shows that the block seed method
performs much better in this case.

Example 4: In this example, we show the performance of the block seed method
with block size, s=3, 4. We use the same matrices A and B as in Example 3,
and choose At = 10°. Figure 9.7(a) and (b) show the result of s=3 and 4, re-
spectively. When compared to Figure 9.6(a), (b), we see that the convergence rate
of the seeds for =3, 4 is better than for s=1, 2. In fact, we can see a trend of
increasing convergence rate with increasing s. However, for large block size, the
near singularity of some matrices may produce unstable results. Figure 9.7(a) and
(b) show that some systems do not even converge. From our experience, s=2 is an
optimal choice.

144

10! ¥
o
10’}
1o
E
2 §1o’
a5 =
:E »g 10-@
E, g,w“
10°F
1 107}
167t 1
8 . . =l L
g 50 100 150 0 o 50 160 150 200

of matrix-vecter mulliply # of matix-vector mulliply

Figure 9.7: The convergence behavior of all the systems when solving Az (%) = b(t)
where () corresponds to the boundary data of a radar scattering problem and
At = 10° by the block seed method with (a) s=3, (b) s=4.

9.7 Concluding Remarks

We have claimed that the single seed method possesses two merits that make
it an effective method to solve multiple right-hand sides with smooth dependence
on t. One is the super-convergence of the seed system and the other is that it
only takes a few number of restart to solve all the systems. These two properties
are essentially derived from the intrinsic property of the Galerkin projection. The
single seed method automatically makes use of this property and improves the
efficiency of solving multiple right-hand sides. We have proved these two properties
analytically and also estimated the initial error of the projected solution. We have
also performed numerical experiments to justify the theoretical analysis and to
show that the single seed method is effective to solve this problem when the right-
hand sides are close to each other.

On the other hand, we have also noted the weakness of the single seed method
when the right-hand sides are not close to each other. We therefore proposed
a block generalization of the single seed method. The basic idea of this block
seed method is to exploit a larger subspace by the block seed systems. We have
proved that the block seed method possesses the same properties of the single
seed method and found that the bounds are better than those for the single seed
method. We have estimated the initial errors as well. IHowever, we have noted
that the block seed method inherits both the advantages and disadvantages of the
block CG method. We have shown numerically that the performance of the block
seed method is very good when the right-hand sides are not close to each other but
not particularly good in the opposite case. It is not surprising since the subspace
generated by the block seed is essentially the same as that generated by a single

145

seed for the latter case. Nevertheless, the block seed method is shown to be an
attractive alternative to the single seed method when the right-hand sides are not
close to each other.

146

Bibliography

[1] R.E. Alcouffe, A. Brandt, J.E. Dendy, Jr., and J.W. Painter. The multi-grid
method for the diffusion equation with strongly discontinuous coeflicients.
SIAM J. Sci. Stat. Comput., 2(4):430-454, 1981.

[2] S. F. Ashby, R. D. Falgout, S. G. Smith, and T. W. Fogwell. Multigrid
preconditioned conjugate gradients for the numerical simulation of ground-
water flow on the Cray T3D. Technical report, Lawrence Livermore National
Laboratory, Livermore, 1996.

[3] O. Axelsson. Iterative Solution Methods. Cambridge University Press, Cam-
bridge, 1994.

[4] 1. Babuska. The finite element method for elliptic equations with discontin-
uous coefficients. Computing, 5:207-213, 1970.

[5] R. E. Bank and C. C. Douglas. Sharp estimates for multigrid rates of con-
vergence with general smoothing and acceleration. SIAM J. Numer. Anal.,
22:617-633, 1985.

[6] A. Behie and P.A. Forsyth, Jr. Multi-grid solution of three-dimensional
problems with discontinuous coefficients. Appl. Math. Comput., 13:229-240,
1983.

[7] M.W. Benson. Iterative solution of large scale linear systems. Master’s
thesis, Lakehead University, Thunder Bay, Ontario, 1973.

[8] M.W. Benson and P.O. Frederickson. Iterative solution of large sparse linear
systems arising in certain multidimensional approximation problems. Utilitas
Math., 22:127-140, 1982.

[9] M. Benzi, C. D. Meyer, and M. Tuma. A sparse approximate inverse precon-
ditioner for the conjugate gradient method. SIAM J. Sci. Comput., 17:1135~
1149, 1996.

[10] M. Benzi and M. Tuma. A sparse approximate inverse preconditioner for
nonsymmetric linear systems. SIAM J. Sci. Comput., 19:968-994, 1998.

[11] G Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and nu-
merical algorithms I. Comm. Pure Appl. Math., 44:141-184, 1991.

147

[12]

[13]

[14]

[22]

[23]

[24]

C. De Boor. Dichotomies for band matrices. SIAM J. Numer. Anal., 17:804—
907, 1980.

J. Bramble. Multigrid Methods. Longman Scientific & Technical, Essex, UK,
1993.

J. Bramble, J. Pasciak, J. Wang, and J. Xu. Convergence estimates for
multigrid algorithms without regularity assumptions. Math. Comp., 57:23-
45, 1991.

J. Bramble, J. Pasciak, J. Wang, and J. Xu. Convergence estimates for

product iterative methods with applications to domain decomposition and
multigrid. Math. Comp., 57:1-21, 1991.

J. Bramble and J. Xu. Some estimates for a weighted [2 projection. Math.
Comp., 56:463-476, 1991.

A. Brandt. Multigrid techniques: 1984 guide with applications to fluid dy-
namics. In GMD-Studien Nr. 85. Gesellschaft fir Mathematik und Daten-
verarbertung, St. Augustin, 1984.

A. Brandt, 5. McCormick, and J. Ruge. Algebraic multigrid for antomatic
multigrid solution with application to geodetic computations. Manuscript,
1983.

F.X. Canning and J.F. Scholl. Diagonal preconditioners for the EFIE using
a wavelet basis. IEEE Trans. on Antennas. and Propagation., 44:1239-1246,
1996.

R. Chan and T. Chan. Circulant preconditioners for elliptic problems. Nu-
mer. Linear Algebra Appl., 1:77-101, 1992.

R. Chan, T. Chan, and C. Wong. Cosine transform based preconditioners for
total variation minimization problems in image processing. Technical Report

95-23, Dept. of Mathematics, UCLA, 1995.

R. Chan, Q. Chang, and H. Sun. Multigrid method for ill-conditioned sym-
metric toeplitz systems. Technical Report 95-12, The Chinese University of
Hong Kong, 1995.

R. Chan, K. Ng, and C. Wong. Sine transform based preconditioners for
symimetric toeplitz systems. Linear Algebra Appls., 232:237-260, 1996.

R. Chan and M. Ng. Conjugate gradient methods for toeplitz systems. SIAM
Review, 38:427-482, 1996.

1438

[25] R.H. Chan, T.F. Chan, and W.L. Wan. Multigrid for differential-convolution
problems arising from image processing. In Proceedings of the Workshop on
Scientific Computing, March 10-12, 1997, Hong Kong. Springer-Verlag, 1997.

[26] T. Chan. An optimal circulant preconditioner for toeplitz systems. SIAM J,
Sei. Stat. Comput., 9:766-771, 1988.

{27] T. Chan and P. Mulet. Iterative methods for total variation image restora-
tion. Technical Report 96-38, Dept. of Mathematics, UCLA, 1996.

[28] T.F. Chan and H.C. Elman. Fourier analysis of iterative methods for elliptic
problems. SIAM Review, 31:20-49, 1989.

[29] T.F. Chan, S. Go, and L. Zikatanov. Lecture notes on multilevel methods for
elliptic problerns on unstructured grids. Lecture Course 28th Computational

Fluid Dynamics, 3-7 March, 1997, von Karman Institute for Fluid Dynamics,
Belgium, 1997.

[30] T.F. Chan and T.P. Mathew. Domain decomposition algorithms. In Acta
Numerica, pages 61-143. Cambridge University Press, 1994.

[31] T.F. Chan and B. Smith. Domain decomposition and multigrid methods
for elliptic problems on unstructured meshes. In David Keyes and Jinchao
Xu, editors, Domain Decomposition Methods in Science and Engineering,
Proceedings of the Seventh International Conference on Domain Decompo-
sition, October 27-30, 1993, The Pennsylvania State University. American
Mathematical Society, Providence, 1994.

[32] T.F. Chan, B. Smith, and J. Zou. Multigrid and domain decomposition
methods for unstructured meshes. In I.T. Dimov, Bl. Sendov, and P. Vas-
silevski, editors, Proceedings of the Third International Conference on Ad-

vances in Numerical Methods and Applications, Sofie, Bulgaria, pages 53-62.
World Scientific, August 1994,

[33] T.F. Chan, W.P. Tang, and W.L. Wan. Wavelet sparse inverse precondition-
ing. BIT, 37:644-660, 1997.

[34] T.F. Chan and H.A. van der Vorst. Approximate and incomplete factoriza-
tion. Technical Report CAM 94-27, Department of Mathematics, UCLA,
1994.

[35] T.F. Chan, J. Xu, and L. Zikatanov. Agglomeration strategies in multigrid
method. In preparation, 1997.

[36] E. Chow and Y. Saad. Approximate inverse techniques for block-partitioned
matrices. SIAM J. Sci. Comput., 18:1657-1675, 1997.

149

[37] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM J. Sci. Comput., 19:995-1023, 1998.

[38] T. Coleman and J. Moré. Estimation of sparse Jacobian matrices and graph
coloring problems. SIAM J. Numer. Anal., 20:187-209, 1983.

(39] J.D.F. Cosgrove, J.C. Diaz, and A. Griewank. Approximate inverse precon-
ditionings for sparse linear systems. Intern. J. Computer Math, 44:91-110,
1992.

[40] 1. Daubechies. Orthonormal bases of compactly supported wavelets. Comm.
Pure Appl. Math., 41:909-996, 1988.

[41] I. Daubechies. Ten Lectures on Wavelets, CBMS-NSF Series Appl. Math.
SIAM, 1991.

[42] D. F. D’Azevedo, P. A. Forsyth, and W. P. Tang. Towards a cost effective
ILU preconditioner with high level fill. BIT, 32:442-463, 1992.

[43] S. Demko. Inverses of band matrices and local convergence of spline projec-
tions. SIAM J. Numer. Anal., 14:616-619, 1977.

[44] S. Demko, W.F. Moss, and P.W. Smith. Decay rates for inverses of band
matrices. Math. Comp., 43:491-499, 1984.

[45] J.W. Demmel, M.T. Heath, and H.A. van der Vorst. Parallel linear algebra.
In Acta Numerica, pages 111-198. Cambridge University Press, 1993.

[46] J.E. Dendy, Jr. Black box multigrid. J. Comp. Phys., 43:366-386, 1982.

[47] J.E. Dendy, Jr. Black box multigrid for nonsymmetric problems. Appl.
Math. Comput., 13:261-283, 1983.

[48] J.E. Dendy, Jr., M.P. Ida, and J.M. Rutledge. A semi-coarsening multigrid
algorithm for SIMD machines. SIAM J. Sci. Stat. Comput., 13:1460-1469,
1992.

[49] M. Dryja, M. Sarkis, and O. Widlund. Multilevel Schwarz methods for
elliptic problems with discontinunous coefficients in three dimensions. Numer.
Math., 72:313-348, 1996.

[50] M. Dryja, B. Smith, and O. Widlund. Schwarz analysis of iterative substruc-
turing algorithms for problems in three dimensions. SIAM J. Numer. Anal.,
31:1662-1694, 1994.

150

[51] M. Dryja and O.B. Widlund. Towards a unified theory of domain decompo-
sition algorithms for elliptic problems. In Tony F. Chan, Roland Glowinski,
Jacques Periaux, and Olof B. Widlund, editors, Third International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations,

pages 3-21. SIAM, Philadelphia, 1990.

[52] T. Dupont, R. Kendall, and H. Rachford. An approximate factorization pro-
cedure for solving self-adjont elliptic difference equations. SIAM J. Numer.
Anal., 5:559 573, 1968.

{53] V. Eijkhout and B. Polman. Decay rates of inverses of banded m-matrices
that are near to toeplitz matrices. Linear Algebra and Its Appl., 109:247-277,
1988.

[p4] B. Engquist and E. Luo. Multigrid methods for differential equations with
highly oscillatory coefficients. In Proceedings of the Sixth Copper Mountain
Conference on Multigrid Methods, pages 175-190, 1993.

[55] Bjorn Engquist, Stanley Osher, and Sifen Zhong. Fast wavelet basd algo-
rithms for linear evolution equations. SIAM J. Sei. Comput., 15:755-775,
1994, '

[56] C. Farhat and F. X. Roux. Implicit parallel processing in structural me-
chanics. Technical Report CU-CSSC-93-26, Center for Aerospace Structures,
University of Colorado, November 1993.

[57) Paul F. Fisher. Projection techniques for iterative solution of Ax=b with
successive right-hand sides. Technical Report 93-90, ICASE, December 1993.

[58] J. Fuhrmann. A modular algebraic multilevel method. In Virtual Proceedings
of the Ninth International GAMM-Workshop on Parallel Multigrid Methods,
1996.

[59] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman,
New York, 1979.

[60] A. George and J. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981,

[61] R. Glowinski, A. Rieder, R.O. Wells, Jr., and X. Zhou. A wavelet multigrid
preconditioner for dirichlet boundary-value problems in general domains.
Technical Report TR93-06, Rice Computational Mathematics Laboratory,
1993.

[62] G. H. Golub and R. Underwood. The block lanczos method for computing
eigenvalues. In J. R. Rice, editor, Mathematical Software III, pages 361-377,
New York, 1977. Academic Press.

151

[63] G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins,
1989.

[64] N. I. M. Gould and J. A. Scott. On approximate-inverse preconditioners.
Technical Report RAL-TR-95-026, The Central Laboratory of the Research
Councils, 1995.

{65] L G. Graham and M. J. Hagger. Unstructured additive schwarz - cg method
for elliptic problems with highly discontinuous coefficients. Technical Report
9608, School of Mathematical Sciences, University of Bath, Bath, UK, 1996.

[66] A. Greenbaum, C. Li, and H. Chao. Parallizing PCG algorithms. Comp.
Phys. Comm., 53:295-309, 1989,

[67] M. Grote and T. Huckle. Parallel preconditioning with sparse approximate
inverses. SIAM J. Sci. Comput., 18:838-853, 1997.

[68] M. Grote and H. Simon. Parallel preconditioning and approximate inverses
on the connection machine. In Scalable High Performance Computing Con-
ference (SHPCC), 1992 Williamsburg, VA, pages 76-83. [EEE Computer
Science Press, 1992,

[69] M. Grote and H. Simon. Parallel preconditioning and approximate inverses
on the connection machine. In Richard Sincover et al, editor, Sizth SIAM
Conference on Parallel Processing for Scientific Computing II, pages 519-
523. SIAM, 1993.

[70] H. Guillard. Node-nested multigrid method with delaunay coarsening. Tech-
nical Report RR-1898, INRIA, Sophia Antipolis, France, March 1993.

[71] 1. Gustafsson. A class of first order factorization methods. BIT, 18:142-156,
1978.

[72] W. Hackbusch. Ein iteratives Verfahren zur schnellen Auflosung elliptischer
Randwert-probleme. Technical Report 76-12, Universitat zu Koln, 1976.

[73] W. Hackbusch. Multi-grid Methods and Applications. Springer-Verlag,
Berlin, Heidelberg, 1985.

74] W. Hackbusch. The frequency decomposition multigrid method, part I: Ap-
g
~ plication to anisotropic equations. Numer. Math., 56:229-245, 1989.

[75] W. Hackbusch. Integral Equations: Theory and Numerical Treatment. Birk-
hauser Verlag, Basel, Switzerland, 1995.

[76] A.Harten. Discrete multi-resolution analysis and generalized wavelets. Tech-
nical Report 92-08, Dept of Mathematics, UCLA, 1992,

152

77l

[78]

[79]

[80]

[81]

P. W. Hemker. The incomplete ILU-decomposition as a relaxation method in
multi-grid algorithms. In J. H. Miller, editor, Boundary and Interior Layers
- Compulational and Asymptotic Methods, pages 306-311. Boole Press, 1980.

T.Y. Hou, X.H. Wu, and Z. Cai. Convergence of a multiscale finite element
method for elliptic problems with rapidly oscillating coefficients. Submitted
to Math. Comp., 1996. .

T. Huckle. Sparse approximate inverses and multigrid methods. Sixth SIAM
Conference on Applied Linear Algebra, Snowbird, October29-November 1,
1997.

A. Jameson. Solution of the Euler equation for two-dimensional flow by a
multigrid method. Appl. Math. and Comp., 13:327-335, 1933.

P. Joly. Résolution de systémes linéaires avec plusieurs seconds members par
la méthode du gradient conjugué. Technical Report R-91012, Publications du
Laboratoire d’Analyse Numérique, Université Pierre et Marie Curise, Paris,
March 1991.

M. Jones and P. Plassmann. Solution of large, sparse systems of linear equa-
tions in massively parallel applications. In Proceedings of Supercomputing
92, pages 551-560. IEEE Computer Society Press, 1992.

M. Jones and P. Plassmann. A parallel graph coloring heuristic. SIAM J.
Sci. Comput., 14:654-669, 1993.

M. Jones and P. Plassmann. Scalable iterative solution of sparse linear sys-
tems. Parallel Computing, 20:753-773, 1994.

R. Kettler, Analysis and comparison of relazation schemes in robust multi-
grid and precondidtioned conjugate gradient methods. In W. Hackbusch and
U. Trottenberg, editors, Multigrid Methods, Nov 1981.

R. Kettler and J.A. Meijerink. A multigrid method and a combined
multigrid-conjugate gradient method for elliptic problems with strongly dis-
continuous coeflicients in general domains. Shell Publ 604, KSEPL, Rijswijk,
1981.

S. Knapek. Matrix-dependent multigrid-homogenization for diffusion prob-
lems. In 1996 Copper Mountain Conference on Iterative Methods, 1996.

L.Yu. Kolotilina, A.A. Nikishin, and A.Yu. Yeremin. Factorized sparse ap-
proximate inverse {FSAI) preconditionings for solving 3d fe systems on mas-
sively parallel computers II. In R. Beauwens and P.de Groen, editors, Iter-
ative Methods in Linear Algebra, Proc of the IMACS International Sympo-
sium, Brussels, April 2-4, 1991, pages 311-312, 1992,

153

[89]

[90]

[95]

[96]

[97]
[98]

[99]

[100]

[101]

L.Yu. Kolotilina and A.Yu. Yeremin. Factorized sparse approximate inverse
preconditionings I. theory. SIAM J. Matriz Anal. Appl., 14:45-58, 1993.

M.H. Lallemand, H. Steve, and A. Dervieux. Unstructured multigridding by
volume agglomeration: Current status. Computers and Fluids, 21:397-433,
1992.

R. LeVeque and Z. Li. The immersed interface method for elliptic equations

with discontinuous coefficients and singular sources. SIAM J. Numer. Anal.,
31:1019-1044, 1994.

Ju.B. Lifshitz, A.A. Nikishin, and A.Yu. Yeremin. Sparse approximate in-
verse (FSAI) preconditionings for solving 3D CFD problems on massively
parallel computers. In R. Beauwens and P.de Groen, editors, lterative Meth-
ods in Linear Algebra, Proc of the IMACS International Symposium, Brus-
sels, April 2-4, 1991, pages 83-84, 1992,

E. Luo. Multigrid Method for Elliptic Equation with Oscillatory Coefficients.
PhD thesis, Department of Mathematics, UCLA, California, US, 1993.

J. Mandel. Multigrid convergence for nonsymmetric, infinite variational
problems and one smoothing step. Applied Math. Comput., pages 201-216,
1986.

J. Mandel, M. Brezina, and P. Vanek. Energy optimization of algebraic
multigrid bases. Technical Report 125, Dept. of Mathematics, UC Colorado,
Denver, 1998.

D.J. Mavriplis. Unstructured mesh algorithms for aerodynamic calculations.
Technical Report 92-35, ICASE, NASA Langley, Virginia, July 1992.

S. McCormick. Multigrid Methods. SIAM, Philadelphia, Penn, 1988.

J. Meijerink and H.A. van der Vorst. An iterative solution method for linear
systems of which the coefficient matrix is a symmetric m-matrix. Math.

Comp., 31:148-162, 1977.

G. Meurant. A review on the inverse of symmetric tridiagonal and block
tridiagonal matrices. SIAM J. Malriz Anal. Appl., 13:707-728, 1992.

A. A. Nikishin and A. Yu. Yeremin. Variable block cg algorithms for solving
large sparse symmetric positive definite linear systems on parallel comput-
ers, I: General iterative scheme. Technical Report EM-RR 1/92, Elegant
Mathematics, Inc. (USA), February 1992.

Dianne P. O’Leary. The block conjugate gradient algorithm and related
methods. Linear Algebra and Its Applications, 29:292-322, 1980.

154

[102] M. Omen. Fast multigrid techniques in total variation-based image recon-
struction. In Proceedings of the 1995 Copper Mountain Conference on Multi-
grid Methods, 1995.

[103] E. Ong. Hierarchical Basis Preconditioners for Second Order Elliptic prob-
lems in Three Dimensions. PhD thesis, University of Washington, Seattle,
1989.

[104] M. Papadrakakis and S. Smerou. A new implementation of the lanczos
method in linear problems. International Journal for Numerical Methods
in Engineering, 29:141-159, 1990.

[105] B. N. Parlett. A new look at the lanczos algorithm for solving symmetric
systems of linear equations. Linear Algebra Appl., 29:323-346, 1980.

[106] B. N. Parlett. The Symmetric Figenvalue Problem. Prentice-Hall, 1980.
[107] P. Plassmann. Private communication.

[108] A. Ramage and A. Wathen. On preconditioning for finite-element equations
on irregular grids. SIAM J. Matriz Anal. and Appl., 15:909-921, 1994,

[109] A. Reusken. Multigrid with matrix-dependent transfer operators for a sin-
gular perturbation problem. Computing, 50:199-211, 1993.

[110] A. Reusken. Multigrid with matrix-dependent transfer operators for convec-
tion-diffusion problems. In Muliigrid Methods, Vol. IV, Springer Lectures in
Math. Springer-Verlag, 1993.

[111) L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60:259-268, 1992.

[112] J.W. Ruge and K. Stuben. Algebraic multigrid. In 8. McCormick, editor,
Multigrid Methods, pages 73-130. SIAM, 1987.

[113] Y. Saad. On the rates of convergence of the lanczos and the block-lanczos
methods. SIAM J. of Numer. Anal., 17:687-706, 1980.

[114] Y. Saad. On the lanczos method for solving symmetric linear systems with
several right-hand sides. Math. Comp., 48:651-662, 1987.

[115] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester
University Press, 1992.

[116] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing,
1996.

155

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

130]

L. Ridgway Scott and Shangyou Zhang. Finite element interpolation of non-
smooth functions satisfying boundary conditions. Math. Comp., 54:483-493,
1990.

George F. Simmons. Introduction to Topology and Modern Analysis.
McGraw-Hill, 1963.

V. Simoncini and E. Gallopoulos. A memory-conserving hybrid method for
solving linear systems with multiple right-hand sides. In Copper Mountain
Conf. Iterative Methods, April 1992.

V. Simoncini and E. Gallopoulos. An iterative method for nonsymmetric
systems with multiple right-hand sides. SIAM J. Sci. Comput., 16(4):917-
933, 1995.

B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel
Multilevel Methods for Elliptic. Partial Differential Equations. Cambridge
University Press, Cambridge, 1996.

Charles F. Smith. The Performance of Preconditioned Iterative Methods in
Computational electromagnetics. PhD thesis, Dept. of Electrical Engineer-
ing, University of Illinois at Urbana-Champaign, 1987.

Charles F. Smith, Andrew F. Peterson, and Raj Mittra. A conjugate gradient
algorithm for the treatment of multiple incident electromagnetic fields. IEEE
Transactions On Antennas And Propagation, 37(11):1490--1493, 1989.

R.A. Smith and A. Weiser. Semicoarsening multigrid on a hypercube. SIAM
J. Sci. Stat. Comput., 13:1314-1329, 1992.

H. Stone. Iterative solution of implicit approximations of multidimensional
partial differential equations. SIAM J. Numer. Anal., 5:530-558, 1968.

G. Strang. A proposal for toeplitz matrix calculations. Stud. Appl. Math.,
74:171-176, 1986.

G. Strang and G. J. Fix. An Analysis of the Finite Element Method.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

S. Ta’asan. Multigrid Methods for Highly Oscillatory Problems. PhD thesis,
Weizmann Institute of Science, Rehovat, Israel, 1984.

W. P. Tang. Schwarz Splitting and Template Operators. PhD thesis, Com-
puter Science Dept., Stanford University, Stanford, 1987.

W. P. Tang. Effective sparse approximate inverse preconditioners. In prepa-
ration, 1995.

156

[131] W. P. Tang. Towards an effective approximate inverse preconditioner. SIAM
J. Sei. Comput., 19, 1998.

[132] A. van der Sluis and H. A. van der Vorst. The rate of convergence of conju-
gate gradients. Numerische Mathematik, 48:543-560, 1986.

[133] H. A. van der Vorst. An iteration solution method for solving f(A)x=b, using
krylov subspace information obtained for the symmetric positive definite
matrix a. Journal of Computational and Applied Mathematics, 18:249-263,
1987. '

[134] P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed ag-
gregation for second and fourth order elliptic problems. Computing, 56:179-
196, 1996.

[135] P.S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approx-
imate wavelets, I: Theory. Technical Report 95-47, Dept of Mathematics,
UCLA, 1995.

[136] P.S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approxi-
mate wavelets, IT: Implementation and Numerical Results. Technical Report
95-48, Dept of Mathematics, UCLA, 1995.

[137] C. R. Vogel. Private communication. March 97.

[138] C. R. Vogel. A multigrid method for total variation-based image denoising.
In K. Bowers and J. Lund, editors, Computation and Control I'V. Birkhauser,
1995.

[139] C.R. Vogel and M.E. Oman. Iterative methods for total variation denoising.
SIAM J. Sei. Comput., 17:227-238, 1996.

[140] W. L. Wan. An energy-minimizing interpolation for multigrid. Technical
Report 97-18, Dept of Mathematics, UCLA, 1997.

[141] W. L. Wan, T. F. Chan, and B. Smith. An energy-minimizing interpolation
for robust multigrid. Technical Report 98-6, Dept. of Mathematics, UCLA,
1998.

[142] J. W. Watts-TII. A conjugate gradient truncated direct method for the it-
erative solution of the reservoir simulation pressure equation. Society of

Petroleum Engineer Journal, 21:345-353, 1981.

[143] P. Wesseling. A robust and efficient multigrid method. In Multi-grid Meth-
ods, Proceedings, Kéln-Porz, November 1981, Lecture Notes in Mathematics
960, pages 614—630. Springer-Verlag, 1982.

157

[144] P. Wesseling. Theoretical and practical aspects of a multigrid method. SIAM
J. Sei. Stat. Comput., 3:387-407, 1982.

[145] P. Wesseling. An Introduction to Multigrid Methods. Wiley, Chichester,
1992.

[146] G. Wittum. On the robustness of ILU smoothing, SIAM J. Sev. Stat. Comp.,
10:699-717, 1989.

[147] J. Xu. Private communication.
(1481 J. Xu. Theory of Multilevel Methods. PhD thesis, Cornell University, 1989.

[149] J. Xu. Iterative methods by space decomposition and subspace correction.

SIAM Review, 34:581-613, 1992

[150] H. Yserentant. On the multilevel splitting of finite element spaces. Numer.
Math., 49:379-412, 1936.

[151] P.M. De Zeeuw. Matrix-dependent prolongations and restrictions in a black-
box multigrid solver. J. Comp. Appl. Math., 33:1-27, 1990.

[152] X. Zhang and J. Bramble. Uniform convergence of the multigrid v-cycle for
an anisotropic problem. In A Numerical Analysis Conference in Honor of
Olof Widlund, January 23-24, Courant Institute, New York, 1998.

158

