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Abstract

This report describes some numerical experiments for the three-
dimensional incompressible Navier-Stokes equations where a forcing
function is added to the equations. We study a time-constant forcing
as well as a forcing where the random phase is varying smoothly with
time. Tt is demonstrated that the time history of the large scale {low
Fourier modes) of the solution reproduces the small scale (high Fourier
modes) exponentially fast. We also make perturbations to the time-
history, L.e. instead of the correct large scale time history from a
reference run we perturb the data. We perturb the amplitude of the
Fourier coefficients but not the phase, and we also make a random
phase perturbation. The conclusion is the same, the small scales are
reproduced except for a part that can be credited the perturbation.
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1 Introduction

In this report we summarize some results for the numerical solution of the
three-dimensional incompressible Navier-Stokes equations,

wit(w-Vu+Vp = FrvAu, v>0, 2 0 (1.1a)
V.ou = 0, >0, (1.1b)
u = ulz), p=pe(z), t=0, (1.1c)

with 27-periodic boundary conditions and where F' = F(a,t) is a prescribed
9r-periodic forcing function. In an earlier report, [1] we studied these equa-
tions without forcing. Without a forcing function the kinetic energy comes
solely from the initial data and in 3D the time interval where there is bal-
ance between large scales and small scales 1s rather short. In this report we
want to study the case of balance between the kinetic energy put into the
equations by the forcing function and the high mode dissipation. This re-
port can therefore be considered as a step towards more realistic conditions
of homogeneous turbulence. This report uses the same numerical technique,
actually the same computer program as in [1]. The notations are the same
if not stated differently.
We can expand the solution into Fourier series

u(z,t) = Ek:'&(k,t)eik'“’, (1.2)
ple,t) = Zﬁ(k,t)e’:k'm, (1.3)
k

where & = (z,y,2)7, u = (u,v,0)7 and k = (kl,kg,kg)T, ke N. We
consider four different type of forcing functions, all have random phase and

2



a prescribed energy spectrum. Three functions are time independent, they
differ in the spectrum shape. The fourth function has a spectrum form
coinciding with one of the time independent functions but has a random
phase that varies smoothly with time. These forcing functions denoted by

F:Fb(ﬂl), bG{A,B,C}, FzFD(:n,t),

are in Section 2 used to calculate pseudo-stationary turbulent states for the
case of v = 1/150 and N = 128, We also make a calculation with F' = F4
but with ¥ = 1/300 and N = 256. By pseudo stationary state we mean
a state where the kinetic energy and rate of dissipation has reached levels
where they not change so much. Typically the kinetic energy and rate of
dissipation do not converge to fixed values but instead vary smoothly in time
around some nonzero average value. The magnitude of the forcing function
's chosen so that the solution is resolved on the grid, based on the smallest
scale estimate ¢.f. [1]. These base-run solutions are denoted by,

up(x,1), 1= 1o, be {A, B,C,D,E},

and they are in Section 3 used to make playback-runs. That is, we calculate
solutions to the small scale part of Navier-Stokes equations cf. [1],

'U,},U+ (((TLI +u11) . V)'U,H)II+
(- V)T 4 VpT = Fi +vAul + GT(w),  (L4a)
V.ull =0, (1.4b)

where
Gl = (' V),
for t > tg with
ul(e,t) = ul(x,t), DE {A,B,C,D, E},

and with initial data,
UII(m,to) = (.

We say that the large scale uf reproduces the small scale uif(z,t) if

ull(z,t) — w{(z,t) — 0. (1.5)
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The conclusion is that for all b the large scale ul seem to reproduce the
small scale, furthermore the convergence (1.5) appears to be exponential.
The rate of convergence depends strongly on the number of modes k. used in
the definition of the large scale. It does however not seern to be so sensitive
to the form of the spectrum. An important question is how the number of
modes needed o obtain a certain convergence rate depends on the viscosity.
We compare two playback calculations, with the same initial data and forcing
functions but with different viscosity » = 1/150 and v = 1/300. For the small
viscosity we obtain a certain convergence rate in Lo norm sense with k, = 13.
We then chose k, for the large viscosity case so that the convergence rate 1s
similar. The number of modes needed for this case is around k. = 8.6. We
furthermore observe that the relative amount of enstrophy contained in the
Jarge scale is smaller for the small viscosity case than the large viscosity case
for similar convergence rate. The relative amount of kinetic energy contained
in the large scale, however is about the same.

To further investigate the possibility to reproduce the small scale from the
time-history of the large scale we also perturb the time history. In Section 4
we calculate the solution to (1.4) for £ > to with

ul(z,t) = uy(m, 1) + d(z,t), ¢>1o

with initial data,
'lLII(iB,t{)) = 0.

Here |||&]|] ~ e|ijublll, € < 1. We make two types of perturbations. The
first type has the effect that the magnitude of the Fourier coefficients of
ul(z,1) are changed but the phase is not, and the second type has random
phase and a spectrum form that is approximately equal to eEug(fc). The con-
clusion from the calculations are the same for the two types of perturbations,
the small scale is reproduced down to a certain level that can be credited the
perturbation, 1.e.

tign |}y (2, 2) — u'' (2, £)l[] = O(e).

2 Base-runs

In this section five calculations are presented. We solve the equations (1.1)
with the same random phase initial data g and with four different forcing
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functions,

F=Fyz), be{A B C}, F= Fp{z,t),
for v = 1/150 and N = 128. The fifth calculation is done with

F = FE(iB) = FA(:B),
but with v = 1/300 and N = 256. The spectrum of the 0 data is
Ea, (k) = Cuke~ /%),

where kg = 3.76 and C,, is chosen such that,

1 , 1
gy welll” = 3
The spectrum of the forcing functions are,
EFA(IC) = éAE#(k—S)Q’/‘Z, k‘Z 1, (21)
Epy(k) = Cpe®972 k>1, (2.2)
A k? ~g8 a1

Ero(k) = Cogramyprn 2 k>, (2.3)
Ep (k) = Cpe =72 k>1, (2.4)

and Ep,(0) = 0 for b€ {4, B,C,D}. The constants Cy are chosen such that,
1
—||1F|}|* = Cs.
LlFP = G

The phases of the forcing functions are chosen randomly. For each wave
number k = (ki, k2, k’3)T and each forcing function three random uniformly
distributed numbers ¥! € [0,27), ¢ = 1,2,3 are used. For the function F'p
above we use,

VO(k,t) = UA(k)+wsin(3.57' 2 fit), (2.5)
0 (k,t) = O2(k) + rein(4.00° fot), .
WDk, t) = Ui(k)+rsin(3.07 fst), (2.7)

as the random numbers where U# are the random numbers used for Fiy. We
chose

fl = 10: f2 - 09, f3 = 0.8.
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These numbers are chosen on the basis that the change in the flow, due to the
forcing function, should be comparable to the convergence rate of (1.5). For
the calculations the parameters in Table 1 are valid. The kinetic energy and
rate of dissipation are estimated in a region where we consider the solution
to be pseudo-stationary, this region is here taken as t € [10.0,15.0] for b €
{A, B,C}. For the case D the energy and rate of dissipation varies more
due to the time-dependence of the forcing function. For this case we take
t € [4.0,9.0]. For the small viscosity caleulation case E we take ¢ € [6.0,8.0].
The smallest scale is as before estimated based on,

V [ Y
:nt'n = ma ]$g|mam - mta'x\fsglmam;

where £} is the y component of the vorticity vector. We argue that the
solution is isotropic and therefore that our conclusions based only on ¢ is
valid for the whole solution. In Figure 6 - 8 contour plots of & are shown in
planes

y=y; = (j — ) /3N),

at 4 = 10.0 for b = A,...,D. In Figure 1 - 5 the spectrum FE,, (k) and
the enstrophy spectrum k?E,, (k) are plotted for the base-tuns at { = to.
We argue that the contour plots of £/ and the plots of the spectrums are
representative for the base-runs in the whole time interval of consideration.
See also the time study of kinetic energy, rate of dissipation and |€fjmae iR
Figure 9 - 13.

3 Playback calculations

In this section we use the large scale of the base-runs from the previous sec-
tion to make playback calculations, that is experiments with the small scale
equations (1.4), according to the introduction. We make playback calculation
in the time interval

te [tD: tl}a

and use different k. in the definition of the large/small scale, c.L. [1]. The
playback-runs are denoted by playback-b, and by

ugg’b(@t), be {A B,C,D,E}.
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We compare the playback-run to the base-run in y = y; planes for which |€3]
attains its maximum. We compute the 2D relative L, norm squared

1T =€) /NN

as well as 2D relative max-norm,

(e~ ()" Imea/ 168 lmas-

Table 2, 3 shows these norms for the playback computations. It is clear
from Table 2 that the convergence rate is strongly dependent on the number
of modes k, used in the definition of the large scale. A natural question
is now how the number of modes needed to obtain a certain convergence
rate depends on the viscosity parameter v 7 The playback-E differ to the
playback-A essentially in the viscosity. In Figure 14 we have made a least
square linear fit to the logarithm of the relative L, norms found in the Table
9 and Table 3 for playback-A and k. = 8,9 and for playback-E and k. = 13.
We have not used the data for the playback-E and ¢ = 7.96, which we argue
is misleading. We believe that this glitch in the otherwise monotone decay is
due to the fact that the solution is poorly resolved. By linear interpolation
between the slopes of the two playback-A straight lines we find that to obtain
the same slope and thereby the same convergence rate (in the Lo sense) as
for playback-L with k, = 13 one would need a k. = 8.6.

Tf we introduce the cumulative kinetic energy and the cumulative enstro-

phy,

g = S E(k), €= E(k),

M T
o

Qx = Ek), Q=S kE(k)

we note from Table 4 that the fraction of kinetic energy in the large scale is
about the same for base-run-A, k., = 8.6 and base-run-E, k. = 13. However
the fraction of the enstrophy for the small scale is larger for the base-run-E,
k. = 13 than for base-run-A and k. = 8.6.



4 Perturbations to a playback calculation

In this section we make perturbations to the large scale time-history u} and
ask what happens with the playback procedure. Indeed we can, as will be
seen below, still reconstruct the small scales except for a part that can be

credited the perturbation.
We solve (1.4) with

ul(wat) = ui(mat) +a(®,t), t>lo, @z, to) =0
and
'lLII(fL',tQ) = 0.
Two different perturbations are used here,

1. change of the amplitude of the large scale but not the phase,

w(k,t) = cith (k,t)(cos(2mk, /8) — cos(2mky [8) + sin(27k3/8)),

2. random phase perturbation,

w(k,t) = ew(k),

where € < 1. The second perturbation satisfies the incompressibility con-
straint and for the spectrum it holds that

Eu(k) m~ Eyul(k), E<k+1/2,
Eu(k) = 0, k>k+1/2.

The spectrum Eqyr 1s time-dependent but changes very little during the
time interval of the simulation. We denote the solutions to the perturbed
playback-runs,
u;blp,i(mat)vt 2 tD:
where 7 = 1,2 is the perturbation type. Perturbed playback-runs are made
with
t € 110,15, to = 10,

for 5 = 1,¢ = 0.005 and for ¢ = 2,¢ = 0.005,0.05. In Table 5 the norms of
the difference between the perturbed playback-run and the base-run-A are
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shown for the two types of perturbations. For practical reasons the following
norms are computed,

€] + 1R — (G I
EAT? ’

and

i(é—i)l] - (ggbp,i)ll - é'y]may;
€4 lmas '

Tt seems like the small scales are reproduced down to a certain level that
depends linearly on the perturbation size parameter ¢.
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TG 2 [N AL Do [l | plI&N
7, (0.4 17150 | 128 | 0.0018 | 0.64 | 0.94-0.99 ) 0.32-0.35
Fyl04!|1/150 | 128 | 0.0018 | 0.90 | 0.41-0.44 1 0.25-0.27
0.4 |1/150 | 128 | 0.0018 | 0.90 | 0.61-0.63 | 0.21-0.22
7o | 6.0l 1/150 | 128 | 0.0018 | 058 | 0.38-1.00 | 0.19-0.36
7, | 0.4 ]1/300 | 256 | 0.0010 | 0.64 | 0.920.96 | 0.340.36 |

Ho QE =T
y
O

Table 1: Parameters and data for bage-runs.
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Figure 1: 3D kinetic energy spectrum and enstrophy spectrum for base-run-A
at t = Tfo =10.0
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Figure 2: 3D kinetic energy spectrum and enstrophy spectrum for hase-run-B
at T = to = 10.0
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Figure 3: 3D kinetic energy spectrum and enstrophy spectrum for base-run-C
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Figure 4: 3D kinetic energy spectrum and enstrophy spectrum for base-run-D
ab t = fg = 4.0
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Figure 5: 3D kinetic energy spectrum and enstrophy spectrum for base-run-E
at t = t() =6.0
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(b) {min,max): (—30.7, 18.1)

Figure 6: Contour plots of the y component of the vorticity at t = o = 10.0,
(a) base-run-A for y = yis1 and (b) base-run-B for y = yeo, contour spacing:2
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(b) (min,max): (—21.6,42.0)

Figure 7: Contour plots of the y component of the vorticity, (a) base-run-C
for y = yi10 at ¢ = to = 10.0, and (b) base-run-D for y = y1m at ¢ = to = 4.0,

contour spacing:2
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of the y component of the vorticity, base-run-E for
Y = Yoo ab t =ty = 6.0, (min,max)=(-41.8,79.8), contour spacing:2

Figure 8: Contour plots
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Figure 9: Base-run-A: kinetic energy per unit volume(top), rate of dissipation
per unit volume and |€4 |z (bottom)
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Figure 10: Base-run-B: kinetic energy per unit volume(top), rate of dissipa-
tion per unit volume and €% | mas(bottom)

19



ej&#*********H-Hé*H**%HH**H*HH********H*H******H********H*

luiRA2v)
o © © ©
[ - [43] O}L
T T T

o
o
T

]
pae
T

10 10.5 11 1.5 12 12.5 13 135 14

0 2;(—***************EaHEaHE*H*******e!eaHe**W*H*Hﬁ*****#ﬂﬂ*ﬁﬂ*******

0151

v 121N

0.05

10 105 11 115 12 12.5 13 1358 14

a5 Ak
Pk £
* )

*
Hek #* *
* paRk E *
**** s Y *, ** ¥ *
25 |- ***** ****-*%*

30

e
* 1

o 1 1 1 H
10 10.5 1 1156 12 12.5 13 1385 14

Figure 11: Base-run-C: kinetic energy per unit volume(top), rate of dissipa-
tion per unit volume and |€% |mas(bottom)

20



: 3
0.8 *&W W **m*
%ﬁﬂw oo
*ﬁ*
<061 T
] R L
a *
= *. *
204 Fetenk
02t
0 i i H ) i 1 1 1 1 .|
4 45 5 55 8 6.5 7 7.5 8 85 g

0 ! H | 1 ! 1 1 1 1 1

4 4.5 5 5.5 8 6.5 7 75 8 8.5 9
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”(&y)ff_(é'y JI”J ‘ y)llﬁ_ &y llimax
ke |y | DR | e
§ et [ 10.0 | 0.4370 0.7563
8 | yss | 10.45 | 0.3545 0.5286
S | ya |10.9 | 01785 0.2863
8 | yuss | 1135 | 0.1564 0.5912
8 | yara | 11.8 | 0.0098 0.6494
8 | yuso | 12:25 | 0.0499 0.4685
8 | yes | 12.7 |0.0238 0.1904
8 | yrs | 13.15 | 0.0163 0.2030
8 | yis | 13.6 | 0.0087 0.1733
8 | yor | 14.05 | 0.0091 0.1563
§ | ysr | 14.5 | 0.0052 0.2028
9 [ st | 100 | 0.4066 0.7056
9 | yss | 10.45 | 0.2262 0.3821
9 | ys | 109 | 0.0939 0.2018
9 | yuss | 1135 | 0.0755 0.5450
0 | yirs | 118 | 0.0331 0.3008
9 | e | 12:25 | 0.0093 0.0989
12 [ yiss | 100 | 0.2749895 0581207
12 | yas | 10.45 | 0.0631647 0.246864
19 | yas | 109 | 0.0121517 0.075742
12 | yass | 11.35 | 0.0083211 0.066540
12 | grra | 118 | 0.0006282 0.031804
12 | yuss | 12:25 | 0.0001111 0.013332
12 | yes | 12.7 | 0.0000189 0.004972
12 | yos | 13.15 | 0.0000034 0.001376
12 | a1 | 136 | 0.0000007 0.000523
19 | yor | 14.05 | 0.00000016 | 0.000540
12 | yusr | 14.5 | 0.00000003 | 0.000090

Table 2: Norms for the playback-A calculations
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t

N(Eeyy (€7, ») il

|(52)H"( ﬁb,b}“ lmaz

b y TEr2 B
B |12 | yso | 10.00 0.335 0.80
B 12| yn | 10.875 0.0177 0.194
B |12 | yioo } 11.75 0.00084 0.0206
B |12 |y | 12,625 0.000043 0.0060
B |12 |y | 13.5 0.0000024 0.0032
B |12 | yer | 14.375 0.000000097 0.00024
C 12| y110 | 10.00 0.257 0.562
C |12 | 1126 | 10.625 | 0.027 0.231
C |12 | ys2 | 1125 0.0031 0.038
C {12 7o 11.875 | 0.00031 0.0126
C 112 | yigs 1 12.5 0.000030 0.00567
C |12 | y1rs | 13.125 £.000003 0.00098
C 112 | yeo |13.75 0.00000034 0.00083
D12 | yiss | 40 | 0.270 0.815
D |12 | 4163 | 4.59 0.040 £.348
D |12 | yise | 5.14 | 0.0048 0.062
D |12 | y1ss | 5.68 | 0.00068 0.032
D |12 | yirs | 6.29 | 0.000083 0.013
D12 | yss | 6.84 0.000011 (.0028
D12 |yse | 7.48 0.0000012 0.00063
D112 yaa | 8.1 0.00000014 0.00026
D |12 | ygss | 8.90 0.0000000087 0.000063
E |13 |yeo |60 0.5857 0.91386
E | 13 | ys30 | 6.28 0.3552 0.67299
E |13 | yes | 6.96 0.2807 0.77616
E |13 | yio | 6.8¢ | 0.1737 0.39942
E |13 ] yas | 7.12 0.1261 0.38750
E |13 ! yg1o | 7.40 0.0815 0.20182
E |13 | yzas | 7.68 0.0640 0.39019
E {13 | yiss | 7.96 0.1256 0.73595

Table 3: Norms for the playback-B, playback-C, playback-D, and playback-E

calculations
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Figure 14: Least-square fit of the logarithm of the L norm decay to a straight
line for the playback-A with ks = 8,9 and the playback-E calculation with
k. = 13. The slopes of the straight lines are -0.97, —1.32, —1.57.
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3 Y
base-run | k. |t —1o| == —ko

3 Q
86] 0.0 |0.927|0.514
8.6 1.35 |0.928 j 0.510
131 0.0 |0.924 | 0.443
13| 1.4 092310434

el g

Table 4: Relative energy and enstrophy contents in the large scale for base-
run-A, k. = 8.6 and for base-run-E, k. = 13. Here &6 = 0.6E + 0.4 and

ﬂg_ﬁ = 0699 -i- 0498
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Rl G

!(éi)lf_(ggbp,;)fl“”gy %maz*

i y AL €% maz
1.10.005 | 12 | y1s1 | 10.0 0.27489 (.5812
1.1 0.005 | 12 | yag | 10.45 | 0.06302 0.2467
1.]0.005 | 12 | yas {109 | 0.01240 0.0758
1. 10.005 | 12 | wiss | 11.35 | 0.00355 0.0686
1. 0.005 | 12 | yara | 11.8 | 0.00069 0.0203
1.1 0.005 | 12 | yige | 12.25 | 0.00029 0.0193
1. 10005 | 12 | yes | 12.7 | 0.00024 0.0132
1.1 0005712 ¢ yrs 13.15 | 0.00023 0.0133
1. 1 0.005 | 12 | 1151 | 13.60 | 0.00020 0.0154
1. | 0.005 | 12 | yor | 14.05 | 0.00025 0.0144
1.1 0.005 | 12 | ys7 1 145 0.00021 (.0100
1. 10.005 | 12 | yer | 14.95 | 0.00020 0.0171
5. 10.006 1 12 | w151 | 10.0 | 0.27499 0.5812
2.1 0.005 | 12 | y3s | 10.45 | 0.06304 0.2483
2.1 0.005 | 12 | yag | 10.9 | 0.01228 0.0767
9. 10.005 | 12 | yss | 11.35 | 0.00360 0.0716
2. 0.005 | 12 | 7174 | 11.8 0.00071 0.0286
2. 10.005 | 12 | wse | 12.25 | 0.00036 0.0312
2.1 0.006 112 yas 12.7 0.00020 0.0127
2.1 0.005 1 12 | yrs 13.15 | 0.00016 0.0083
9. 10.005 | 12 | 3151 | 13.60 | 0.00016 0.0213
2. 10.005 | 12 | yer { 14.05 | 0.00018 0.0190
2.10.005 | 12 | y157 | 14.5 | 0.00019 0.0322
2.1 0.005 | 12 | ygr | 14.95 | 0.00017 0.0189
2.1 0.05 | 12 | y1e1 | 10.0 {1.27499 0.5812
2.1 0.05 | 12| yas | 10.45 1 0.07033 0.2651
2.1 0.05 | 12| yue | 10.9 | 0.02745 0.1859
9.1 0,056 | 12 | 1152 11.35 | 0.01922 (3.1239
9.1 0.05 | 12| yiza | 11.8 | 0.01499 0.1123
9.1 0.05 |12 | 480 | 12,25 | 0.02229 0.1953
2.1 0.05 | 12| wes | 12.7 | 0.01756 0.1348
9.1 0.05 | 12 | yrs | 13.15 | 0.01540 0.0752
2. 0.05 {12 ys | 13.6 | 0.01554 0.2436
2.1 0.05 | 12| yo1 | 14.05 ; 0.01781 0.2254
2.1 0.05 | 12 | sy | 14.5 | 0.01914 0.3470

Table 5: Norms for perturbed base-run-A
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