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Abstract

The spreading of oil underneath a sheet of ice is computed using an adaptive
level set method for incompressible two-fluid flow. Factors such as viscosity,
surface tension, and wall adhesion are taken into account in the computations.
The results of the computations agree well with previous experiments and
theory. In this work, we also use a very efficient and accurate computational
method for determining the final steady profile of a body of oil under ice
in water. The computational models are used to make further observations
regarding the dependency of the oil spreading radius on the surface energies

between the oil, ice, and water.



I. INTRODUCTION

In recent years there has been increased oil excavation in ice covered waters?™®. As a
result, chances are increased that an oil spill due to a tanker accident or the rupture of an
oil pipeline will occur in ice covered waters. It is generally known that oil spreads over a
much smaller area under the ice cover than in open waters’. Although the presence of an ice
cover results in reduced spreading of oil, the presence of an ice cover also makes it difficult
in determining the location and area of the oil slick. Estimating the extent of the oil slick
is indispensable to the recovery of oil spreading under the ice cover®.

The important factors determining the spreading rate of oil under ice are the viscosity
of oil, the volume of oil, and the relative surface energies between the oil, water and ice.
In experiments by Yapa and Chowdhury? and Izumiyama et al.%, oil is poured through a
hole in a layer of ice, and then the oil’s spreading radius underneath the ice is measured.
In Figure 1 we sketch a diagram of axi-symmetrical spreading of ol underneath a solid ice
cover. The parameters varied in their experiments?®® were oil viscosity, pouring rate of
oil, and volume of oil. Unfortunately, it is difficult to quantify the effect of surface tension
and wall adhesion from their experiments, because the oil-water interfacial tension and the
contact angle that the free-surface forms with an ice surface were not reported by Yapa
and Chowdhury or Izumiyama et al. In experiments by Liukkonen'' and Kniazeva', oil
droplets were placed under an inclined ice cover in order to determine the oil-water interfacial
tension and contact angle. They observed representative values of 49.2g/s* for the oil-water
interfacial tension and 160° for the contact angle. These values may not represent the values
used in experiments®®®. According to Uzuner et al.'?, the oil-water interfacial tension v may
take on values ranging from 15.8g/s? to 69g/s®. Furthermore, there is speculation'! that
there is really a thin layer of water between the oil and ice; this implies that the contact
angle might be 180% and not 160°.

Along with experiments, theoretical models have been developed by Kniazeva'®, Yapa

and Chowdhury?® and Tzumiyama et al.®. In their work, equations were developed which



describe the oil spreading radius in terms of the viscosity of the oil, net interfacial fension,
rate of discharge of the oil, and the volume of oil present in the slick.

Tn our work, we study the spreading of oil under ice by computational methods. Currently
we know of only one reference, Kniazeva', of computational work done on oil spreading
under ice. Many simplifications were made in Kniazeva’s computational model. For example,
in Kniazeva's model, the thickness of the oil slick was assumed to be constant throughout
the extent of the slick. In this work, we use two computational methods for studying the
spreading of oil under ice in water. The first method, an adaptive level set approach®®,
solves the full Incompressible Navier-Stokes equations for two-fluid flow. The adaptive level
set approach allows us to easily vary important parameters such as the inflow rate of oil,
volume of oil present in the slick, viscosity, oil-water interfacial tension, and contact angle.
The second method, a new energy minimization approach, solves for the final static profile
of the oil /water free surface. The second method takes into account the density jump across
the oil/water interface and also takes into account the relative surface energies of the oil,
water and ice. Since our second method is specialized for the static oil droplet problem, it
is much more efficient, and accurate then the adaptive level set approach for computing the

final shape of a body of oil under water.

II. THEORETICAL APPROACH

Tn this section, we give an overview of the theory developed by Yapa and Chowdhury®®
and Izumiyama et al.?) for predicting the extent of oil spreading under ice covered waters.
In their work the Navier-Stokes equations for steady, axisymmetric, incompressible flow are

used to model the oil,
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Here, u is the radial velocity, v is the vertical velocity, p, is the density of oil, and v = po/po
is the kinematic viscosity for oil. Since the oil slick radius R(t) is much larger than the slick
thickness b, we introduce two dimensional length scales 2* << r* into (1) thru (3). As a

result of eliminating low order terms from (1) thru (3), the following simplified equations

follow,
1
==Pr = VolUzz (4)
—P: =4 (5)
Po
(T'Un)'r o D, (6)
T

along with the no slip boundary condition at the ice,
u(r,0) =0, (7)
and the following assumption for the tangential velocity at the oll-water interface,
uﬂ('r, —h) = u(r). (8)

The resulting solution of the simplified equations is

ulr,2) = ~ 51+ ML+ 5) o)
h h
where A is a constant defined to be
dp h?
A= o 10
8?" 2}10‘&,;7 ( )

and %, is the average interfacial velocity between the oil and water,

_ 1 R(t)
The shear stress u/dz at z = 0 and z = —h is used to find the total viscous force retarding

the spread of oil

Ho Uz R2

F, = -

(12)
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The buoyancy force accelerating the spread of oil is

1
Fy= §7TRh'29(pw - Po)- (13)

During the gravity-viscous phase F, + Fy = 0; therefore

5y = Lo LI, (14
If we assume that
Uy OC d—%gl, (15)
and the discharge rate of oil,
o= (16
is constant, then
R(t) =k Fﬂﬂ%ﬂ} 1/8 /2 (7)

Equation (17) represents the solution for “constant discharge mode” when () is constant. In
“constant volume mode,” @ = 0, the final slick radius Iy can be determined by balancing
the buoyancy force F, with the force due to the net interfacial tension F;. According to

Yapa and Chowdhury,

V = 7R%h (18)
F, = R0y, (19)
/4
1 Puw — Po)l '

Here o, represents the “net interfacial tension” which is derived from oil-water (7y), ice-
water, and ice-oil interfacial tensions. The “net interfacial tension” is also derived from the
surface roughness of the ice €.

In recent work by Izumiyama et al.” extensions were made to the model prescribed by

Yapa and Chowdhury (17) in order to include the effects of the net interfacial tension. They
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observed in their experiments that the slope of the graph of R versus v/t did not behave
as predicted by (17). In our computations, we observed the same phenomena when we

umerical simnlations when

measured the spreading constant k, defined in (17), for different

]

the surface tension coefficient -y or the contact angle f# was varied; see Table VI. Tt is evident
that when «y or 8 are increased, k decreases.
In the modified approach of Izumiyama et al., the force due to the net interfacial fension

(19) is also included along with the total viscous force (12) and the buoyancy force (13):
Fy+ Fy = F. (21)

The modified equation for the spreading rate in “constant discharge mode,” is

(Y = i | Lo P " e, 22
where
floy=(a+1-(a®+ 20,;)1/2)”8 (23)
and
omn— O (24)

(P — Po)gHo@

III. GOVERNING EQUATIONS FOR NUMERICAL METHODS

We assume that both the water and oil are governed by the incompressible Navier-Stokes

equations; therefore,

DU, o
pw—D; = —Vpy + 2u,V - D+ puF, V- U, =0,z € the liquid,
DU, .
Py = VDo + 2oV - D+ poF, V. U, =0,z € the oil, (25)

where U is the velocity, p is the pressure, p is the density, and u is the viscosity of the fluid.

The subscripts w and o denote water and oil, respectively. D/ Dt is the material derivative,



D is the rate of deformation tensor, and F is the acceleration due to gravity. The boundary

conditions at the interface, T, between oil and water are
(240D — 2usD) - = (py —po +y&)n and Uy =U,zel, (26)

where 7 is the unit normal to the interface drawn from the oil to the water, x = V-n is the
curvature of the interface, and + is the coefficient of surface tension between oil and water.
We will denote the domain containing the two fluids as { and its boundary as 0. At

solid wall boundaries, the no-slip boundary condition holds,
U=0 on 00 (27)

Besides the no-slip boundary condition, we must specify a contact angle (f) at the point
where the oil-water interface meets the solid boundary. The contact angle is a constant

derived by previous experiments'!. Figure 2 displays an example configuration,

IV. ENERGY MINIMIZATION APPROACH FOR COMPUTING STATIC OIL

DROPLETS

In this section, we describe the “energy minimization approac . which is a new efficient
method for computing the final profile of a body of oil under ice, surrounded by water. We
will assume axisymmetric geometry. Since we are concerned with the static solution in this
section, the time derivative terms, advection terms and viscous terms in (25) are dropped.

The resulting problem reduces to the minimization of the following energy,
h
E(r(),h) = [ (pw = po)gmar® + 2mr/1+ [/ ()] in(0 — 7/2)r2(0) + r*(h)), (28
(1, 1) = [ (ow — pobmar? + 21+ [P (@ dz - ym(sin(@ = m/2)r°(0) +r*(A), (28)
subject to the constraint,
h
[ aridz = V. (29)
0

Here, z = 0 represents the coordinant of the ice surface and z = h represents the bottom of

the oil layer. In other words, h is the thickness of the oil slick.
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As a remark, # and v may be given in terms of the relative surface energies of the oil,

water and ice. If Yiw, ¥io, and ey are the surface energies between the ice/water, ice/oil,

and oil/water intcrfaces respectively, then using the Young-Dubre equation, we have,
Y = Yow (30)
sin(f — 7/2)y = (Yio — Yiw)- (31)

We discretize (28), by minimizing the discretized energy equation,

} N1 o — 7
E(h) = 3 ((Pw — Po)gTT i1 jp%i+1 2007 + 27T’YH+1/2\/1 + [“%;_]%XZ) +
=0
ym{sin(f — 7272 + T3%)s (32}

subject to the constraint,

N-1
S ariplz =V (33)
=0

Here, 7 represents the unknown quantities, ro,71,...,TN where 7; = ih/N. rii172 and Az

are defined as (r; +7i11)/2 and h/N respectively.
In order to solve the minimization problem, we use (33) in order to express the oil slick

thickness h in terms of the unknowns 7,

VN

——— 34)
e 7T"‘"?Jrl,/z (

) =

We then plug our expression for i (34) back into (32) so that we can express energy only in

terms of the unknowns ¥. In order to minimize (32}, we solve,

OE(7, h(7))

=  =0...N. 35
B 0 i=0...N (35)

We solve (35) by using the Newton Iteration method:
= — LR, (36)

J is the Jacobian matrix whose components are,

P::A0G)
E 67‘?;8’}"3' ’
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F(7) is a vector defined as,

iy = 2ECHD), (3)

One should not be careless in choosing the initial iterate 7° for the Newton Iteration. We

initialize 7 to be constant for all z; in other words,
r’ = Ry 1=0...N. (39)

Ry is determined by minimizing (28) over the class of functions r(z) which are constant.

The resulting equation for Ry is

V (pw - PO)QVQ

Ry 7 (1 + sin{f — 7/2)) O 2r2y(1 +sin(0 — 7/2)) (40)
As a remark, for V >> 1, (40) reduces to (20) where
on = ¥{1 +sin(d — 7/2)). (41)

The advantages of the “energy minimization approach” is that it is very fast and very
accurate. We have needed at most 20 Newton Iterations in order to reach the convergence
tolerance of 10~8. This includes computations of steady profiles where 0 ranges from 0.1°
up to 180°. Since we only discretize for 0 < z < h, we can accurately compute the final
spreading radius, and profile, for oil slicks where the final spreading radius is much bigger
than the thickness h. We can also accurately compute the final spreading radius and profile,
for oil slicks on top of ice as well as below ice where the contact angle # is typically 10°. In
this case, as with the case for large oil spills under ice, the final spreading radius Ry will be
much larger than the thickness h.

A disadvantage of the “energy minimization approach” is that it is not applicable to
general topologies of the free surface. For example, in the work of Zhao et al.?!, a level
set method was presented for finding the final shape of multiple bubbles in a more general
geometry. Another disadvantage of our “energy minimization approach” is that it is only
applicable for the static problem. Below we describe the “Adaptive Level Set approach” for

solving the unsteady problem of oil spreading under ice.

9



V. ADAPTIVE LEVEL SET APPROACH
A. Level Set Formulation

We use the level set function!®1, for tracking the interface between oil and water. In

our algorithm the interface I, is the zero level set of ¢:
I = z|¢(x,t) = 0.

The level set function ¢ is positive in the water and negative in the oil. Hence we have

> 0 if € the water
¢(x,t) {=0ifzel (42)
< 0 if € the oil.
The unit normal on the interface, drawn from the oil into the water, and the curvature

of the interface can easily be expressed in terms of ¢(z,t)

Vo ( V¢ )
1= —— and k=V: | == .
Zi ™
Next, we let
up ¢ >0
7 ——
Uy ¢ <0,

where w is called the fluid velocity. By virtue of the boundary conditions, u is continuous
across the interface. Since the interface moves with the fluid particles, the evolution of ¢ is

then given by

3 B
5 U Ve=0 (43)

The governing equation for the fluid velocity, u, along with the boundary conditions can

be written as a single equation:

P2 = —Vp+ V- (u($)D) — (OGS + B (44)
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where p and p are, respectively, the density and viscosity and & is the Dirac delta function.

The surface tension force is interpreted as a body force localized on the interface. By x{¢)

Since the density and viscosity are constant in each fluid, they take on two different values

We Tneal

depending on the sign of ¢; hence we write

p(¢’) = Po + (Pw - PD)H(Qb) (45)

and

M(¢) = o + (wa - }u’o)H(qb)? (46)
where H{¢) is the Heaviside function given by

0ifp<0

H(@)=¢ Lifp=0 (47)

[l )

1 if ¢ > 0.
The Navier-Stokes equations for two-fluid flows was written in similar form and used by
Unverdi & Tryggvason (1992)%. The fact that the surface tension can be written as a delta
function concentrated at the interface has been used by Unverdi & Tryggvason (1992) and
Brackbill, Kothe, & Zemach (1992)7. The form we use here is due to Chang, Hou, Merriman,
& Osher®. The derivation of equation (44) can be found in Chang et al. in which it is shown
that the formulation of (44) admits solutions which are consistent with the free-surface

boundary conditions (26).

B. Discretization

In order to discretize (44), we use the variable density projection method as described

by Bell et al.?, Bell and Marcus® and Almgren et al.?.
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The discrete velocity field UY; and the discrete level set function ¢} are located at cell
centers. The pressure p?;;/";:j b1/2 is located at cell corners. A diagram of where the discrete
variables are located in relation to the computational grid is shown in Figure 3. J represents
the index of the computational cell closest to the top wall.

The time stepping procedure is based on the Crank-Nicholson method. Since the viscosity
in oil is much larger than that in water, we modify the Crank-Nicholson procedure by
handling the viscous terms implicitly as opposed to semi-implicitly. By computing the

viscous terms implicitly, we avoid large restrictions on the time step. Given U™, ¢™ and

p"=1/2 at time ¢ = {*, we discretize (44) and (43) in time using the following steps:
1. Update the location of the interface by solving

G = gn — AL[U - V]t (48)

The nonlinear advection term
U - Vg™, (49)

is approximated using a second order upwind scheme described by Bell and Marcus®.

In order to predict the nonlinear term (49) at the half time level, a Taylor series

expansion of the state variables is used. For example,

At At
P g+ g = ¢+ (U V)" (50)
2. Viscous solve:
U* — Un _ il vpn——%
A = —[(U - VU] p’”% -+
V. (urtiDY) k(¢ )VH™
(il ) _rld Ll +F. (51)
P e

As with the discretization of (48}, the nonlinear advection term

(U - v)yU+ (52)
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is approximated using a second order upwind scheme. Equation (51) when discretized
results in a matrix system that is solved for both components of U*. We use Multigrid

as an iteration method for solving (61},

3. Projection step:

The following equation is solved for p,

Vp us-u"
: Y. 53
pn+% v At ( )

The new velocity and pressure at time tn*+1 are updated as:
yrtt-yur U-U"  Vp
At . At p”“*'%

pn+1/2 :pnwl,/Q +p (55)

(54)

The matrix system of equations that result from discretizing (53) are solved using the

Multigrid Preconditioned Conjugate Gradient Method?”.

4. Reinitialize the level set function.
While the level set function ¢ is initialized as the signed distance to the free surface,

under the evolution of (43) it will not remain so. We solve the following equation®®
qu = SigIl((,b)(l - |V¢D: (56)

where 7 is an artificial time 7 = 0. . .¢, in order to maintain the level set function as a
distance function for points within € of the free surface. A justification for maintaining
the level set function as a distance function is given in section V B 1, “thickness of the

interface.”

1. Thickness of the Interface

Tn order to solve (44) numerically we must modify it slightly due to the sharp changes

in p across the front and also because of the numerical difficulties presented by the Dirac
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delta function contained in (44). To alleviate these problems we shall give the interface a

fixed thickness that is proportional to the spatial mesh size. This allows us to replace p(¢)

pe(d) = po + (ow — po) He(9), (57)
with
0 if ¢ < —¢
He(¢) = § L1+ ¢+ Lsin(mg/e)] if [¢] < e (58)
1 ifp>e

The smoothed or mollified delta function is

dH,
(P) = ——. 59
() =55 (59)
1t is clear from (58) that the thickness of the interface is approximately
2¢
s 60
K %0

In our algorithm the front will have a uniform thickness, consequently we must have

|V¢| = 1 when |¢} < e. A function that satisfies
Vdj=1 for =€ with d=0 for zel (61)

is called a distance function. This is because d is the signed normal distance to the interface,
I

If a level set function is equal to a distance function it then follows from (58) that the
thickness of the interface is 2¢. In our numerical calculations we shall take € = al\x where
Az is the grid size. Therefore, the interface will reduce in thickness as we refine our mesh.

Therefore it seems ideal to choose the level set function to be a distance function. It
is clear that we can choose ¢(z,0) to be a distance function; however, under the evolution
of (43) it will not necessarily remain as such. We must then be able to solve the following

problem: given a level set function, ¢(z), reinitialize it to be a distance function without
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changing its zero level set. This can be achieved by solving the following partial differential
equation:
S = sign(9) (1 - | Vi), (©2)

with initial conditions

d(:L‘, 0) = qi)(:c),

where
-1 if ¢ <0
sign(¢) =9 0 if¢=0 (63)
1 if¢g>0

and 7 is an artificial time. It is clear from (58) that we need only ¢ to be a distance fanction
close to the front. The solution d(z, ¢) will be a distance function for |d| < e. Furthermore,
since sign(0) = 0, d(z, €) has the same zero level set as ¢(x). Therefore we simply solve (62)

for 7 = 0...¢, and then replace () by d(z, €).

2. Contact Angle Boundary Conditions

Consider figure 4. For contact angles f = 90°, the level set function can be well defined
as a distance function for any point in the oil or water. This is because at any point {z,y} in
the computational domain, a normal can be drawn from the oil /water interface to the point
(z,y). f 8 < 90°, then the level set function cannot be well defined as a distance function
at points (z,y) that lie on the water/ice boundary. 1f > 90°, then the level set function
cannot be well defined as a distance function at points (z,y) that lie on the oil /ice boundary.
For the cases when 8 # 90° we construct an imaginary interface which is denoted as the
dashed line in figure 4. The points “P” and “Q" are found via second order extrapolation
of the level set function.

Tn order to implement the imaginary interface in figure 4, we use appropriate boundary

conditions for d when solving the redistance equation (62} and for ¢ when discretizing the
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curvature and advection terms. We initialize the “ghost cells” di; (j > J} by setting di
equal to the signed distance to the imaginary interface. For ghost cells (7, 7) in which a
sormal cannet be drawn from the imaginary interface to (z;,u;), we initialize d; ; to be the

second order extrapolation of d from the interior of the computational domain.

3. Mass Conservation

In preliminary computations of oil spreading using our numerical method, we experienced
a maximum of 5% overall mass loss using our numerical method. This error is prevalent due
to the high contact angle we must enforce; § = 160° or @ = 175°. The high contact angle
induces large gradients in the level set function at the point where the free surface meets
the ice. A 5% mass loss translates into about a 7% error in the final spreading radius Hy
for our computations; this error is unacceptable for our study. In order to conserve mass

exactly, we did the following steps after each time step:

1. Find the zero contour of the level set function ¢ using bilinear interpolation. The zero

contour will consist of piecewise linear line segments.

9. Determine the oil mass M(t) and perimeter P(t) from the piecewise linear contour

constructed from step 1.

3. Determine the expected mass Megqq(t) of oil. For our simulations, Megees = M{(0) +

2

T g ficeVin Flowt. Torifice 18 the radius of the “hole” into which oil is added. Vingrow 18

the normal velocity of oil entering the “hole.”

4. Update the level set function:

lM(t) . Memact (t)

5 Pl (64)

b=o+

Our algorithm for enforcing mass conservation did not have any adverse effects in the spread-

ing rate R(t). As shown in sections VIB and VIC, our results agree well with experiments
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and theory. The maximum mass fluctuation after imposing our fix for mass conservation is

2 parts in ten thousand.

C. Adaptive Mesh Refinement

In the problems we wish to solve, the thickness of the oil layer can be very thin in relation
to its length. Furthermore, for simulations where the discharge rate () is constant, only a
small portion of the physical domain will be covered with oil during early times. In order
to efficiently simulate oil spreading, we use adaptive mesh refinement™!® to add resolution
to regions near the oil/water interface.

In figure 5 we show an example of the grid structure used in adaptive mesh refinement.
The grid hierarchy is composed of different levels of refinement ranging from coarsest (£ = 0)
to finest (£ = fmaz). The coarsest level (£ = 0) covers the whole computational domain
while successively higher levels (£+1) lie on top of the level underneath them (level £). Each
level is represented as the union of rectangular grid patches of a given resolution. In our
computations the refinement ratio between levels is 2. Thus we have Azttt = Ayttt = LAzt

The initial creation of the grid hierarchy and the subsequent regridding operations in
which the grids are dynamically changed to reflect changing flow conditions use the same
procedures as were used by Bell et al.3 for hyperbolic conservation laws. In the problems we
compute here, we shall “tag” cells which contain part of the oil/water interface, i.e. those
in which the level set function changes sign. Once cells on a specified level are “tagged”
for refinement, the grids at the next higher level can be constructed. The tagged cells
are grouped into rectangular patches using the clustering algorithm given in Berger and
Rigoustsos®. These rectangular patches are refined to form the grids at the next level.
The process is repeated until either the error tolerance criteria are satisfied or a specified
maximum level is reached.

At t = O the initial data is used to create grids at level 0 through Z,,. As the solution

advances in time, the regridding algorithm is called every step to redefine grids at levels 1
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t0 .40, Level 0 grids remain unchanged throughout the calculation.
When new grids are created at level £+1, the data on these new grids are copied from the

Tr1MT
i

ey IC
})LUV i

grids at level £--1 if possible, otherwise interpolated in space from the underlying
level £ grids.

The procedure to advance U and ¢ on levels 0 thri £, is similar to that presented
for the single grid discretization described in section V B. The evaluation of the advective
derivatives found in in (52) and (49) can be performed one grid at a time, with boundary
data copied from other fine grids, interpolated from underlying coarse grids, or supplied
from physical boundary conditions. Since the redistance operation (56) is discretized as an
advection equation, the same procedure as for handling the advective terms may be applied
to handling the level set reinitialization too. The parabolic (51) and single-level elliptic
solve (53) require that the solution be computed on all grids at a level at one time, since

these are no longer explicit operations. Boundary data, for these solves are interpolated from

underlying coarse grids or supplied from physical boundary conditions.

VI. RESULTS
A. Validation

The level set method has been validated against a variety of air-water flows for axisym-
metric and fully 3d flows!6151413, Examples of problems tested with the level set method
include surface tension driven drop dynamics, water drop impacting on a pool of water, and
the flow of a gas bubble rising to a water surface and then “bursting.” In this section, we
focus on validation of our approach for handling the contact angle boundary condition which
is a new feature of our level set method.

We shall consider the relaxation of an oil droplet in water placed underneath an ice cover.
The user-defined contact angle boundary condition between the free-surface and the ice will

be f = 160°. The surface tension coefficient ~ is 49.2g/ s2. These are the experimental
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values observed by Liukkonen' for a 0.2cm? droplet of fresh crude oil lying underneath an
ice cover.

The oil droplet is initialized underneath an ice cover in such a way that it intersects
the ice cover at a 90° angle. The initial shape of the droplet is a semi-sphere. The volume
of the oil drop is 0.2cm?, the viscosity u, is 0.315g/(cm - s), the density p, is 0.85g/cm?,
and gravity g is 980cm/s?. The parameters for water are p, = 1.792 x 10~2g/(cm - s) and
pw = 1.00g/cm®. Here, since the initial contact angle is 90°% and the user-defined contact
angle is # = 160°, the contact position will begin to decrease. Eventually buoyancy forces
arrest the shrinking of the contact position. In figures 6 and 7 we display the profile of the oil
droplet at ¢ = 0.0 and ¢ = 1.2 respectively. In figures 8 and 9 we display the contact position
and kinetic energy versus time respectively when using the level set method. As a note, the
dark contour in figure 7, represents results using the “Energy Minimization Approach” with
N = 128. The results using the two methods are almost indistinguishable.

We ran this problem using successively higher levels of resolution. In Table I, we list the
final steady contact position of the droplet for resolutions of 32x32, 64x64 and 128x128 when
using the level set approach. Besides measuring the final contact position for the relaxation
from an initial angle of 90°, we also measured the final contact position for the relaxation
from an initial angle of 160°. As shown in Table I, these results are almost identical to the
first case.

In Table II, we list the final steady contact position for a relaxing oil droplet under similar
conditions as in Table I, except that we used the “energy minimization approach” instead
of the level set approach. The time to completion in order to find the final steady profile
was orders of magnitude smaller using the “energy minimization approach” as compared to
the level set approach. What is remarkable about the similarity between the results when
using either of our approaches, is the fact that the “energy minimization approach” does
not explicitly enforce the contact angle as does the level set approach; instead, the contact
angle is implicitly enforced thru proper specification of the surface energy between the ice

and the oil.
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B. Spreading simulation; Comparison with experiments

In this section we compute the spreading of oil under an ice cover and compare our
computed spreading radius R(f) to the radius obtained from experiments. We use an ax-
isymmetric coordinant system and our computational domain is 32cm by 8cm. We have
inflow conditions at the top boundary, which is the ice boundary, for 7 < Topifice- Torifice 18
the radius of the “hole” into which oil is poured into the computational domain. The inflow
velocity is specified as Vi fiow = @/ (Mranifice). @ is the user specified average inflow rate
(cm®/s).

Tn Figure 10, we show representative profiles of a computation of oil spreading under ice at
different times. The boxes in Figure 10 represent levels of adaptivity; the effective resolution
at the finest level of adaptivity is 128x32. The user-specified parameters for this problem
are O = 160°, v = 49.2g/s2,Q = 24.6cm®/s, p, = 2.54g/(cm - 8), foy = 1.792 x 107%g/(cm - 5),
po = 0.878g/cm®, and py = 1.001g/cm?®. These parameters correspond to experiment 6,
Table 1 in Izumiyama et al.”. In Figure 12, we plot the spreading radius R(t)* versus V't for
the computation shown in Figure 10. As predicted by (17), the graph is a straight line. The
spreading constant & (17) is 0.46 as measured from the slope of our graph in Figure 12. This
compares well with the experimental® result of k = 0.45. For measuring the final slick radius
Ry, we used the “energy minimization approach” described in section IV. In Figure 11, we
display the computed final steady profile of the oil slick; the final slick radius is Ry = 27.8
which compares well with the experimental® value of Ry = 26.7cm. In Table I1I, we show
more comparisons of our computational results with those of experiments®*. We suspect
that any discrepancy between our computations and experiments is because our values for
the surface tension coefficient v = 49.2g/s* and user-specified contact angle § = 160° are not

representative of the machine oil used in the experiments®. We chose the values for v and )

1'We measure R(t) from our spreading computations as the front of our oil “slick”; not as the

point where the free surface meets the ice
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based on observations by Liukkonen!*. According to Uzuner et al.l®, v may take on values
ranging from 15.8g/s* to 69g/ 2. Furthermore, there is speculation that there is really a
thin layer of water between the oil and ice; this implies that the user-specified contact angle

might be 180° and not 160°.

C. Spreading simulation; Comparison with theory

In this section we compute the spreading of oil under an ice cover and compare our
computed spreading radius R(t) to the radius predicted by (22).

In order to compare our level set computations to (22), we must first decide which value
to use for the “net interfacial tension” o,. According to (20), the net interfacial tension oy

is represented as

(Pw - po)gv2
2R} (65)

Tp —
As exemplified by (40), (65) is only valid for large volumes of oil. In Table IV, we show
computed values of the “effective” net interfacial tension o,(V) for progressively larger
volumes of oil. Our computed values of o,(V) are derived by first finding R; using our

“energy minimization approach” and then substituting Ry back into (65). As predicted by

(40), our computed values of o, (V') approach the ideal value
0 (00) = y(1 +sin(d — 7/2)), (66)

in the limit as volume gets very large.

Given either the “effective” net interfacial tension ¢, (V) (65), or the ideal value oy, (00)
(66), we are in a position to determine the spreading constant ki, defined by (22). In Tables
V and VI, we display our computed values for & when all the parameters V, Q, fi,, v and
0 are varied. We used the “cffective” net interfacial tension @, (V) (65) in determining the
values for k; in Table V and we used the ideal value oy, (00) (66) when determining the values

for ky in Table VI. According to Izumiyama et al.?, k; can be expressed as
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ky = (@) 1/8, (67)

with kg = 1/2. Tn Tables V and VI, we see that & differs from the theoretical value of

k, = 0.60 by a maximum of 5%.

VII. DISCUSSION OF RESULTS

As illustrated by Tables IV, V and VI, the spreading rate k and final oil slick radius
R; depend on the oil-water interfacial tension -y and the contact angle §. The theoretical
model for the spreading rate of oil under ice (22) is derived under the assumption that the net
interfacial tension is related to the final spreading radius Ry by (65); this is valid for relatively
large volume spills as explained by (40). In Table IV, it is shown that the “effective” net
interfacial tension o,(V) as derived from Rj approaches the ideal value on(c0) for large
values of V. Tn Table VI, we see that the spreading constant k1 is very close to the predicted
value k; = 0.60 for V > 1500cm®.

Tn order for practitioners to predict the extent of oil spreading, it is important to not
only know the viscosity, density, and volume of oil, but also to know v and §. To this end,
Liukkonen!! has done extensive experiments on oil droplets submerged under ice in order
to determine the relative surface energies of the oil, ice and water. Although, Linkkonen’s
work was thorough, there are still some unanswered questions as to the effect of interfacial
tension and wall adhesion on the spreading rate.

One question is related to the possibility that there is a thin layer of water separating
the oil from the ice. If there is a thin layer of water between the oil and ice, i.e. f = 180°,
how much effect does this have on the spreading rate k and final spreading radius Ry of
a body of oil spreading under ice? In Figure 13, we compare the computed steady profile
of a 0.2cm? oil droplet under ice for contact angles of 160°, 170°, and 180°. The fact that
these tesults are close to each other lends to the plausibility that one can measure a contact

angle that is less than 180° by accident. We increased the resolution for the 180° case up
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to N = 3500! In figure 14, we display a blow-up of the free surface profile for computations
of N = 256 and N = 3500 near z = 0. The two computations are in good agreement until
2 < 0.0006cm. In other words, if there was a layer of water separating the oil from the ice,
it would be indistinguishable to the naked eye; in fact the water layer would probably be
less than six microns thick. We remark that while on the one hand, the shape of static oil
droplets in Liukkonen’s experiments are insensitive to large contact angles, the spreading
rate k and final slick radius R; are also insensitive to large contact angles. In Table VI, we
report that the spreading constant k varies by less than 2% when the contact angle ranges
from 160° to 175°. In Figure 15 we plot the spreading constant k£ versus # where k is derived
from the theoretical model (22). In order to derive k from (22), we used the “ideal” value
for o, (66). In Figure 16, we plot the final spreading radius Ky versus f where Ry is derived
using the “Energy minimization approach” with V = 3000cm?.

Another question is related to the fact that although we have a representative value
for v from Liukkonen’s work, v = 49.2g/s?, this does not necessarily represent the values
associated with the oil used in the experiments by either Yapa et al. or Izumiyama et al.
According to Uzuner et al.', v may take on values ranging from 15.8g/s to 69g/s*. The
spreading rate k and the final spreading radius Ry both depend on «. In Figure 17, we plot
our computed spreading rate k versus « for 8 = 160°. We also plot in Figure 17 the spreading
rate k predicted by (22) versus . In Figure 18, we plot the final spreading radius Ry versus

3 and

~ where Ry is derived using the “Energy minimization approach” with V' = 3000cm
160° < # < 180°.

As a final remark, it is possible for one to predict the overall net interfacial tension
o, (00) of an oil by measuring experimental values for Ry for different volumes of oil. If one

pours a large enough volume of oil under ice, then one can find o, (00) directly from a single

experimental value of R; using (20). Unfortunately, as shown in Table IV, one would need an
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“ce tank” that is at least 6 meters in diameter? in order for (20) to accurately predict o, (c0)
to within two significant digits. For multiple measurements of R; using smaller volumes of
oil, one can fit the measured values of Ry to curves relating Ry to v. As an example for
measuring o, (oc) from experimental results, we consider the experimental results reported
in Table 1 of Izumiyama et al.? The average value® for Ry from their experiments is 26.9cm
for V = 3000cm® and 37.3cm for V = 6000cm®. In Figure 18, we plot Ry versus v for
V = 3000cm® and 160° < 8 < 180°. In Figure 19, we plot Ry versus v for V = 6000cm®
and 160° < 6 < 180°. Our resulting best fit using the data found in the experiments of

Izumiyama et al. was,

on(00) = 117 (68)
7 = 59g/s” (69)
g = 170°, (70)

VIII. CONCLUSION

We have presented an adaptive level set numerical method for computing the spreading
rate of oil under ice. We have also presented a very accurate and efficient “energy mini-
mization approach” for determining the final spreading radius and free-surface profile of a
body of oil under ice. Qur methods agree well with experiments and theory. Differences
between our methods and experiments are due to lack of information regarding the oil-water
interfacial tension v and also the contact angle #. In section VII, we examine the sensitivity

of the spreading rate k and the final spreading radius R; when the oil/water interfacial

2The ice model basin at the Ship Research Institute has dimensions of 35m by 6m in length and
width respectively
3We did not include the result from test 3 when computing the average, since this result was not

consistent with the other results; probably due to asymmetry in the results
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tension ~ or the contact angle § are varied. In future work, it is necessary to do more

realistic simulations of oil spills. For example, surface roughness and temperature were not

taken into account in our numerical models. Also, the scenario of a moving ice cover and

non-axisymmetric ice configuration will necessitate fully 3d simulations.

25



IX. ACKNOWLEDGEMENTS

This research was partially supported by an STA Fellowship, SRI, UC Davis, NSF.

26



REFERENCES

TA. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Welcome. A high-resolution
adaptive projection method for regional atmospheric modeling. In Proceedings of the U.S.

EPA NGEMCOM Conference, August 1995.

2 A. 8. Almgren, J. B. Bell, and W. G. Szymezak. A numerical method for the incompressible
Navier-Stokes equations based on an approximate projection. SIAM J. Sci. Comput.,

17(2), March 1996.

3 1. B. Bell, M. J. Berger, J. S. Saltzman, and M. L. Welcome. Three-dimensional adaptive
mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput., 15(1):1277-138,

January 1994.

41, B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the incom-

pressible Navier-Stokes equations. J. Comput. Phys., 85:257-283, December 1989.

5. B. Bell and D. L. Marcus. A second-order projection method for variable-density flows.

J. Comput. Phys., 101:334-348, 1992,

6 M. J. Berger and 1. Rigoustsos. An algorithm for point clustering and grid generation.

Technical Report NYU-501, New York University-CIMS, 1991.

7J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method for modeling surface

tension. J. Comput. Phys., 100:335-353, 1992,

8Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher. Eulerian capturing methods based on
a level set formulation for incompressible fluid interfaces. J. Comput. Phys., 124:449-464,

1996.

9K. Izumiyama, S. Uto, S. Narita, and R. Tasaki. Effects of interfacial tension on the
spreading of oil under an ice cover. In Proceedings of the 14th International Symposium

on Ice, IAHR 98, July 1998. Clarkson, University.

27



0}y, Kniazeva. Calculation of oil spreading in water surroundings under ice. Master’s

thesis, Saint Petersburg State Technical University, 1996.

x e

11q Linkkonen. Adhesion between oil and ice. Technical Report VALB160, VI'T Manufac-

turing Technology, 1996.

12§, Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algo-

rithms based on hamilton-jacobi formulations. J. Comput. Phys., T9(1):12-49, 1988.

13M. Sussman, A. Almgren, J. Bell, P. Colella, L. Howell, and M. Welcome. An adap-
tive level set approach for incompressible two-phase flows. J. Comput. Phys. accepted for

publication, 1998.

4 M. Sussman, E. Fatemi, P. Smereka, and S.J. Osher. An improved level set method for

incompressible two-phase flows. Journal of Computers and Fluids, 27(5-6):663-680, 1998.

15 M. Sussman and P. Smereka. Axisymmetric free boundary problems. J. Fluid Mech.,

341:269-294, 1997.

16 M. Sussman, P. Smereka, and S.J. Osher. A level set approach for computing solutions to

incompressible two-phase flow. J. Comput. Phys., 114:146-159, 1994.

17 (). Tatebe. The multigrid preconditioned conjugate gradient method. In 6th Copper Moun-
tain Conference on Mulligrid Methods, Copper Mountain, CO, April 4-9 1993.

185 0. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible,

multi-finid flows. J. Comput. Phys., 100:25-37, 1992.

19M.S. Uzuner, F.B. Weiskopf, J.C. Cox, and L.A. Schultz. Transport of oil under smooth
ice. Technical Report EPA-600/3-79-041, ARCTEC Incorporated, Columbia, Maryland,
USA, 1979,

2P D, Yapa and T. Chowdhury. Oil spreading under ice covers. In Proceedings of the 1989
il Spill Conference, pages 161-166, 1989.

28



21 Y. Zhao, B. Merriman, S. Osher, and L. Wang. Capturing the behavior of bubbles and
drops using the variational level set approach. Technical Report CAM Report 96-39, Uni-

versity of California, Los Angeles, 1996. submitted to JCP.

J e

29



TABLES

TABLE I. Convergence study using the Level Set Method, oil droplet relaxation, v = 49.2g/ s2,

g = 160°

Az initial contact angle initial contact position final contact position final contact angle
3/32 90 0.4567 0.2037 158.7
3/64 90 0.4567 0.2270 158.7
3/128 90 0.4567 0.2299 159.6
3/128 160 0.1244 0.2299 159.6

TABLE II. Convergence study using the “energy minimization approach,” oil droplet relax-

ation, v = 49.2g/5%, 0 = 160°

N final contact position final contact angle
64 0.2293 1584
128 0.2288 159.4
256 0.2287 159.8

TABLE III. Comparison between computations and experiments; the spreading constant k is

computed using the adaptive level set approach. The final slick radius Ry is computed using the

“energy minimization approach.”

V (em®) Q (cm®/s) polg/(em-s)) ¥(g/s)

¢

compute compute

k  Ry{cm)

k

Ry(cm)

experiment experiment

3000 24.6 954  49.2 160 0.46 27.8 0.45 26.7
3000 12.3 2.54  49.2 160 0.42 27.8 0.41 28.1
778 8.1 6.05  49.2 160 0.43 14.4 N/A N/A
880 58.7 1.79 492 160 0.50 15.5 N/A N/A
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TABLE IV. Relation between the “effective” net interfacial temsion on(V} and V.

on(o0) = (1 + sin(f — w/2)) represents the ideal net interfacial tension in the Hmit as V be-

comes infinite. v = 49.2, p, — pp, = 0.123.

V (cm?) 8 Ry(cm) on(V) oy (00)
1000 160 16.1 90.1 95.4
3000 160 27.8 92.3 95.4

30000 160 87.3 94.4 95.4
300000 160 275.7 95.1 95.4
1000 180 16.0 92.8 98.4
3000 180 27.6 95.1 98.4
30000 180 86.7 97.3 98.4
300000 180 273.6 98.1 98.4
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TABLE V. Computational results for the spreading constant ; the predicted value for k; is

0.60. g,(V) is used in determining &;.

Vi)  Qmdfs)  plg/lem-s) ) 8 on(V) £k
3000 24.6 2.54 49.2 175 94.9 0.45 0.60
3000 24.6 5.08 462 175 94.9 0.48 0.60
3000 12.3 2.54 492 175 94.9 0.41 0.58
1500 24.6 2.54 49.2 175 93.6 0.44 (.58
3000 24.6 2.54 49.2 160 92.3 (.46 0.61
3000 12.3 2.54 49.2 160 92.3 (.42 0.59
1500 24.6 2.54 49.2 160 91.0 0.45 (.59
1500 24.6 2.54 16.0 160 30.4 0.56 0.62
1500 24.6 2.54 32.0 160 60.0 0.50 0.61
1500 24.6 2.54 64.0 160 117.2 0.43 0.59

778 8.1 6.05 49.2 160 89.6 0.43 (.57
880 58.7 1.79 49.2 160 90.1 0.50 0.62
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TABLE VI. Computational results for the spreading constant ki; the predicted value for ky is

0.60. ¢, (0c0) is used in determining ;.

V (em?) Q (em3/s) tolg/ (cm - 8)) v(g/s?) 7 on{o0) k ks
3000 24.6 2.54 49.2 175 08.2 0.45 0.60
3000 24.6 5.08 49.2 175 98.2 0.48 0.60
3000 12.3 2.54 49.2 175 98.2 0.41 0.59
1500 24.6 2.54 49.2 175 98.2 0.44 0.59
3000 24.6 2.54 49.2 160 95.4 0.46 0.61
3000 12.3 2.54 49.2 160 95.4 042 (.60
1500 24.6 2.54 49.2 160 95.4 0.45 0.60
1500 24.6 2.54 16.0 160 31.0 0.56 0.62
1500 24.6 2.54 32.0 160 62.1 0.50 0.61
1500 24.6 2.54 64.0 160 124.1 0.43 0.60

778 8.1 6.05 49.2 160 95.4 0.43 0.58
880 58.7 1.79 49.2 160 95.4 0.50 0.63
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FIG. 1. Diagram of axi-symmetrical spreading of oil underneath a solid ice cover.
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FIG. 2. Diagram of oil/water interface meeting at the ice. The contact angle 0 is typically 160°

for oil in water underneath ice.
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FIG. 3. Diagram of where the discrete variables U, p and ¢ are located in relation to the

computational grid and the physical boundary.
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FIG. 4. Diagram of oil/water interface meeting at the ice. The dashed line represents the

imaginary interface used for redistancing purposes.
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. Diagram of grid structure used in Adaptive Mes MR). In this example
there are 3 levels. Level 0 has one 16x16 grid. Level 1 has two grids; a 16x16 grid and a 8x14 grid.

Level 2 also has two grids; a 16x20 grid and a 16x12 grid. The refinement ratio between levels in

this example is 2.
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FIG. 6. Initial interface for oil droplet underneath layer of ice in water. Initial angle is 900,

grid resolution is 128x128.
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FIG. 7. Steady state profile of interface for oil droplet underneath layer of ice in water. Initial
angle was 90°. grid resolution is 128x128. Results computed using the level set method {thin

contour) are compared to results using the “energy minimization approach” (thick contour).
P g gy p
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FIG. 8. Contact position versus time; 128x128 grid resolution. Initial angle is 90°,
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FIG. 9. kinetic energy versus time; 128x128 grid resolution. Initial angle is 90°.
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t==41.3 seconds

FIG. 10. The spreading of oil in water underneath ice. ¢ = 160°, @ = 24.6cm?/s. Effective fine

grid resolution is 128x32.
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final profile for oilwater free-surface; oil spreading under ice
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FIG. 11. Final profile of the oil/water free surface for oil spreading under ice; V' = 3000cm?,
v = 49.2g/s%, # = 160°. Computation performed using the “energy minimization approach” with

N =128, z = 0 represents the ice boundary.
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FIG. 12. graph of R versus t'/2 for v = 49.2g/s? and 6 = 160°.
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Comparison of steady profiles for varying contact angle
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FIG. 13. Comparison of results for the final profile of 0.2cm? oil drop under ice. Results

computed using the energy minimization approach with N == 128.
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blow-up near z=0 for steady profile of oil drop under ice; user-specified contact angle is 180 degrees
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FIG. 14. Blow-up of oil/water profile near z = 0 for the final profile of a 0.2cm? oil drop under
ice. The user-defined contact angle is 180°. The results for N = 256 and N = 3500 agree well for

values of z as small as 0.0006c¢m.
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Spreading Rate (k)

Sensitivity of spreading rate to the contact angle
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FIG. 15. Sensitivity of the spreading rate k to the contact angle 0 (v = 49.2).
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Final Radius

Sensitivity of final spreading radius to contact angle, V=300
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FIG. 16. Sensitivity of the Final Spreading Radius Ry to the contact angle 6; V = 3000.0cm?,

v = 49.2g/s%. Ry is computed using the “Energy Minimization Approach.”
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FIG. 17. Sensitivity of the spreading rate k to the Oil-water interfacial tension -y (§ = 1609).

k is derived from the theoretical model of Izumiyama et al.
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Final Spreading Radius
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Sensitivity of the Final Spreading Radius to Contact Angle and Oil-water interfacial tension
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FIG. 18. Sensitivity of the Final Spreading Radius Ry to the Oil-water interfacial tension 7.

V = 3000.0cm3 and 160° < @ < 180°. Ry is computed using the “Energy Minimization Approach.”

53



Final Spreading Radius

52

50

48

46

44

42

40

38

36

Sensitivity of Final Spreading Radius to the Contact Angle and Interfacial tension; V=6000
I 1 i I | T 1 3 1
"angle=160" —
k 'angle=170" -----
°e~ "angle=180" ----- i

1 1 I H f 1 1 1 i

15 20 25 30 35 40 45 50 55 680 65
Oil-Water Interfacial Tension

FIG. 19. Sensitivity of the Final Spreading Radins Ry to the Oil-water interfacial tension -y.

V = 6000.0cm?® and 160° < 8 < 180°. R 7 is computed using the “Fnergy Minimization Approach.”
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