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ABSTRACT. A cascade algorithm for solitary-wave solutions to the Benjamin
equation is conctructed, implemented and analyzed both numerically and
theoretically. The major advanbtages over the existing homotopy algorithm
are its simplicity, efficiency, generality, and the many properties it reveals

about the exact solution, whose closed form is out of our reach.

1. INTRODUCTION

This paper is an extension of the work of Albert, Bona and Rostrep [1] on the
solitary-wave solutions to the Benjamin equation. We present a new cascade
algorithm for the solitary-wave solutions, which were originally computed in {1]
by a homotopy method. The algorithm we propose here is simpler, more efficient
and general, Most remarkably, unlike the homotopy method, it also reveals
many important properties of the exact solution, which has no closed form
because of nonlinearity.

The presentation goes as follows. Section 2 contains a brief introduction to the
Benjamin equation and their solitary-wave solutions. The general literature of
the topic also can be read in [1-7]. The homotopic algorithm as proposed in [1]
is reviewed in section 3, followed by the introduction of our new algorithm and

numerical evidences of its success. Section 4 attempts to provide a theoretical
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framework for our algorithm. We formulate it as a special nonlinear eigenvalue
problem. An analogue to the Frobenius-Perron Theorem is established as a
quasi-justification for the convergence, However, as in most nonlinear processes,
the exact convergence mechanism is far away from being thoroughly understood.
We thereby raise an open problem for those who are interested in this topic.

9. SOLITARY-WAVE SOLUTIONS OF THE BENJAMIN EQUATION

In modeling the wave propagation n(z,t) along the interface of a 2-dimensional

2-fluid system, Benjamin derived the model equation

(1) ne + colne + 290s — alng — Buas) = 0,

where, non-negative constants co,, 5,7 are non-dimensionalized parameters,
depending either on the systern configuration {e.g. the depths of fluids) or
system physics (e.g. the densities, surface tension, and so on). The pseudo-

differential operator L denotes Hd, with H being the Hilbert transform
Hf(z) = P.V./ fy) dy.
oo &Y

Much of the physics behind the equation has been extensively studied in [I,
4, 5]. So our exploration directly starts with Eq. (1). Noticing the resemblance
to the KdV equation

M+ e + M + Nowa = 0,
one searches for a traveling solitary-wave solution in the form of
@) 1(z,2) = O(a — eofl = O)1).

A substitution into Eq. (1) followed by one integration simplifies the Benjamin

equation to
C® ~ al® — 3" +y0* = 0.
Here L and " = d*/dX? both act on

X x.ﬁ";—Co(l ""“C)t
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After the scaling transform

#(X) = —%@(\/—’gm,

one arrives at a much simpler equation which only depends on a single parameter

r = af2/BC:
(3) ¢—2rLg—¢" —¢* =0.

All the above derivations can be found in [1].

From now on, we focus our attention on Eq. (3).

Benjamin [4, 5] showed the existence of a stable solution ¢,(X) for each
r € [0,1). #.(X) is an even function of X with ¢,(0) = max¢.(X} > 0, and
decays at large X like O(1/X?) (also see Section 3).

The appearance of the nonlinear term and the Hilbert transform in Eq. (3)
makes the numerical computation a non-trivial task. In [1], the authors adopted
a homotopy algorithm, which will be reviewed briefly in the next section together
with our cascade algorithm. The new algorithm is simpler, more efficient and
general, though the convergence analysis is also difficult as in most nonlinear
algorithms. The motivation of the algorithm and our efforts fo understand its

convergence can be found in Section 4.

3. THE NONLINEAR CASCADE ALGORITHM

3.1. A brief review on the homotopy algorithm. A complete study on the
existence and stability of solitary-wave solutions to the Benjamin equation for
r near 0 was carried out in [1]. Based on their analysis, the anthors proposed
a homotopy method based Newton-Raphson algorithm for Eq. (3) in the wave-
number k-domain (i.e. Fourier transform). The idea is as follows. For r = 0,
Eq. (3) is known to have a linearly scaled sech® solution . To compute the stable

solution for some given r, € [0,1), a discrete homotopic path is introduced:
rg=0<r < - <1y

., is computed from ¢, _, by a Newton-Raphson on r in the k-domain.
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The algorithm has at least two drawbacks: first, it requires one to know the
exact closed form for a certain parameter, to establish an anchor for the whole
program: and secondly, to find ¢,,, one has to compute many intermediate
¢...’s, which are finally thrown away for a customer who only needs ¢,,. These
greatly constraint the generality and efficiency of the algorithm, but also have

motivated our improvement work in this paper.

3.2. The new cascade algorithm and its implementation. As in [1], we
work on the wave-number k-domain. The major advantage is that the Fourier
transform of 8, followed by the Hilbert transform H becomes a simple multiplier
|k|- in the k-domain. Define ¢,(k) = 1 — 2r|k| + k*, the “dispersion” relation of
all linear terms in Eq. (3). Then, after the Fourier transform from the spatial

variable X to the wave-number k, Eq. (3) simplifies to

~ A

() o (R)ACR) — B(K) = ) = .
Define o.{k) = 1/c. (k). Then

(5) b(k) = or(k) - & * (k).

Notice the following properties

(i) ov(k) is an even positive function for each » € [0,1) and o,(0) = 1.
(i1} o.(k) decays like O(1/k?) for large wave-numbers.
(iii) o, (k) € C[0,00), and unless r = 0, the left and right derivatives at k=0
both do not vanish.

A typical o,(k) is plotted in Figure 1. Pay attention to the two humps located
at & that are greater than 1 (in fact equal to 1/(1 —r?)). The closer is r near
1, the steeper and higher are the humps.

Our cascade algorithm solves §,(k) based on Eq. (5).

The Cascade Algorithm :

(1) Take fo(k) = o.(k).
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FIGURE 1. The graph of a typical o,(k): r=0.5
(2) For n =1,2,:--

gn(k) = or(k) - fro1* Ju-1(k),
Sn(E) = gn(k)/gn(0).

Step 1 initializes the cascade algorithm. Step 2 cascades according to the
right hand side of Eq. (5), followed immediately by a normalization.

It is not difficult to see that each f,(k) shares the three properties of o,(k)
listed earlier. In fact, as to the decaying rate for large wave-numbers, we can
show inductively that f,(k) decays exactly in the order of 1/k*"*). Moreover,

the normalization constant g{0) at each step can be explained as

gn(o) = JT(D) ) fn—l * fn«»l(o) = ”fn—l”%z-

The numerical implementation is equally simple based on DCT (Discrete
Cosine Transform). The essential work in the above algorithm obviously is on
the computation of Sf(k) = Tf(k)/Tf(0) with Tf(k) = o,(k)- f* f(k) for a
given function f(k)} that decays very fast. Suppose we have DCT and IDCT
(the inverse of DCT) available in our program (using MATLAB, for example).

Then the following lines compute numerically S f(k) from a given even function
f(k).

Program :
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e Take a discrete step size b = 27V,
(Typiecally, N =10, depending on the precision requirement. )
e Let k;, = 0:h: K — h be the discrete grid.
(The truncation edge K again depends on the precision requirement. Thank-
ing to the fast decaying rate of the f,’s, we take L = 8 in all the following
computation.)
et = DOT(f(ku).
(The Fourier transform of an even real function degenerales to its cosine
transform on [0,00) up to a multiplicative constant, which has been omaitted.
See the explanation below.)
o F o= IDCT(féCt).
(Convolution and multiplication are muiual images under the Fourier trans-
form.)
o Thf(ks) = on(ky) Fiu(kn), followed by Sif(ks) = Tnf (k) /T f(0).
Here, with a subscript h, each quantity denotes the discrete approximation
to its continuous prototype. Please notice that since we linearly normalize the
result in the final step, all intermediate multiplicative constants thus have been

safely ignored. This adds simplicity to the numerical implementation.

3.3. Performance of the cascade algorithm. Figure 2 shows the log-plot

of the successive errors

en = || o = fr—tllzee.

The convergence is linear. Figure 3 shows fio(k), for r = 0.1,0.3,0.6,0.9. We
have taken N = 10 (so A = 0.001) and K = 8.
The above numerical evidences clearly show that f,’s do converge. Denote

the limiting function by fw(k). From the algorithm,

: fm * foo .
[Feollze ™ Theollz

Therefore, ¢(k) = foo(k)/|| fool|22 solves Eq. (5)

fm(k) = o:,-(k‘)
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FIGURE 2. Linear convergence of the cascade algorithm: the nat-

ural logarithm of e, versus n for r = 0.1,0.3,0.6,0.9.
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FiGURE 3. The output fio(k) at the tenth step for various r.

In Figure 4, by taking fio for fw, we have plotted é = $T(k) for r =
0.1,0.3,0.6,0.9. In Figure 5, by taking fio for fo, we plotted the physical
solitary-wave ¢oo(X). Notice the extraordinary fact that these solitary waves
are localized in both the spatial X-domain and wave-number k-domain, very
much like wavelets. The results coincide with those in [1] obtained from the
homotopy algorithm (except that we use no scaling factors).

The algorithm is robust in the sense that it can start with quite flexible initial

trying function fo(k), as long as fo(k) is a non-negative even continuous function



8 JIANHEONG SHEN

THE FOURIER TRANSFORM OF $ (X)

L s :
2 4 5 3 7 a
WAVE NUMBER K

FIGURE 4. ¢,(k) for r = 0.1,0.3,0.6 and 0.9.
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FIGURE 5. The solitary wave ¢,.(X) with r = 0.9.

and decays reasonably fast such as in the order of O(1/]k{'**) for some € > 0.
For examples, readers can try fo = e”# or fo = 1/(1 + k?), and so on.

The choice of fg = o»(k) is convenient since one needs no extra data other
than the necessary one o, (k). Also, f.’s obtained from this initial function share
many important properties of the exact solution fo, or q’ﬂr(k) We now address

these properties.

3.4. Properties shared by both é.(k) and f,(k). As we have pointed out
earlier, f,’s are all non-negative even functions. Therefore, foo{k) and qg,,(k)

must be so, too. The evenness of ¢(k) further passes to the physical solitary
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wave ¢,(X). The non-negativity, meanwhile, implies that é.(X) is like the

characteristic function of a random variable. Especially, we derive

$,(0) = max 4,(X) > 0,

which was obtained by Benjamin earlier (also see Section 2}.

The second important property shared by both f,(k) and qAST(k) is their fast
decaying rate. We have seen that f,(k) decays in the exact order of 1 B2
due to the action of o,(k) in cach step of the algorithm. Therefore, one shall
expect that fo. (%) and qAST(k) decay faster than any polynomial rate. This indeed
is true. Suppose, otherwise, é,(k) decays in the exact order of 1/ |k|¢ for some

finite positive number d. Then, from

(k) = oy (k) - Gy # ulk),

and the fact that o.(k) = O(1/k?), we know ¢,{k) must also decay in the exact
order of 1/|k|*t2. This contradicts to the meaning of d! In [1], the authors
already noticed this fast decaying property.

The final but the most interesting point is the regularity of f,(k) and q@r(k)
We have mentioned that f,(k) € C*[0,00), and unless r = 0, f},(0F) # 0.
This means that f, is not differentiable at k£ = 0. Evidences in [1, 4, 5] also
support strongly that (?)T(]C) shares these properties, which, of course, is not
a surprise to the cascade algorithm. Moreover, based on this assumption, we
can now successfully show the famous 1/X? decaying rate of ¢,(X) as formally
obtained by Benjamin. Also, we derive a formula for the exact number L), =
limy oo X2¢,(X) introduced in [1].

First, we can easily compute #.(0%) from Eq. (5) by using the facts that
differentials commute with convolutions, and that f * g(0) = 0 if f and g are

odd and even real-value functions, respectively. We obtain

gL(0%) = 2r$,(0).

Since ¢ = foof | fooll? (with L?-norm), we have

~ 2
O =
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Thus ¢.(07) can be evaluated numerically from our algorithm.
Based on this information, let us now compute D,.

" fla'el

1

4(X) = 5= | (R Nab

_ ! /0 3, (k) cos(k X )dk

L L[

qS’ oY) 1. /% cos(kX)
T X? _71'/0 ¢T(k) X? k.

Therefore,
g (0t) _ __ 2r
w [l foo*”

whose truthness has been easily verified numerically. Notice that all the above

D, =

derivations are only based on a single assumption, i.e., gz@r(k) € C*[0,00). The
numerical verification of the D, formula gives a strong partial support, along
with the cascade algorithm, of this assumption, which the author believes has
to be true.

These are the major “semi-theoretical” contributions of the cascade algo-
rithm. Besides the many numerical advantages, it has brought us deeper insights
into the exact solitary-wave solutions.

However, analyzing its convergence mechanism is still a tough task.

4. UNDERSTANDING THE CONVERGENCE MECHANISM

Even though the cascade algorithm only takes a few lines, the analysis on
its convergence is much more difficult due to the nonlinearity of f = f. The
difficulty is not completely a surprise to those of us who have known well the
behavior of the logistic cascade on the interval: z, = pzn_1(l — zn1). Any
simple nonlinearity, such as the quadratic form in the logistic map and the
self-convolution in our example, can make analysis exponentially difficult.

In the following, we present an analogue to linear positive operators and

the Frébenius-Perron Theorem. This analogue has initiated the algorithm and
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also may provide some useful clue to the convergence mechanism. However, a

rigorous and complete investigation is still an open problem.

4.1. A topological “explanation”. First, we try a qualitative explanation.
Tt is a well-known fact that the convolution f* f(k) spreads and mollifies f. The
famous example is to take f(k) = 1(_1,(k) to be the indicator of (—1,1). Then
£ f(k) is a piece-wise linear continuous function supported on (=3,3). On the
“other hand, the multiplier oy (k) behaves like a “truncation” operator because
of its fast decaying rate 1/k®. This truncating effect balances the spreading
effect at each step of the algorithm, which eventually causes each output fu to
be more and more adapted to the two effects. A perfect balance occurs at the
exact solution.
This “topological” explanation is far away from being satisfactory. Yet, the
author does believe that it outlines the correct forces that control all the inter-

mediate steps of the cascade algorithm.

4.2. Positive linear operators and the Power method. A more algebraic
“interpretation” is built upon an analogue to a familar example of positive linear
operators.

Let V = R" be an n-dimensional normed linear space with norm || - ||. Define
Vt = {x=(z1,- -+ ,2a) : z; >0}

A lincar operator A : V — V is said to be positive if A(closure(V+)\{0}) C V'+.
Part of the famous classical Frobenius-Perron Theorem says:
“ Any non-negative linear operator A must have a positive eigenvalue A, which
is algebraically simple and can choose its eigenvector in V. (Moreover, An is
the spectral radius of A.)”

A theoretic proof of the existence can be derived from the topological Brouwer
fixed point theorem. A cascade algorithmic approach, on the other hand, is more

elementary and easier to justify.

Algorithm for A,

(i) Take any xq € VT with |ixo|| = L.
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(ii) Forn = 1,2,--+,

Yo = Axn—l
Yn
X, = )
lyall

Then x,, converges, say, t0 Xo € ¥ 1. And X is the eigenvector correspond-
ing to the positive eigenvalue Ap = || AXcol|-

Convergence in this linear case is easy to understand. The algorithm is es-
sentially the Power method (Golub and Van Loan [8]): if the initial vector has
a non-zero component in the cigenspace of A, then the successive actions of A
(followed by the normalizations at each step) will eventually “filter” out all the

other components while keeping this one invariant.

4.3. The analogue. Define
W= {f(k): f(k)=f(—Fk),f € C®[0,00), f™ (k) = o(k™™), for all m, M > 0}

where, m and M denote nonnegative integers, and the order constraint 1s put
near k = co. Then W is obviously a linear space, and can be naturally embedded
in any L? for p > 1. For convenience, embed it in L? and the norm is simply

denoted by || - I|. Let o,(k) be given as before and
T,5(K) = os(R) - £+ £(F).

It is not difficult to show that T,(W) € W. Hence, from now on, we restrict 7,
on W.

Also define a special class of nonlinear eigenvalue problem as follows, which
we call a p-degree nonlinear eigenvalue problem.

Let V be a normed linear space with norm || -|. T : V — V is a p-degree

(p > 0) operator if for any @ > 0 and x € V/,
T{ax) = a?T(x).

Obviously, T, is of 2-degree.
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For a p-degree operator T' on V, (x4, ) is said to be an eigenpair of T if

xy # 0, and

TX,\ = )\X)\.

Proposition 1. If (xy, A) is an eigenpair of a p-degree operator T, then for all

a >0, (ax,,a?)) is also an eigenpair.

The proof is trivial. Notice that for a linear problem, one eigenvalue can
have more than one linearly independent eigenvectors. In the opposite, for a
nonlinear problem (p # 1), one eigen-direction can correspond to more than one

eigenvalues! Especially,

Corollary 1. Suppose T is a p-degree operator with p # 1. Then the following

equation has a non-zeroe solution
Tx=x
if and only if T' has at least one positive eigenvalue.

In our case, T, is a 2-degree nonlinear operator on S. Our initial goal is to

solve the solitary-wave equation (5)

Tr‘f’r = 9;5?"-
6 the task now is reduced to finding one positive eigenvalue A of T, 1. f (k) =
Af(k). This change of attitude has played a crucial role in the construction of

the cascade algorithm.

Define
Wt ={feW : flk) > 0but f #0}.

This is clearly an analogue of VT we defined earlier. Indeed, it is trivial to
observe that W is T, invariant. Therefore, 1), is a “positive” operator. Inspired
by the linear case, the following cascade algorithm is born for finding a positive

eigenvalue of T

Algorithm analogous to the Power method:
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(1) Take any f3 € W7 and have its norm normalized to L.

(i1) Forn =1,2,---

9’; = Tff:—l
v« In
fa = :
gzl

This is in fact the cascade algorithm we have proposed! The gap can be filled
in by choosing f3 = fo/llfoll- Then f; = fu/llfall for all n = 1,2,---. Here
s are outputs from the original cascade algorithm. The reason we use the
previous version is that the normalization constant gn(0) at each step is much
eagier to compute than ||¢Z||.

The previous numerical evidence (Figure 2) shows the linear convergence rate
of the algorithm, which offers another analogue. In the linear case, the error
sequernce is linearly controlled by p = [Ae{/Am < 1 with Ag being the eigenvalue
of the second largest magnitude. However, for this nonlinear case, we have no
closed form for the convergence factor p, whose determination (and even the

proof of its existence) raises another open problem.

4.4, Summary. We now give a short summary for this section and some closing
remarks for the paper.

By noticing the degree of the nonlinear operator 17, we are able to convert
the original target equation (5) to a nonlinear eigenvalue problem. Based on
the positivity of 7, and an analogue to linear positive operators, we show that
the cascade algorithm is simply an intuitive transplanting of the linear Power
method. We believe that the space W and W1 introduced in this paper will
have significant meanings for further work on this topic.

In spite of the doubtless success of our cascade algorithm and its many advan-
tages, the nonlinear spreading and truncating mechanism is still not quantita-
tively well-understood, and linear positive operators only provide some helpful
insights but not a complete answer. The author thereby challenge the readers
and himself for giving further clarifications for the convergence of this three-line

cascade algorithm of a nonlinear map. The author believes that any further
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development will help understand the underlying physics of the equation, as

well as add new knowledge to general nonlinear dynamics.
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