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ABSTRACT. We generalize and unify some aspects of the work of Daubechies
and Lagarias [2] on a set L of matrices with right-convergent products
(RCP). We show that most properties of an RCP set X pass to its com-
pactification T (i.¢. its closure in the matrix space). Results on finite
RCP sets generally hold for compact RCP sets, among which is the ex-
istence of a Konig chain. We reproduce some important classical results

in the context of Kénig chains and compactification invariance.

1. INTRODUCTION

Let ¥ be a set of square matrices (real or complex). X is said to be an
RCP (right-convergent-product) set if ¥ is bounded, and for any sequence
(Ag, Az, ) € 1%,

litn A1A2 . 'An

n—+co
exists.

Examples of RCP sets of matrices are distributed in several areas. Follow-
ing the pioneering work of Daubechies and Lagarias in [2], we mention here
these four fields: the dynamics of non-stationary Markov chains, the iterated
function systems, the exact computation of compactly supported wavelets
(instead of the subdivision algorithmj, and the iterations of random ma-
trices. Daubechies and Lagarias [2] made a matrix-theoretic unification of
these applied fields and many general resulis were established without actu-
ally referring to the underlying background. The beautiful work of Berger
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and Wang [1] completed the former one by proving affirmatively the two
conjectures left there. Based on the common efforts of these authors, we
have now gained deeper insights into the relation between the convergence
of matrix products and the concept of joint spectral radius, introduced by
Rota and Strang [3] almost four decades ago.

The literature on this part of “matrix calculus” is still green but steadily
growing because of its many fascinating properties and its significance in
applications. The most recent work can be found in Shih [4] on simultaneous
Schur stability.

In this paper, we generalize and unify further some aspects of the work
of Daubechies and Lagarias in [2], with a special emphasis on compactness.

We show that if ¥ is an RCP set, then its compactification, i.e. the closure
Y of ¥ in the matrix space, shares almost all the properties. The most
remarkable profit from compactness is the generalization of the following

result of Daunbechies and Lagarias.

Result 1 (In the proof of Theorem 3.1 of [2]). Any finite set & has a Kdnig

chain,
A Kénig chain of ¥ is a sequence (A, Az,--+) € X°° such that
141 do-- Al 2 5, m=1,2,0
Here, j = p(X} denotes the Rota-Strang joint spectral radius {3]
H(Z) = lim sup [ S|/,
m—00
Y = {AIAZ e Ap | A; € E}a
Al = sup{[|B]| | B € A}.
BeA

Result 1 has played a central role in the evolution of their paper. We show
later that it can extend to compact sets. But it is generally not true for
bounded sets. (For those who have read or will read both [1} and [2] can
find that perhaps this is the only non-trivial occasion where compactness

makes difference. Also see Section 3 below.)
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With this extension and the boundedness result of Berger and Wang [1],
we will give a more systematic (if it is fair to say so) proof of the uniformly
vanishing theorem (Lemma 5.2 in Daubechies and Lagarias [2] and Theo-

rem 1(b) in Berger and Wang [1]).
Result 2. A bounded set ¥ is a vanishing RCP set if and only if p{(X) < 1.

An RCP set ¥ is said to be vanishing if for any matrix sequence (A;, Ay, -
ree,

lim AjAg--- A = 0.

m—0

The interest on vanishing RCP sets is enhanced by the fact that vanishing
RCP sets can completely characterize another important class of RCP sets
—uniform RCP sets (see Daubechies and Lagarias [2] or below).

I intend to give a self-contained exploration. Some parallels to [1] and [2]
shall be expected. Together, I hope our efforts will clarify old problems and
point more focusively to new ones.

The layout of paper is as follows. Section 2 contains a brief review on
RCP sets. The limit set of a U-RCP set is characterized. Notations are
conveniently developed. Section 3 centers about the basic properties of
the compactification of an RCP set. The existence of a Kénig chain in a
compact set is proved in Section 4. Our results are applied to reproduce

some important results in 1] and [2].

2. RCP: A BrIEF REVIEW ON BASICS

2.1. RCP, V-RCP, U-RCP. Throughout this paper, £, A denote bounded
sets of square matrices (real or complex) of the same size. Since all what fol-
low are invariant under similarity transforms, it is sometimes advantageous
to think them geometrically as a subset of gl(V;), the general algebra of all
linear transforms on a d-dimensional space Vy. If so, all the mairices are

supposed to act from the right side on row vectors, unless otherwise the rule

.)e
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is denied explicitly. Consequently, a vector is always assumed to be a row
vector,

For each positive integer m, symbol ™ and X, denote
M =N XX xD={t=(A1,-,4n) | i € T},
T ={(t)= A1 Ay |t = (A1, ,4An) € ™}
Here (o) is the “lowering” operator that maps the set X™ of finite sequences
to the set X, of finite products.

The definition of ¥™ brings no problem to Y. Besides, we can define

the operator (e}, from % to Zp,. For any t = (A, Ag,--+) € 2°°, define
(t)m = A1 Ay~ Apy.
To introduce X,, one needs the condition RCP.

Definition 1 (RCP set). A bounded set £ is said to be an RCP (right-

convergent-product) set if for any sequence t = (A1, Ag,---) € %,

Hm (t)m = lim AlAgAm

mM—00

exists.

If ¥ is an RCP set, then X, naturally denotes the collection of all the
above limits. An element in X, is usually denoted by (t), with t € X°°.
The black-faced t and the lowering operators () and (), will bring many

notational advantages, as one shall see throughout the paper.

Definition 2 (V-RCP set). An RCP set ¥ is said to be vanishing if o, =
{0}. A vanishing RCP set is simply referred to as a V-RCP set.

Definition 8 (U-RCP set). An RCP set X is said to be uniform if for any
€ > 0, one can find N > 0, such that, for all n > N, m > 0, and t € X7,
s € X™,

I(E)(Td — ()l = [I(t) = @)(s)] < e
A uniform RCP set is also called a U-RCP set.
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2.9. The Hmit set of a U-RCP set. Here we characterize the limif set
Yo of a U-RCP X.

Definition 4 (Right-absorbing). A matrix set A is said to be right-absorbing
if

PG = P, for any P,Q € A.

The similar definition goes to a left-absorbing set. A right-absorbing set

can be completely characterized geometrically.

Proposition 1. 4 set of matrices A is right-absorbing if and only if the
following two hold:
(i) Each P € A is a (skew) projection: P? = P,

(ii) Any two projections P,Q € A project onto ¢ same space.

We leave this easy proof to our readers. Remind you that we have assumed
any matrix acts on row vectors.

For a right-absorbing set A, denote by E{A) the common projection space.
Then E{A) can be seen as the inertial manifold of A. Or, in terms of the
1-eigenspaces Eq(P), P € A,

B(A) = Eq(P) = (] E1(Q)-

QEeA

Another interesting property is the duality principle.

Proposition 2 (Duality). A matriz set A is right-absorbing if and only if
I—A={I-P|Pe A} is left-absorbing.

The limit set of a U-RCP set can be understood completely via this

concept.
Proposition 3. The limit set T of a U-RCP ¥ is right-absorbing.
Proof. For any t,s € X%,

(1)) =, lim_(B)a()n = Jim (On(s)n:
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By the definition of U-RCP, for any € > 0, as m becomes large enough,

[1(£)m — (O)m{s)mll < .
Since ¢ is arbitrary,
Jim (On(s)n = iz (6 = (0.
This completes the proof. 0

Hence there is a common projection space associated to X.,. This, in

return, requires
Corollary 1. Suppose T is ¢ U-RCP set. Then for any A, B € ¥,

Proof. From the convergence of lim,, A™ = A®® and lim,, B™ = B*, it is
easy to see that (1) A = 1 is geometrically simple for both A and B (i.e.
without Jordan blocks of size > 2); (2) all the rest eigenvalues of A and B

are strictly inside the unit circle. Hence,
Ei(4) = E1(4%),  Ei(B) = Ei(B).
We have already shown above that
E1(A%®) = E1(B*) = E(Zu)-
This complete the proof. [

It says that elements of a U-RCP set must share a common inertial sub-
space. This result was first shown in Daubechies and Lagarias [2]. Char-
acterizing this common inertial subspace by the right-absorbing property of
the limit set, however, is an innovation of this paper.

We hope this warms us up enough for both the background and notations

of the RCP subject.
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3. PROPERTIES OF COMPACTIFICATION: & ~» &

In this section, we show that various RCP-related properties are invariant

as one goes from ¥ to its compactification X.

Theorem 1 (Compactification invariance). Let ¥ be a bounded set of ma-
trices, and % denole its closure or compactification in the matriz space.

Then

(1) S = S, Hence, S| = Sl
(2) 5(5) = A(E).

(-3) ¥ is an RCP if and only if & is.
(-4} T is a V-RCP if and only if T is.
(-5) % is a U-ROP if and only if T is,

Proof. Invariant properties (-1) and (-2) are easy to show by definitions. For
(-3), it suffices to show that ¥ is an RCP if ¥ is. We shall apply the proved
(by Berger and Wang [1}} Daubechies-Lagarias’ boundedness conjecture:

Result 3. If & is a (bounded) RCP, then there ewvists a constant C such
that for any m = 1,2, -+, |Bnll € €. Especially, |Zn|l < C.

Take an arbitrary s = (B1,Bm, ) € 5eo. We shall show that (s) =
lim,,(8),, exists. For any € > 0, there exists a t© = (Af, A5,---) € X1, such
that

€

||Bm—A;L||§é;;, m=1,2,---
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Hence for any m,

() — (t)mll = [| By - B — A7 - - AL |

m—1

< B BBt — A1) Afg - ALl
y =)

m—=1
< S By Bl 1By = Aja || A5z - A
-

m—1
2 €
<C?) g
=0
< CPe. (1)
This leads to
tim sup [[(s)m — (1) < €%, (2)

from which it is easy to see that {(s)n} is a Cauchy sequence. Therefore,
(s) = lim,,(8)m does converge and (-3} is proved.
Now suppose ¥ is a V-RCP. In Eq. (2), (t°) = 0. Then (s} must be zero
since € is arbitrary, which means that ¥ is also a V-RCP. This proves (-4).
For (-5), from the telescoping inequality (1},

[(8)ntm = (8)all < NN(EVntm — ()l +2C7e

Suppose that ¥ is a U-RCP set. Then there exists NV, independent of s,
such that for all n > N,

[(E)ntm = ()l < e
Hence, for all n > N, and m > 0
1S )ntm — (S)all < (267 + D)e.
Since N does not depend on the choice of s, & is a U-RCP. t
Remark 1. The telescoping technique (1) first appeared in Daubechies and

Lagarias [2] in a different context. As we see now, it is the throat passage

through which all properties of RCP sets pass to their compactifications.
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Theorem 2. Suppose ¥ is an RCP set, then YNoo C Yo, If ¥ is a U-RCP
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Proof. The first statement follows from the telescoping inequality (1), from
which, we easily deduce that for any s € 57 and € > 0, there exists t€ € £°°,

such that
ll(s) — (1) < C*.

This implies that (s) € T.

For the second statement, it suffices to show that Foo C Yoo

Suppose that D € ¥, which means there exist t ¢ ... ¢ £, such
that

lim(t™) = D.
Suppose
t(n) :(Agn)aAgn)’), n=1,2,---.

By the compactness of %, it is easy to show (similar to the consecutive
selection technique of Helly in functional analysis) that there exist s =

(B1,Bs,--+) € T and an indices sequence ny < ng < - -, such that

im A = B;, =12,

k—roo

Hence,
(s); = k]i_{%o(t(ﬂk))j’ §i=1,2,-.

On the other hand, by the U-RCP assumption and the preceding theorem
on compactification invariance, for any given ¢ > 0, there exists J > 0, such

that for any j > J and ng,

ol m

I = N < 2 )= )l <

and for n; large enough,

() = D <

Ll m
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Then for each 7 > J,

I(s); — DIl < fim sup [l1(s); = (&1l + (185 — () + () — D]

€ € 2
< e =
<0+ 3 + 37 3
Therefore,
I(8) — DIl < {I(s) = (8)sll + [l(s); = Dl < ¢,
and D € X, which completes the proof. 1

Corollary 2. Let © be an RCP (or, U-RCP, V-RCF) set. Define

A=mJ¥ B

Then A is also an RCP (or, U-RCP, V-RCP, respectively) set.

Proof. Let § = 21Uz J--+ (not including %.o). Then S is an RCP (or,
U-RCP, V-RCP) set provided that ¥ is and So = Xoo. So is the closure 5
according to the compactification invariance, Noticing that 5 is a semigroup,

we have
52858 = A
Therefore, A is an RCP (or, U-RCP, V-RCP) set. O

Remark 2. A direct proof by definition is more involved than this ap-

proach.
4. A CompacT SET Has A Konig CHAIN
Daubechies and Lagarias proved
Result 4 (Theorem 3.1 in [2]). If & is a finite RCP set, then p(X) < 1.

Result 5 (Theorem 4.1 in [2]). A finite set & is a V-RCP if and only if
pE) < 1.

Both of them were conveniently deduced from the following result (the

essential parts of both proofs in {2]).
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Result 6. A finite set & has a Kdnig chain.

The name “Konig chain” is used for the first time in this paper. We find

it convenient and appropriate.

Definition 5 (Konig chain). Let ¥ be a matrix set. t = (A4y, Ag,---) € %

is said to be a Konig chain of ¥ if form = 1,2,---
(Ol = A1 - Al > A(Z).

Daubechies and Lagarias proved Result 6 by using Konig’s infinity lemma
on finitely branching trees [2}.

In what follows, we show that the finiteness condition in the above three
results can be safely replaced by the compactness condition. Through one
example, we also demonstrate that the “boundedness” condition is generally
not sufficient for the existence of a Konig chain. Applications of Konig chains

are mainly shown through generalizing the above results.

4.1. A compact set has a Konig chain. First, as an intermediate step,

we introduce a weaker concept.

Definition 6 (0-Kénig chain). Given a set of matrices ¥ and a sequence of
non-negative numbers o = (o1,09,-+-). A sequence t = {A;, Az,---) € ¥

is called a o-Kdnig chain if for any m,
[(E)ml™ = || A1 Az - A V™ 2 0.

Lemma 1. If ¢ is a compact set of matrices, then for any o = (01,0, ),

so that o, < p(5), m=1,2,- .-, there exists a o-Kdnig chain.
For any integer m, we say t € ¥.™ is above o, if
IO > 0k, k=1,2,-+,m.

For a given ¢ and X, let &7 denote all t € X™ which are above o.
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Proof of the Lemma. We complete the proof in two steps.

Step 1. We show that for any m, LT is non-empty.

We proceed with the prefix technique in [2]. Suppose otherwise for some
integer N, Y is empty. Then, for any s € ¥™ with m > N, there shall be

a partition of s
5= (131,152,‘ o atkar):

such that
(i) t; € ¥ for some l; < N,and r € X! forsomel < N—1. 3 . ;+1=m.
(i) ()15 <oy, for § = 1,2, -+, k.

Define

c= 3| = sup 1Al},

d = max og.
1<k<N

Then d < p(¥) < e.

()1 = (k1) (t2) - - (Ee)()l
< NI NI - - N1 I
< dlldlg . -dlkCI

= d™(c/d)} < d™(e/d) 1.
This immediately implies that
Sl < d(e/d)N =D,

Let m — co. We end up with p(2) < d. A contradiction to d < p(¥)!
Step 2. ¥ has a o-Konig chain.
Here, compactness shall place the parallel role of the “finifely-branching”
property in Daubechies and Lagarias’ proof.

Tollowing Step 1, for each m, suppose

tm = (Am,laAm,Za Tt ,Am,m) exnm
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is above ¢. From the compactness condition on X, there exists a sequence

of indices ny < ng < - -+ such that
Hm Ay, ;= B;eX
k— 00

exists for any § = 1,2,--+. We claim that s = (B1,Bz,---) € Z® s a

o-Konig chain. In fact, for any m,
1(8)mll = Jim [|(Eny Jonl-
Since t, is above o, for n; > m, we have
I{tn Imll 2 o

Hence, |i{8)m|| = o™. Step 2 is complete since m is arbitrary, and this proves

the lemma. O
Theorem 3. A compact matriz sef ¥ has a Konig chain.

Proof. Take a team of ¢(%) = (Jik), ng},~ .}, so that
(i) crvgk) < p, for any j, k.
(ii) For any fixed j, limy J§k) = p.
For each k, the preceding lemma ensures there is a o(k)_-Konig chain, say
tr = (At Ar2s ),
such that, for any m,

[(te)mll/™ 2 oD,

Likewise in the proof of the lemma, the compactness of ¥ implies that one

can find an indices sequence ny < ng < ---, 5o that
Em Agm = Bn €X
ko0

exists. Now we claim that s = (B;, By,---) € X is a Konig chain: for any

n,

()l = Tim [ (b )]/ 2 Tim 07 = .
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The following example shows that compactness is essential for the exis-
tence of a Konig chain under a given matrix norm.

EXAMPLE.
Let I, denote the 2 by 2 identity matrix. Define

1
2:{(1—wﬁ)fg|n:0,1,---}.

It is easy to see that ¥ is an RCP (by monotone convergence). It is not
compact since the unique cumulating “point” I, does not belong to X. First

we have
p(E) = ﬁ(f) =1,

which is not difficult to see due to the presence of Iy in X. For any t € 1™,

we have (t) = oI, for some o < 1. Hence,
)™ = ot/ < 1= p,
which implies that X has no Konig chain.

Remark 3 (Norm dependence). Since the definition of a Kénig chain in-
volves the norms of finite products, this concept is norm-dependent. It can
be seen more clearly as follows. Suppose we have two equivalent matrix
norms || # ||; and || ¢ [|2 so that |JAlly = 2{|Al|; for any matrix A. Assume

p(X) = 1, which is fortunately norm-independent. Define
o= (2—1,2——1/2’ 2—1/3, . )

Suppose t = (A, A2, ++) € £°° is a ¢-Konig chain with respect to [i ez,

i.e.
1414 Aml3™ > 27,
form=1,2,.--. Then,

A g Agli™ > 1= B!
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This means that t is a Konig chain with respect to || ¢ ||;! In the above
example, we have silently accepted any vector-norm-induced matrix-norm

so that ||I2|| = 1, which is usual in vector-matrix analysis.

4.2. Applications of compactification and Konig chains. Some ap-

plications are in order now.
Proposition 4. If ¥ s a compact RCP set, then p(X) < 1.

Proof. Let t € % be a Kénig chain. Since ¥ is an RCP, (t) = limpn(t)m

exists. Hence,

H(2) < lim inf [[(8)n /7 = i [| ()] < 1.

Corollary 3. If ¥ is a (bounded) RCP set, then g(X) < 1.

This follows from the compactification invariance (Section 3} and the
preceding proposition.

It extends Daubechies and Lagarias’s Result 4 in the beginning of this
section. It also can be proved by the result of Berger and Wang [1] on

equivalent spectral radii. Qur proof is more elementary.

Proposition 5. A compact matriz set ¥ is @ V-RCP if and only if p(3) <
1.

Proof. The direction from < 1 to V-RCP is trivial. Assume X is a V-RCP.
Suppose otherwise § > 1. let t € ¥°° be a Konig chain. Then

(0] = Hm [|(E)m ]| = 1,
which is impossible since (t) € X, = {0}. O
Corollary 4. 4 bounded set ¥ is a V-RCP if and only if p(8) < 1.

This again follows readily from the compactification invariance and the

preceding proposition.
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It generalizes Daubechies and Lagarias Result 5 in the beginning of the
section. Daubechies and Lagarias also proved it later in [2] in a different
way.

As a result, we have
Corollary 5. A V-RCP set must also be a U-RCP set.

Finally, before ending this paper, let us mention that the close relation be-
tween V-RCP and U-RCP sets is not a coincidence. In fact, Daubechies and
Lagarias [2] characterized U-RCP sets completely by V-RCP sets. We state
it here in a slightly different way, which is more geometrical and corresponds

to the projection operators discussed in Section 2.

Result 7. 4 bounded set of matrices (or linear transforms on row vectors)
Y. is @ U-RCP if and only if there exists a (skew) projection P (i.e. P* = P)
such that

(i) PY = P.
(ii) Tp = (I - P)S(I - PY! is a V-RCP.
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