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Abstract

Diffusion-generated motion by mean curvature is a simple algo-
rithm for producing motion by mean curvature of a surface, in which
the motion is generated by alternately diffusing and renormalizing a
characteristic function. In this paper, we generalize diffusion-generated
motion to a procedure that can be applied to the curvature motion
of filaments, i.e. curves in R3, that may initially consist of a complex
configuration of links. The method consists of applying diffusion to
a complex valued function whose values wind around the filament,
followed by normalization. We motivate this approach by consider-
ing the essential features of the complex Ginzburg-Landau equation,
which is a reaction-diffusion PDE that describes the formation and
propagation of filamentary structures. The new algorithm naturally
captures topological merging and breaking of filaments without fat-
tening curves. We justify the new algorithm with asymptotic analysis
and numerical experiments.



1 Introduction

Diffusion-generated motion by mean curvature is a particularly simple and
robust algorithm for producing motion by mean curvature of a surface [15,
16]. The major goal underlying this work is to generalize this algorithm
from surfaces (dimension d — 1 inside R%) to the motion by curvature of a
curve—or “filament”-—in three dimensions.

The motion of filaments is of particular interest because many physical
and mathematical systems exhibit the formation and propagation of fila-
mentary structures. Notable examples include magnetic flux tubes trapped
in superconductors, vortex filaments in inviscid fluids, the centers of scroll
waves in excitable media, biological polymers guch as protein and DNA, and
skeleton curves extracted from processing 3-D images in computer vision.

Asymptotic models for these processes often yield equations of motion for
a curve moving with a velocity that is a function of its local geometry, i.e. a
function of the local normal and binormal direction, curvature, torsion, and
higher space and time derivatives of these quantities. For example, studies
of models for superconductors and excitable media predict that their vortex
filaments evolve agymptotically with a speed proportional to curvature [, 26}

Given such models, it becomes important to consider algorithms which
can realize geometric filament motions in simple, efficient and accurate ways,
and which are amenable to mathematical analysis. Designing suitable algo-
rithms is complicated by the fact that in many problems the filaments can
merge or break up. It is particularly challenging to find algorithms that
retain their simplicity, yet are robust enough to capture these topological
transitions.

For surfaces (or, generally, codimension one objects) the level set method
of Osher and Sethian [18] was introduced to compute (and define) arbitrary
curvature-dependent surface motions, including topological changes. This
provides a PDE based method for motion by mean curvature, including the
pinch-offs which can occur i1 three dimensions. Standard numerical PDE
methods apply to accurately discretize the equations of motion. However,
the original level set method does not directly apply to objects of higher
codimension, such as filaments. The level set method was ultimately ex-
tended to arbitrary codimension {1, 3]. In the earlier approach [1], the object
is represented by its squared distance function, or any other similar smooth
function. Unfortunately, the representation is not robust: A perturbation



of the level set function ¢ can inadvertently break up the filament since its
representation is given by {#: p(F) < ¢} for a small, positive € and ¢ = 0.
Also, the method has the undesirable property that filaments tend to de-
velop interiors whenever mergers occur. See [2] for a detailed discussion on
this “fattening phenomenon.” Alternatively, the filament can be (robustly)
represented as the intersection of two level set functions. See [3] for details
on this recent method.

The curvature motion of filaments (or the mean curvature motion of sur-
faces) may also be approximated using reaction-diffusion models such as the
complex Ginzburg-Landau equation. Briefly, these methods have the im-
portant advantage that they automatically capture the curvature motion of
Glaments including topological change without fattening curves. When used
in computation, however, the spatial discretization must resolve a thin reac-
tion zone in order to accurately compute the motion. Since the width of the
front is Ofe), the only remedy is to use a mesh spacing which is much less
than e, which can be impractical numerically [16].

In the case of surface motion, a simplified algorithm based on an idealiza-
tion of reaction-diffusion was presented in [15, 16]. This algorithm essentially
consists of moving a set boundary by alternately “diffusing” the set—i.e. ap-
plying the linear diffusion evolution equation to the set’s characteristic func-
tion for a short time—and then recovering a new set via a “sharpening’ step
in which values of the diffused characteristic function are re-normalized to 0
or 1, whichever is closer. This “diffusion-generated motion by mean curva-
ture” algorithm automatically captures topological change and has a direct
extension to a variety of interesting anisotropic motions [9, 23, 10] as well as
the motion of triple point junctions [15, 14, 16, 21]. It naturally provides the
fine grid imit of an interesting variety of cellular automata models [24]. See
also [7, 6] for some related biological models. Diffusion-generated motion has
the advantage that it can be discretized efficiently and accurately since the
highest frequency modes never need to be approximated (they are eliminated
by diffusion and do not interact with other modes during the main diffusion
step). Moreover, adaptive grid refinement is straightforward since it is car-
ried out as a quadrature using unequally spaced fast Fourier transforms [22].
Unfortunately, the original method does not apply to objects with higher
codimension, such as filaments.

In this present work, we generalize the original diffusion generated mo-
tion algorithm to filaments which are fibered links, via a natural idealization
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of the complex Ginzburg-Landau model. This diffusion-generated filament
motion naturally computes the (vector) mean curvature motion, including
topological changes without curve fattening. The method has the potential
for a variety of extensions. Similar to the usual diffusion-generated motion
algorithm, the method may be discretized to give improved computational ef-
ficiency over reaction-diffusion models. While simple, our proposed algorithm
is still not practical for generating highly accurate solutions to curvature mo-
tion since the local truncation error is O(1/] log(A1)]). (See Section 3.) To
achieve higher accuracy, the level set method for filaments may be used. See
[3] for details.

The outline of the paper is as follows. Section 2 begins by reviewing
the complex Ginzburg-Landan equation. Using this phase field model as an
inspiration and motivation, a diffusion-generated algorithm for the curvature-
dependent motion of filaments :« derived. In Section 3, we give an asymptotic
justification that diffusion-generated filament motion gives motion by curva-
ture in the normal direction. Section 4 reports on a variety of experiments
validating our algorithm. Finally, in Section 5 we discuss other possible
variations on this approach.

2 Diffusion-Generated Motion of Filaments

In this section, we review the complex Gingburg-Landan model for evolving
filaments with a normal velocity equal to the (vector) curvature. Then, we
idealize this reaction-diffusion model to obtain a diffusion-generated algo-
rithm for the curvature-dependent motion of filaments in three dimensions.
Later sections will justify our proposed method with asymptotics and nu-
merical experiments, and also extend it to arbitrary dimensions and codi-
mensions.

2.1 The Complex Ginzburg-Landau Equation

The complex Ginzburg-Landau equation is:
1
wp = A~ (ol = 1), (1)

where u(r, t) is a complex scalar and 0 < ¢ < 1 is a basic model for under-
standing the motion of phase defects (singularities). For ' € R? the defects
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are generically supported on the one dimensional curve (filament) where |u€|
vanishes. Equation (1) is the magnetic field-free case of the time dependent
Ginzburg-Landau system, which models the mixed states in type-1I super-
conductors where magnetic flux carrying normal filaments are embedded in
a superconducting matrix, [5]. The complex scalar u€ is an order parameter,
representing normal phase if |u| is close to zero and super phase if close to
one, and € < 1 is the offective diameter of the magnetic flux core. Equation
(1) is also a generic amplitude equation describing instabilities near bifur-
cation points in dissipative systems, known as the Landau-Stuart equation,
[12].

Asymptotic analysis can be used to extract the € — 0 limiting behavior
of solutions. For initial data u(z,0) vanishing on a fillament I'g and having
winding number one around it, formal asymptotic derivation {19] shows that
solution evolves to leading order as a complex scalar vanishing along the
filament T, which is generated from Iy as motion by curvature along the
normal. If the filaments are nearly parallel, rigorous results are established
in [13] on their dynamics on the O(log ¢) time scale.

Numerically, small ¢ introduces small length and time scales into the dy-
namics. Consequently, an accurate direct simulation of (1) has to resolve
the core size and reaction rate, an expensive task in three dimensions. How-
ever, it turns out we can capture the desired limiting filament dynamics with
a complex diffusion-generated motion algorithm obtained by idealizing the
effect of the strong reaction in (1).

2.2 Complex Diffusion-Generated Motion

Similar to the case of diffusion-generated motion, a formal splitting method
can be applied to the complex Ginzburg-Landau equation to obtain an al-
gorithm for motion by mean curvature of filaments. In the reaction step, an
initial complex-valued x(&, ty) is driven towards one of its stable equilibrium
values € by the reaction kinetics,

- |
v = —5x(x’-1)

€
56(:61 O) X(fa tG)

I



for a time Af to obtain an intermediate result %(&, At). This result Is sub-
sequently diffused for a time At,

Xt = VZX
x(#1) = X(& Af)

to obtain the desired update x(Z,to + At). By replacing the reaction step
by its formal limit as € — 0, it becomes the simple normalization to a unit

complex number
X

Y
and we obtain the following method for (hopefully) evolving filaments with
a normal velocity equal to curvature:

X

ALGORITHM CDGM
GIVEN: An initial filament.

BEGIN
(1) “Initialize”: Set x 80 that its “center of winding” coincides with the filament.
Le. set x so that its winding number is nonzero around any closed curve
that winds around the filament. See next section.
(2) Repeat for all steps:
(a) “Normalize”: X = 7
(b) “Diffuse”: Starting from ¥, evolve x for a time At according to x; = VX
END

The location of the interface is given by the zero contour of x (or, equivalently,
its center of winding, though this is more difficult to locate in practice).

As we shall see in the analysis of Section 3, this simple splitting method
captures the leading order behavior of the complex Ginzburg-Landau equa-
tion: Le., it produces a normal velocity equal to the curvature of the filament
without ever directly computing curvature. Topological mergers are also cap-
tured with no special algorithmic procedures. In particular, filaments do not
develop interiors (unlike level set methods for filament motion — see {2) and
a good agreement with optimal curve shortening is observed.

We now complete our description of the algorithm with a discussion on
the initialization of x.



2.3 Initialization of x

To apply the ALGORITHM CDGM, an initial value of x 18 required.

If the filament is already defined implicitly as the zero of a function u aris-
ing from a complex Ginzburg-Landau equation, then we simply set x = u to
initialize. But, in general, we need to construct a x : R® — C which implic-
itly captures the position of the filament. We use the same representation
as in the complex Gingburg-Landau equation. Specifically, we construct a
complex-valued x so that the winding number of y(F) (with respect to zero
in the complex plane) is nonzero when # moves around any closed loop that
encircles the filament. Along other loops, however, the winding number must
be zero to avoid creating spurious filaments.

It is natural to ask whether an interesting variety of curves can be rep-
resented in this manner. The answer to this question arises in the study of
Ginzburg-Landau flow [20]. Specifically, a large number of initial conditions
are possible since this filament representation corresponds to curves that are
fibered links [20]. See [17] for a systematic construction of x for a given
fibered link.

In this paper, we define planes and reference axis through each point on
the filament, so that the planes fill out R3(see Fig. 1a). The initialization on
a particular plane is then given by x(#) = exp(if(Z)) where #(Z) the angle
function in that plane, measured relative to the reference axis in the plane.
As shown in Fig. 1b, this type of initialization is particularly straightforward
whenever the filament can be represented as a function of z in some coor-
dinate system. Looping structures such as rings and linked rings are also
easily initialized in this manner. Yee Section 4. Alternatively, whenever two
surfaces can be found whose intersection gives the desired filament, a simple
shape-based initialization can be used. See [25] for details and examples for
this alternative.

We now direct our attention to the convergence analysis of our proposed
algorithm.

3 Analysis of Diffusion-Generated Motion

Tn this section, we present formal analyses which show that the diffusion gen-
erated motion algorithm for filaments does produce a time discrete approx-
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Figure 1: (a) In our examples, a plane and a reference axis are defined for each
point on the filament. The initialization for a particular plane is then given
by x(P) = exp(if(P)) where 9(P) is an angle function that winds around
the filament. (b) Whenever the curve can be represented as a function of z
in some coordinate system, this initialization step is particularly straightfor-
ward. For each grid point P = (Py, P2, Ps) we restrict ourselves to the plane
z = P; and set O equal to the intersection of the plane with the curve. A
consistent initialization is then obtained by setting x(P) = exp(if{P)) where
9(P) is the angle between OP and the fixed vector e; = (1,0,0).

imation to motion by vector mean curvature. We hope these non-rigorous
arguments will encourage the development of rigorous CONvergence proofs,
as they did in the case of diffusion generated motion by mean curvature for
surfaces.

We present two alternative approaches: heuristic analysis that uses a
variety of shortcuts to deduce the motion law, and a detailed asymptotic
analysis that yields the motion law.

3.1 Heuristic Analyses

Here we present a short, formal calculation which “shows” that diffusion
generates motion by vector mean curvature for a filament. These calculations
allow us to quickly extract the motion law generated by diffusion, without
going through the full details of asymptotic analysis. This is particularly
useful for exploring novel diffusion-generated algorithms.



3.1.1 Filament Heuristics

Tn the case of filament motion, we have the curve initially represented by a
complex valued function of the form

g

x(#) = '@

where (I} is a real angular coordinate on R® that increases by 2wm around
any loop about the filament, where m is the nonzero integer winding number
of x. We identify the flament as the place where x “yanishes”, which in
general means the locus of points in R* that x winds around. We will deduce
the effect that diffusion has on the location of the zero of x by direct, formal
evaluation of the diffusion equation

Xt = VZX-

In order to provide a clear intuition, we assume that x winds around the
flament uniformly® . Specifically, let § denote the closest point on a smooth
filament to the point ¥ and assume 0 = m(& — ¥, t) where H(Z —7,1) is the
polar angle between Z—7 and the Frenet normal to the filament at ¢. Detailed
asymptotics for initializations based on parallel planes (see Figure 1b) are
given in Section 3.2.

Laplacian Heuristic We can simplify the analysis slightly by working
with the amplitude and phase of x so we write

X(3,1) = A(Z, )"

where A = |x/|, and plug this form into the diffusion equation. The real part
of this equation yields the amplitude evolution equation

A, = V2A - |VO2A.

When viewed in this decomposition, we see there is a reaction term present
that instantaneously drives the amplitude A to 0 at the location of the sin-
gularity of |V#|, which in turn occurs at the center of winding of #, Le. at

5Heuristically, this assumption is reasonable since each diffusion step helps to enforce
this type of symmetry near the zero set of x.
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the filament location. (Note that the presumed winding of ¢ implies that
|V0| blows up at the filament like m/d, where d is the distance o the fil-
ament.} Thus, as expected, the amplitude vanishes at the filament. This
decomposition shows how this is enforced by the winding number.

All that remains is to write out the Laplacian in suitable geometric co-
ordinates, and show that it has a term corresponding to advection with a
velocity that reduces to 7 = rf at the filament, where & is the curvature and
# is the Frenet normal vector. Quitable coordinates can be defined as follows:
let s be the arclength coordinate along the filamnent. At a given s value along
the filament, there is a plane normal to the filament, and the Frenet normal 7
and binormal b unit vectors in this plane define associated Cartesian planar
coordinates p,q. Thus (s,p, q) define an orthogonal curvilinear coordinate
systemn (at least, near the filament). In this coordinate system, calculation
(see [11] for partial details) shows that the the Laplacian is given by

K

V2A = H{H[A]] -

1= K;pAp + App + Agg

where x(s) is the curvature of the filament, and H is the differential operator

1
1 —kp

H[.ﬂz (fs—'rfqﬁ)
where 7(s) is the torsion along the filament, and ¢ is the polar angle coordi-
nate in the (p, ¢) plane. Thus the amplitude equation becomes

K

A+ Ap= HPA+ Ay + Agg — \VHA. (2)

1 —&p

Consider the short time effects of the terms of this equation: the singular
reaction term drives A to 0 at the filament, and the (p,¢) diffusion smoothes
this profile into a cylindrically symmetric well. Because the resulting A is
constant along the filament, and cylindrically symmetric, it has no s or ¢
dependence, and the H terms vanish. Thus, none of these terms actually
produce any initial motion of the A = 0 location. The remaining terms in
the equation, evaluated at the filament where p = 0, reduce to

At + K:Ap =0

which convects the values of A in the (p,q) plane, in the p direction, with
speed 5. Thus these terms move the zero of A—and hence the filament—Dby
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the vector mean curvature, initially. See the analysis related to Eq. (15) in
Qection 3.2 for further details on the asymptotic properties of the reaction-
diffusion equation (2).

3.2 Asymptotic Analysis of Diffusion Generated Mo-
tion

We next present a detailed matched asymptotic analysis of the ALGORITHM
CDGM and show that the algorithm indeed captures the motion by curva-
ture along filament normal direction. As a byproduct, we also obtain the local
truncation error: O(1/|log(At)]). We find both the outer solution away from
the filament core and the inner solution taking account of the core structure
before finally matching the two asymptotics. The inner solution reveals how
the zero amplitude is generated without the Ginzburg-Landau nonlinearity,
a conspired effort of linear diffusion and imposed topological winding num-
ber. The zero amplitude is what the numerical algorithm captures to follow
the evolution of the filament. We also compare the behavior of the filament
core in the algorithm with that of the complex Ginzburg-Landau equation
(1). During the diffusive step, the filament core size enlarges in time like
O(v/At), while the Ginzburg-Landau filament core size remains O(e) for all
time.

Let us consider the diffusion effect on a complex scalar function of the
form o = exp{iBg}, where O is the phase function (counting the angle)
about a space curve (the filament) T'y. Initially, © is as described in Section
3.2, see also Fig. 3(b). Let us examine the effect of short time diffusion on
X0, especially its phase. Suppose the filament is garameterized by z, that is
Ty : (y,(2), 72(2), 2), and denote 7 = (21, 22, T3), £ = (£1,€2,63)- Introducing
complex variables:

G = gy 4 img, ¥ =71+ i1 &= 1+ ik

we write the initial condition as:

= Y(x3)
O R Al
and the solution is:
x(t, B) = (dmt) 2 f exp{~1€ — ﬂ'fl?/%}—é:—ﬂf—g')—df-
RS ' £ =78l
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Making the change of variables: £ = % + T? ,and 7 = Vt, we have
(ignoring the primes):

- =32 [ axpf—|£]? 7476 —F{zs +78) 2
(6,8 = 0 [ el e e O

For any two complex numbers ¢ and 7, if % < 1, then:

Ctn o ($ ML Re(nfO) + (Imln/O)) 7

KK
- _ (Tgé_\ v % (1 — Re(n/¢) + O(n/¢)
- Sk e Betn/ )+ Oln/<F) @)

Let us now apply (4) with:
¢

il

7 — A(xs), n = TE + (zs) — V(s + 7€)
Noticing that: 5
n = (€ — 7 (z3)&s) + O(T°E3),

we have from (3) and (4) the expansion:

w(t,3) = x(0,8) +r(am) " [ exp{~|¢f/4} L&, o) &
b ram) [ exp{-leP/4) O/ dé, )

provided || < [¢|. Here L is linear in £. Since n = O(7), (5) is valid
if 1| = |3~ H{zs)| > O() = O(t/2). One can view () as a moment
expansion with respect to unit Gaussian. The first moment term is equal to
gero. So for small £, if |7 —F(za)] = O(61) > 2§, € (0,1) a fixed number,

we have:
x(t, &) = x(0,%) + O(¢), (6)

Or:

% = x(t, D)/ x(t, 7)| = exp{i® 4 O (1)} (1)
The O(r?) = O(t) term (second moment) in (5) is not zero in general, so
(7) is optimal. It says that the effect of small time diffusion on the phase
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is to introduce an O(t) correction at points away from the filament with a
distance much larger than O(t'/2). This completes the outer expansion of
solution.

Next we look at x(t, &) using Frenet coordinate attached on the filament
and develop the inner asymptotic expression for any point within O(d) dis-
tance of filament, &5 € (§1,1). Then we match the two expansions at distance
between 6, and 2.

Let us adopt the framework in [4] and define T X(s,t) = (X,Y, Z)(s,1),
where s ig the arclength of Ty at t = 0. A space vector Z = X + rf, where
F o= f(@,s,t], and # the radial unit vector on the Frenet plane spanned
by (#,b), the normal and binormal unit vectors. Let cos(p) = 7 -7, and
B, = bo(s,t) obey: 8y, = —oT, where o = |X‘S|, and T = —o—1b, - A1, being
the torsion of the filament. Let # = @ — o, then (r,8,s) form orthogonal
curvilinear coordinates, and:

dF = fdr + r0df + ha?ds,

where # the tangential unit vector, hy = o[l — &7 cos(0+6p)], and & = 0|7
the filament curvature.
The heat equation in the (r,#, s) coordinates is:

d - v, 0 N

[E_X°V""’G’3_ﬁ;(n'7)ég (n-f?)é—g]x

ad 0 0 g ) 0

__ e N e i il -1 7 - -1 7

= o)™ [t )+ gther™ )+ 7507 Hx @

where: V, 9, = —a‘?;f + ?‘“15%(5 + h;,'l'—é%'?. The right hand side of {8) is equal
to:

o* 4,0 keosp O o OF
[— + _— 7 g
or? dr 1—krecosepor 062

Cmsing g0 @ e O
1—5,7"(:05(,01” 5™ B T Thy as]x'

We expand x as:

X ~ Aeis = (AD + 5A1 4. .)(7—], T, 8, 9’ t)e’-':(S{)‘i‘(SSl+"')(ﬂs'r>3>aat)’ (9)
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where n = r /8, 7 =1/6°, and & € (0, 85). The heat equation in (n,T,s,0) is:
) 2 - 0

) y s o ~
[(5 'é; - X vné,gys - (5?’]]?;3 (Tt . ’T)é:; — T HGB]X
&% %, kcosp O
6“2 o -1~y _ 5#].#___"#___#__
{ (8772 T an 1 — dnrcosp on
2 | ssing 0% has

Al (10)

%,
4..‘2__ — —
4+ 6 7]2552”4-5 77189+h32~a—55-"~

1 —dnxcosyp hs

Plugging (9) into (10) and keeping leading orders O{6~%) and 067, we
find:

52 A, +iS,A) — 67X VA = §HAA+ 2VA-VS—|VSPA+
AAS] + 67—k VA +iAkh - V). (11)

Collecting imaginary and real parts, we have:

A |
ST~AS+2YE-VS+6(mﬁ—X)AVS:O(éz), (12)

A, — AA+8(kh— X) - VA+|VS[PA = 0(8%), (13)

with initial data for A being 1, and for S the angle variable 0. lere we
suppose that the initialization can be expressed as local Frenet coordinates
near the flament and that its phase is equal to 6. Otherwise, there is an
initial layer during which the phase adjusts itself to 8. Notice that a small
interval of ¢ is magnified by 52 for T, and so other phase initialization may
well have relaxed to 8. The topological constraint on S is that its winding
number about the origin is 1, also V.5 tends to zero at p infinity which helps
to ensure the limit of A equal to one at p infinity. In (12)-(13), the coupling
term is Y2 + V5. To leading order, we have:

V Ag
So — ASp+ 277

-V =0,

0

Aoy~ DAg + |V So*4p = 0, (14)

which has solution Ay = Ao(|nl,7) = Ao(p, 7), and Sp = 6. The coupling
term is zero, and the reduced Ap equation becomes:

1 1
AG,T = AU,pp + EAB,,O - -’O—ZAD’ (15)
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with Ag(p,0) = 1. The dynamics of equation (15) is best understood in terms
of its self-similar solution:

Ao, p) = A(%—) = A(2),

satisfying the ODE:

1 1 1
Ay + (; + Z)Az - Z;A =0, (16)
with the boundary conditions: A(z) is regular near z ~ 0, A — lasz — +oo.

Expanding A for small 2z, we find two linearly independent local solutions:
Ay = 21/2(00+61Z+"'), co > 0, (17)

and
Ay =2 V2 (bg+ b1z +-7) +logz (b + thz+ ), bo>0,

with the latter removed due to the regularity condition at 2z = 0.

Hence we see from (17) that the desired solution is strictly increasing in a
small neighborhood of zero. By the maximum principle on positive solutions
of equation (16), such a solution cannot experience an interior maximum,
and so must be nondecreasing towards z — oo. Finite time blowup cannot
oceur due to boundedness of coeflicients for z away from zero.

Tt remains only to analyze what limit A approaches as z —» 00, & positive
fnite number or infinity. Making the change of variables:

L .
A= ew210gz z,;’SB1

we have: 1 1
B, - = Dy —\55 —)B = 0.
¢(2)B =B = (57 T ;)
By a result of P. Hartman (p. 382, [8]), we have two linearly independent
solutions: ;
B~g exp{i:/ Ja(s)ds}, z -+ o0,
where:

1 INY? 1 4 8
e (YT L2 4 o ..
G (64+83) 8(1+S 2 )
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and: it
1 1N\~ 1 2 10
=140} = | — 4 — ~ e [1 =2+ = )
) (64 * 83) ( tET
9o the two linearly independent solutions are:

2 10 1 8
Byo~ [ EN = 4 Z a0
12 (1 - t + )exp{:t8(2+ logz + - +-)}

Or in terms of A:
2 1 2 1
Ay o~ (1_;+---)exp{—z—+~-}_(1—;+---)(1+—z—+---)
= (1—1/z+-o-):e'lfz(1+a2z"2+---), (18)

and: 9 1 6
Ay o 08541 = = 4o Jer = S 1A =),
2z Z 2

Hence up to a multiplicative constant, the asymptotic behavior of A is
that A(z) converges to a finite positive constant as z —¥ 00. We have A'(z) >
0, and in fact A’(z) > 0 for any finite z. Letting w = A'(z), we see that w
satisfies the differential inequality:

4 1 1 1 A
w,, + (1/z +1/4)w, — (;5 + w)w =-53A< 0,
implying via maximum principle that the nonnegative function w cannot
achieve an interior minimum 0, thus w > 0.

We normalize A so that A(+oc) = 1. By maximum principle, such a
solution A4 (A(0) =0, A'(2) > 0, A{+4o00) = 1) is the unique classical solution.
This normalized self-similar solution is selected with initial condition 1 for
equation (15).

With the order O{6) terms turned on, the system (12)-(13) is coupled,
however, the coupling tends to zero as p _y oo since VA — 0 and A — L.
For 7 € [0, 70}, To & fixed positive number, as p — oo, the S approaches its
steady state in 7 denoted by Ss Obeying the equation:

_AS,, +8(kit— X) - VSw = O(8%), (19)

subject to the constraint that its winding number is one and also VSe = 0{1)
as p —+ co. Solution of (19) to O{8) is:

7 .
S =1 fu (G, + 6(s — X) - (cos 0, sin6)G] db), (20)

17



