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Abstract

The nonlinear Galerkin methods have been proposed as improve-
ments over the standard Galerkin methods in fluid dynamics. 1 extend
these ideas to a general model reduction context-one in which a general
system of differential equations take the place of the partial differential
equation. A new method which improves the approximation of tran-
stent phases is derived In a similar fashion and implemented. Accuracy
of the methods are analyzed and rigorous error bounds are obtained
and compared. The methods are then applied to various problems,
including problems from fuid mechanics and material science.

1 Background

A major goal of scientific computing and numerical analysis is the efficient
and accurate computation of solutions to complicated problems based on
their mathematical formulation. One of these problems is the solution of
very large systems of ordinary differential equations (ODE’s) (e.g., in chem-
ical reactions [18], [25], [26]). These various systems often depend on so
many unknowns that current computational technology cannot handle the
systems as posed. In many applications, however, a much smaller subset of
variables is representative of the whole system. Thus there is the possibility
to approximate the solution accurately with a smaller system. The process
of identifying the representative variables and computing an approximate
solution is called model reduction.

Model reduction is an established and important tool in control theory,
Since control of a system often is more computationally intense than direct

1



simulation, special techniques for model reduction have been developed in
this context. Several methods for reducing linear models were developed
over the last two decades. FExamples of these are balancing [24], continued
fraction Padé methods [29] [27], techniques based on optimization [3], and
singular perturbation [16]. Recently reduction of nonlinear models has been
the subject of much study (112, [17}, {211, [221).

A very important source of large ODE’s systems i spatially discretized
time dependent partial differential equations (PDE’s). One example is the
method of lines for which the first step is a finite difference or finite element
approximation in space [4], [11], [20]. Another is the spectral method in which
the first step is a Fourier or an orthogonal polynomial decomposition of the
spatial variables [11], [28]. Lately wavelet spaces have also been used for
the spatial representation [1]. After the spatial discretization, the resulting
system of ODE’s in practice is often very large.

Tn model reduction, there is the need for two steps:

1. Find representative variables as a subset of the original variables as a
linear or nonlinear combination of the original variables.

2. Find an efficient way to use the information in the original system to
calculate the evolution of the reduced system accurately.

Our research is concerning the second of these steps.

2 Basic Principles

2.1 General Techniques

In its most general form, model reduction attempts to simplify

d
2L = Jth v EeRS (21)

by finding a new set of unknowns u € R?, p < d.
Here the new set of unknowns u a s0me linear or nonlinear function of v,

u = g(yat)’ (2‘2)

The function g may be a simple projection, or a nonlinear function. In
dynamical systems terms, these projecting functions produce a representa-
tion of the manifold in R? containing the solution y or a representation of y
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:n the model reduced problem. This lower dimensional manifold often is an
approximation of the global attractor of the solution operator of the system.
The most naive of these approximations is a simple projection, e.g., onto low
Fourier modes. The theory of inertial manifolds {5], [23] as computable ap-
proximations of the global attractor is the theoretical basis for the nonlinear
Galerkin methods [19], which use nonlinear projecting functions.

So given such a g, time integration is performed to solve

du
e h{u,1), (2.3)

where h describes the dynamics on the manifold. Then, after calculating,
the original vector y can be recovered,

y = r(u), (2.4)

in terms of u (see Method 5 below and [10]). Very often, however, not all of
y is required but only some particular quantities u = Ay where the vector ¥
's of much lower dimension than y. This is common in control where u may
even be a scalar.

2.2 Subset Reduction

We shall here consider the case where 1 € R? is given and a subset of y € RY,

p < d:
y = (z) (2.5)

This corresponds to problem 2 in §1.
The vector u is then used as the unknowns for the system

'c"l% = f(uav:t)
{%_,,; — glu, 0,8, (2.6)

in which the vector (f,9)" corresponds fo the original fin (2.1).

Here we describe a few techniques in this context which are new or have
been used in literature. The techniques reduce the number of differential
equations, but may not, in this first step, reduce the number of unknowns.



Method 1: The standard Galerkin method (SGM) is the first example of such

a technique. In the notation above, this method can be represented as:
du .
E{ = f(uaost)' (27)

In other words, v i8 approximated by O.

Method 2: If we assume that the time derivative of the v part is small and
we approximate it by 0, we arrive at a second type of method. This is the
first type of nonlinear Calerkin methods studied in [6]:

dii -
Pl f (u,v,t) 2.8
0 = o) )
Note that this requires that an implicit equation be solved and thus puts
restrictions on g (see analysis below). In practice, iterative approximation
solutions of ¢{@,d,t) =0 are used.

Method 3: If, instead of assuming the first time derivative vanishes, we as-
sume the second time derivative is zero, we arrive at a more developed non-

linear Galerkin method [6].

% = f(ﬂ‘:ﬁ:t)
o 'If)

-~ - . . - 2.
0 = gﬁ(u,v,t)f(u,'v,i)—i—gv(u,'v, g(u,v,t)—i—gt(u,v,t). ( 9)

Method 4: In methods 2 and 3, we implicitly assume either the first or second
time derivative of v to be small. This is not always the case, and is not
assumed for this method:
di - f(it,0,1)
dt ) 1 2.10
T = ft 80 (@00(E=T) (7, 0, 1)dT. (2.10)
The model reduction corresponds to assuming,

glu,v,t) =~ g(u,O,t)—i«gﬁ(u,O,t)'v. (2.11)

Method 5; This method is used to recover the original y by postprocessing,
and corresponds to solving the fall system (2.6) for a few time steps at the
end of the calculation. Giving

y ~2 r{u,t).

See (2.4). This technique is studied in [7}, [31].
These five methods are gtudied in more detail below.

4



2.3 Practical Implementation

Methods 2—4, when implemented directly, may be as computationally costly
as solving the full system (2.6). Further simplifications are needed. For ex-
ample, there is the issue of approximating the Jacobian g,. Often in control
theory, Padé approximations are used [27]. This makes for a straightfor-
ward, yet sometimes unstable, calculation. A Lanczos algorithm has been
proposed [30] to fix the stability problems of the Padé approximation. Other
approaches include matrix continued fraction approximations [24], optimiza-
tion techniques {3], [17].

Another issue is the problem stself. Note that for Methods 2-4 the Jabo-
bians should not become singular.

As an example consider (2.8) with linear f and g:

di — A+ B+

Thus di
ﬁ- ~ (Ai+ BD™'CO)i+ by — BD7.

When dim(@i) < dim(®) the full vector & should not be solved for. In-
stead, some approximation of BD~'C must be implemented so D71 is not
computed.

2.4 Preliminary Error Analysis

How large errors will the methods of §2.2 produce? What follows is the
preliminary steps towards a rigorous €rror analysis.

2.4.1 Overview

Preliminary error analysis of these methods is summarized in the following
table:

Method | Order of Error
T o[

2-3 O(ljg=vll)

4 O(ll21?)

Table 1: Comparison of Error



The NLC vary in order, but are of the order of an nth derivative of v, for some
n. Note that if the reduced variables v are small yet are changing rapidly,
e.g., on transient phases, the new method is superior to the SGM and the
NLG. There are conditions for these results to hold, specifically related to
the Jacobians %ﬁ, %{;, %ff;, and g%.

2.4.2 Method 1
Recall that we are approximating the full system, (2.1). Start with

g = f(u,v,t)
{?{;" = f(ﬁ70:t)

S
o dud;ﬂ — f(u?v,t)_f(ﬁnoat)
— fu(u —_ ’a}) + fv'u
Let @ = fu-
Then

I~
|
22
i

¢
fov exp(ftm]r Q:1(s)ds)dr

= fu—al < [ l\fﬂl\l\vlll\texp(f*'f Q1(s)ds)I7
al = Gy ffau(t, m)drlvli

where Gy = ||fu]l and a1(2,7) = Il exp( [57 Qu(s)ds]l.
At worst this gives the estimate:

. C
[ — &l < = (exp(|@ult) = Dlivll
Q4|
There are cases where this can be improved. Specifically, if [ bt T)dr <
(5 then we have

Jlu — @] < CLCalvll

where (; are independent of 1. One case this occurs is if @Q1(1) = G and

Re(o(Ql)) < 0.



2.4.3 Method 2

Start with ;
{ B = glu,v,t)
0 = ‘g(ﬁ,'f),t)
Then
% = g{u,v,t)— g{@,v,t)
e = gyu— ) — oo =)
vt = g% gu(u— )
Now .
{ —uf - f(uavat)
'&% = f(ﬁ'.\%:t)
So i
ﬂd%ﬂ = f(uavmt)—f(ﬁ':ﬁ?t)
= Fulu — i) + fuolv —9)
= fulu— i) + fvg;_l(% - gulu — ﬁ))
d=D) o (f, = fogr ) (u— W)+ 0T
Let QZ — fu — fwgglgu-
Then
w— U = fogyt -‘% exp(ftw Q2(s)ds)dr
= u—da < [ vag’l\lll‘ﬁ;—“;tllll exp([7 Qals)ds)iT
= lu—al < ¢y [* ot )|

where Cs > || fo97 || and g@t7) =1 exp(ft—T Qz(s)ds}.
At worst this gives the estimate:

G
@

If [ " go(t,7)dr < C4 then we can improve the estimate to

o i < - (exaQall) ~ DI
u— @l < GGl

where C; are independent of t. One case this occurs is if Q2(t) = )y and

Re(J(QQ)) < 0.



92.4.4 Method 3

From the method, we start with
0= gu(ﬁ,ﬁ,t)f(ﬁ,i},t) + gﬂ(ﬂ,'ﬁ,t)g(ﬁ,ﬁ,t) 4+ gi{ @, 0, 1)-
By differentiating the original equation, we get,

%%g = %(g(uavvt))

g‘u-(ua v, t)%% + gv(ua U, t)% + gt(u: U:t)

= gu(u,v,t)f(u,v,t) + gv(u,v,t)g(u,v,t) + gi(u,v, ) -
-w-gu(ﬁ,ﬁ,t)f(ﬁ,ﬁ,t) + gv(ﬁ,ﬁ,t)g(ﬁ,f),t) + g¢(%,0,1))-

il

Upon subtracting,

£y = h}h(u—ﬁ)+h}}(v—ﬁ)+hﬁ(u—~ﬁ)—fhﬁ(u—ﬁ)---
Fgr(u — @) + gow(v — 9)

where gu(u,v,t)f(u,v,t) = h'(u,v,1), and gv(u,v,t)g(u,v,t) = h*(u,v,1).
Then

0o = (gt B R (g b R R D)

where Sy = (g + by + R2)~! and S = (gt + hy + A2 Mg + hL + hZ).

Now
{ ?{ = f('u,,v,t)
71% - f(ﬁaﬁvt)
So _
d—(%—zi)‘ = f(u,v,t)ﬂ—f(ﬁ,'ﬁ,t)
= fu(u—ﬁ)‘}'{v('u_ﬁ)
= Ala— @)+ RS ST
dod) = (fy— foSa)u -+ FoS1 %%
Let QS - fu — f'uSZ-
Then
i
w—i = f.51 82 exp( [ Qs(s)ds)dr
Sfu—il < Jfsg e Gale)dlim
= Jlu—d| < s [* gs(t, 7Tl %
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where Cs > | foS1]] and ga(t,7) = ljexpl J77 Qs(s)ds)l-

At worst this gives the estimate:

Cs d*v
m(eXP(HQSHt) -~ Dl

There are, however, cases where this error can be improved. Specifically,
if ft gs(t, T)dr < Ce then we have

fJu— @l =

Ju < o0l gz

where C; are independent of t. One case this occurs is if Qs(t) = @ and

RG(J(Qg)) < 0.

2.4.5 Method 4

Start with
9% = g(u,v,t)
2 = g(1,0,1) + ¢u{%,0,1)0
So
A=) = g, (ug, or,)(u — B) 6ol 0,10
= gu(u‘lvviﬁt)(u - ﬁ’) -+ gv(u%v?at)v + gv('ﬁ‘a{]:t)(v - 6) - gv(ﬁaoat)v
= gﬂ(ﬁaovﬂ(v ~ )+ gu(ulavlat)(u — @)+ (gv(u%”?:t) - gv(‘ﬁ.,o,t))v
Let

W1 gv(umi)%‘t) —g,,(ﬁ,O,t)

- g'uu(u‘i'»: V3, t)(u’? - rﬁ‘) + g‘fﬁ“u‘(u‘l? U47t)v

Note that since Juz — il < Il = @lh, [Wall < flgwliile = il| + llgwlllloll-
Solving the linear differential equation for v — gives:

v—U = ft(gu(u — @) + Whv) exp(ft_'r guds)dr

From the equations for u and @, we get

et = fulu =) + o0 =)
= fulw—@)+ fo( [ (gulu—B) + Wiv)exp( [ guds)dr)
= fulu — i) + W,



where Wo = fuol[*(gulu — @) + Wiv) exp(['7" guds)dr). Solving this d.e. for
u — U gives ) t -
u — U = ["W; exp( [ fuds)dr
TR A 1A0)

where I1(1) = ft exp(ft_T fuds)dr.
At this point care must be taken as to the estimate of [|Wzi].
Note

Wall < HAN (lgalllle — 2l + Wl exp([ gods)ldr
< £l (lgallis — @l + NWliilolD 22(2),

where I(t) = *exp( f =7 gyds)dr. Using the estimate for Wi, the inequality
becomes

Wl < LWl (gl = all + lgonlitle ~ @)l + [lgw v D li1l)
< LOUL lgel + lgo ol — @l -+ ligunlillel®) -

We now obtain an estimate for u —
| —all < | Welll(?)
< L&) (Ll + HgwlllleDil = al| -+ llgwollllvl1*)
o flu — @ (1 — LEOLEIAHINgN + lgwalllivlh)) = L LA fllllgw Mol
Let D1 = 1 — L)L) fll(lgull + lgwlllivl) = o(1) as jlv]| = 0.

Thus we must require

0 < Dy
50 < 1= LALEOIL]I(lgd + lgwlllel)
=1 > LOBOIAINg) + lgwdliel

(loarse estimates for Iy and [, are

Il(t) < “;u“(exp(\lfu“t)_l)

Bt < rpleplis]n -1

Then we can give a more restrictive estimate:

I fulllgell > (exp(llgvllt)-U(exp(l\fvllt)—1)|lfull(llgull+l|9w|HlvH)
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1f this holds we have an estimate for v — U

=l < BB Ml

There are cases where this can be improved. Specifically, if I1(t) < C and
Lty < C",and | Folls llgun |l aTe bounded and Dy is bounded away from zero,
then we have

Ju — ) < Constlulf

independent of t. One case this occurs is if fu(t) = fu s () = o,
Re(o(fu)) <0, and Re(o(g.)) < 0.

3 Applications

Tn this section two sets of numerical experiments are presented. The first 1s
a pair of ODE’s with some interesting properties. The second is the Burgers’
equation. Analysis of the results follow.

3.1 Two simple ODE’s
We begin by considering the following model ODE system:
du

i + Ag(w) + Ry(u,v) = A(t) (3.1)
Cil_: + Ag(v) + Ry(u,v) = fa(t) (3.2)

where A; and A are linear operators, fi1 and Ry are nonlinear functions.
We assume Ay has a larger positive real part than As.

Here the methods from §2 are presented for this setting and a group of
numerical experiments explained.

3.1.1 Methods

The methods 1 through 4 can be posed as follows: Solve the following system.
dil
dt

where 9 = ®pp(#) ~ v. Hence to distinguish the @4y 1s t0 distinguish the

method.

+ Ay(8) + Ral@i, @app(@) = fi(®) (3.3)
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Method 1: The first try at this is to project onto u, 1.e., we set Bp(u) =0~
and then time integrate (3.3).

Method 2a: Recall the assumption that

&y
a7

Then we can set

5 = AyN(H(E) - M@ 0).
Ql(&) = 9,
and time integrate (3.3). Note @, is merely one fixed point iteration. It 1s
also equivalent to the first ponlinear Galerkin method (®y in [19]).

Method 2b: Do the same as above except solve:

f)-i - A;l(fg(t) - Rg(ﬁ,O))
by = AP(fa(t) — Ral®5))
@2(‘&) = '52,
then time integrate (3.3). This is merely two fixed point iterations. and
is equivalent to the second in a class of nonlinear Galerkin method studied

in [6] (@)

Method 3: This method varies from the previous two methods in that it
attempts to adjust the assumption that %";” ~ 0. To derive this method, take
the time derivative of (3.2), then,

0 Ra(u,v) du N ORa{u,v) dv

By dl e SR L0 (3:4)

d*v dv
gl + Az(a*‘_g +

Now approximate (3.4) by setting % _ 0 and solving for ¥*, the approximate
t{ime derivative:

) + P22 1) — @)~ Ralio @) = S ()
Then set

Bs = AF(falt) — Balu, @) = )
‘1)3("&:) = &3:

12



and solve i by integrating (3.3). This is similar to the nonlinear Galerkin
method outlined in [7].

Method 4: In this new method, we avoid assuming that v or one of its time
derivatives is 0. To do this we linearize as in (3.2), and then solve the resulting
linear differential equation exactly, i.e,

o= Sl §;§2§f’(1—exp(—(Az+3@~§iiﬂ)At)) (3.6)
Dyd) = g

Then solve for i by integrating (3.3)
dtt . . .
T Au(@) + R, 84(8) = filD): (3.7)
Method 5: In this method, we postprocess using @,
1. Calculate using Method 1 for all but the last few time steps.
9. Use ®, for the last few Runge-Kutta steps.
In this method we attempt to recover (see (2.4)) the whole system after
projecting for most of the time. This type of method was studied is [10].
3.1.2 Numerical Experiments

For the first numerical experiments, u and v were scalars, and the following
system was considered.

%:— 4y 4 sin(2r(u +v)) = i(sin(pt) +1),
%-}-51}—1—005(11—}—'0) = 1,
u(0) = 3,
v(0) =1,

This system has some important properties. First, there are two variables
with different decay rates: u is the slow part, v is the fast part. Secondly, in
the evolution of the equations, there are two distinct stages: a transient stage
at the beginning where the yariables decay, and a stable Jong-time stage. The

13



period of the long-time stage was adjusted by varying . The results for cases
p =7 and p =27 are reported.

Also note that the “Jacobian” g is never singular since |5—sin(u+v)| > 0.

Fourth order Runge-Kutta with a step size of k = 0.01 was used for all
time integrations.

1t is important to note the performance of the different methods versus
the fully computed sohition. Quantitatively, four cases are considered. First,
the L! error for the whole time interval 0 <t < 7. Next, the ! error on the
{ransient stage time interval 0 < t < 2. Also, I} error on the stable stage
time interval 5 <t < 7. Finally the error of the last value is computed. This
is to see how well Method 5 works in recovering as in (2.4).

Tables 2 through 5 display the error for u for the case g = - Table 2
shows the Li-norm of the error for the whole time interval. Table 3 shows
the I'-norm of the error for the transient stage time interval. Table 4 does
the same for the stable stage time interval. Table 5 shows the error of the
last value.

Table 2: L' Errors: g =7, p<t <

Method Frror
1 6.30 x 1072
Z2a 8.62 x 1077
2b 1.05 x 1072
3 9.40 % 107
4 1.67 X 1073

| e
Table 4: L' Errors: p=m, 5 << 7

Table 5: Last Value Errors: g =7

Observe that, overall, Method 4 performed better than the other methods.
Note especially that Method 4 performed better that the other methods on
the transient phase. And, as the error analysis indicates, the Methods 2a
through 3 are superior in accuracy on the steady phase.
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The following figures graphically display the difference in the methods.
Figures 1 through 9 plot the case pp = 7. Figure 1 plots u as computed using
the Method 1 and u for the full system. Figure 2 does the same for Method
9a. Figure 3 plots v as computed for Method 2a and v for the full system.
Figures 4-9 alternately plot u and v for Methods 2b—4.

All programs were rui using the MATLAB programming environment on
Sun-08 machines.

Figure 2: Method 2a, v, p =T Figure 3: Method 2a, v, p=7
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Figure 8: Method 4, 4, p =T Figure 9: Method 4, v, p=T

3.2 1-D Burgers’ Equation

The second set of experiments deal with Burgers’ equation:
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This can be written as & infinite dimensional abstract differential equation

i H = L*([0,27]).

d
a—ty%-eAy-i-B(y) = f
'y(O) = Yo

where A is the operator associated with —0g; and B is a bilinear operator
that contains the nonlinear term.

We will consider as a basis, the usual Fourier modes, w; = 2T e, we
use the Fourter spectral method.

The standard Galerkin method (SGM) calculates the solution on a fixed
subspace of H, namely Hp = span{w;}, g = L,..,m- Let P,, denote pro-
jection onto Hpm, and ,, = Pn(y). Then the SGM solves:

%um 1 cAtm + Pn(B(tm, tm)) = Pl f)

un(0) = Pu(y(0))-

Recent developments have arisen [19] that improve on this projection in
a similar way as was done with the ODE’s. The idea behind these so-called
nonlinear Galerkin methods (NLG’s) is to consider also the orthogonal com-
pliment of Hpm, and use the existence of the inertial manifold to approximate
the part of the solution that lives there.

Let Qm = Iden — P, and vy, = @m(y). Then H = P.(H)® Qum(H),
Y = tm + Um, and (3.9) becomes:

by, + eAum + Pa(B(y)) = Pr(f)
Z%Um + eAvm + Qm(B(®) = @nl(f) &

¥
where t,, = Pn(y) and vm = Qm(y)-
In practice, since H has infinite dimension, Qum = Pvm — @ms where N
is a positive integer (e.g., 2)-
Because the equation admits an inertial manifold [5], this system can be
reduced. Specifically, there exists some smooth @ such that, for solutions y =
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Uy, + U, WE have vm = ®(tty). In this notation, the inertial manifold M =
graph(®). In general, this @ is impossible to compute, 0 We approximate it.
See [6], [14], [19], and references for many approximations. Let ®,pp denote
the approximation to D.

The nonlinear Galerkin methods use this feature to compute the reduced
solution similar to the standard Galerkin method, but more accurately, by
solving the ordinary differential system:

d
Eium 4 eAvug, + Pr(B(tum + t1)1,@(,(11,,1))) = Pn.(f)

um(0) = Pm(y(0)).

3.2.1 Methods

We apply methods that are analogs of those in §2, using the ®,p, notation.
Methods 1-4 are distinguished only by their associated ®gpp. The follow-
ing ®qpp were implemented:

Method 1: SGM with ®app =0 (see (2.8))-

Method 2a: Nonlinear Galerkin method 1 (NLG1) with ®upp = ®,, in [6]
(see (2.8)):

By (1) = (€A) " (@Qu(f — Blum)))

Method 2b: Nonlinear Galerkin method 2 (NLG2) with @app = ®,, in [6]:
(see (2.8)):

Py (ttm) = (cA)H(@Qmlf — Blum + 1 (um))))-
Method 3: Nonlinear Galerkin method 3 (NLG3) with @app = ®s, in {6]
(see (2.9)):
B3 (um) = (eA) ™ (@Qm(f — Blum + Um,3)))
where vy, 3 is given by:

Vma = ®o(tm )
uin’o + eAuy, + P (B{(tm + Vma)) = P
eA'u,},,i‘2 + Qm(B(u}n,B, U, & Vm2) T Bty + Vm,2 u,lmo)) = 0
U3n,2 + €Avmz T+ Qm(B(um + Vm.2)) Qm(f)

1l
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Method 4: New method with Dypp = Pain (3.6):
By(tm) = (GmleAt Bu(un))) " @ (Blum))I — exp(—(eA = Bu(um))AM)

Method 5: Postprocessed Galerkin method (PSGM) using ®,, see [10]:
1. Calculate using SGM for desired time steps.

9. Postprocess result, i.e., set Yapp(T) = um (1) + &y(um(T)), where T is
the maximum time.

3.2.2 Numerical Experiments

For the experiments, the following three sets of initial data were used:

yy(z,0) = sin{x)
{ 0 forz € (0,7/4)

!

1 forz € [w/4,57/4]
0 for ¢ € [5w/4,2m]

ya(z,0) = 1 - sinfz)

yg(fL',O)

For y1, a calculations were rui until T = 3 with a time step of 107%, y¢ and
ys with a maximum time of T = 2 and a time step of 104, Fourth order
Runge-Kutta used for all time integrations.

All programs were ruft using the MATLAB programming environment on
Sun-0OS machines.

Figure 10 plots the exact the solutions. Figures 11-14 show the results
of four methods (1 SGM , 2a NLG2, 4, and 5 PSGM) for the three types
of initial data using 32 nodes, together with the exact solution. Figure 15
shows the convergence rates for the methods for the initial value y1. Note
that Methods 1 and 5 are grouped separately as they have significantly slower
convergence Tates from the others. Note that Method 4 compares favorably
with the nonlinear Galerkin methods.
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3.3 Molecular Beam Epitaxy

In the control of molecular beam epitaxy (MBE) processes, it is important to
have simple mathematical models. These models should describe the layer-
by-layer growth of thin £1lms on atomic scales. The growth can be represented
by so-called island dynamics where an island consists of a compact monolayer.

At present the UCLA Mathematics Department is involyved in a major
MBE project. The fall island dynamics model is a PDE model based on
the motion of the boundaries of forming layers. The level set method was
used for this model. This, however, is too computationally intense to imple-
ment control. Thus a reduced order model [2], based on the same physical
quantities, is needed. Further along these same lines, model reduction 1s of
interest.

The reduced-order model for single Jayer growth is as follows:

Liprapl—9) = @ F(1=%)
g = (fo+2ma (3.10)
d-n

= m—cC
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where

istand coverage

li

adatom density

step edge density

1

flux to islands

i

island number density

island nucleation rate

It

QEZSL'*:»Q“D'@*
|

island coallescence rate.

All the variables depend on p, 1, and 1 explicitly (see the cited reference
for details). The system can be algebraically transformed into the following
form:

Eff = gi{¥,n,p)
Ej” = ¢o(¢p,m,p) (3.11)

i h(d),n,p).

Since the variable p remains small compared to 1, and n, model reduction
attempts begin with eliminating the evolution equation for p.

The model reduction methods can then be viewed as obtaining an ap-
proximation of p from the values of ¢ and n.

= 1 TI):?":@flPP(QJ;!ﬁ)
= g2 %Za'ﬁﬂq)app(&!ﬁ)

]

(3.12)

e, Sle
S

3.3.1 Methods

For this model just two of the methods were used, Method 2a and Method
4. Method 1 is unsuitable because, although p remains small for all time, it
is the driving quantity for the start of the epitaxial growth, as the adatom
density should be. So if its value is set to zero, the equations fail to model
the system properly. Method 2b was not implemented since for this system,
it is equivalent to 2a. Method 3 was not implemented because the resulting
complexity of the system.

Method 2a:
For this method, simply resolve

0= h(@b,?’.‘., 15)
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for p. This can be done with high accuracy as the resulting equation 1s
simply a quadratic equation in p, giving O, (¢, n). (This is also the reason
why Method 2b 1s equivalent.)

Method 4:

An approximation of the solution of
d . - Y oy
"&E = h(¢an70) + hP(¢:n70)P

is needed. Take
5 = () (s m,0)(1 = OO 4 P
@4(1#,1’2.) ﬁ

Note that this is a different approximation of the integral than was used
previously.

il

3.3.2 Numerical Experiments

The methods were tested with values @ = 1, po = 2 X 1078, 2o = po, o =
10-%. Since the equations form a stiff system, a stiff solver was used: ODE15S
in MATLAB for the full system and a standard algorithm (see [13]) for the
others. Figures 17 - 19 show the fully computed solution and the reduced
solutions, respectively. The quantity p is the approximated quantity. Note
the superior approximation of Method 4 for this quantity, when compared
with Method 2.

Fulb Sigle-Layer MBE Modal feduoed Singa-Leyer MBE Model, Ueihkod 2

Figure 17: Fully computed solution Figure 18: Reduced solution using Method 2
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Figure 19: Reduced solution using Method 4

4 Conclusions

Tn conclusion, nonlinear Galerkin methods have been successfully cast in a
general model reduction setting. Here a new method (Method 4) is derived
in a similar way. The new method shows promise. The above analysis and
applications demonstrate the usefulness of this reduction method, especially
on the transient phases of a dynamical system. There is, however, the need
for more research.

The effect of the reduction techniques on Burgers’ equation must be stud-
ied more thoroughly. One approach may be to look at the effect of reducing
more than one half of the modes. More rigorous error analysis must be done
on the methods to give sharper error bounds, and determine when they are
applicable. Work s3]l needs to be done on efficient implementation of the
methods. These technical issues will be addressed.

There is another interesting question that arises: What other uses does
model reduction have? For instance, a full system of ODE’s may be stiff,
but after reduction, the stiff variables are eliminated. These more general
questions will also be studied.
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