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The Geometry of Wulff Crystal Shapes and Its Relations with Riemann
Problems

Danping Peng, Stanley Osher, Barry Merriman, and Hong-Kai Zhao

ABSTRACT. In this paper we begin to explore the mathematical connection between equilibrium shapes

_ of crystalline materials (Wulff shapes) and shock wave structures in compressible gas dynamics (Riemann
problems). These are radically different physical phenomena, but the similar natare of their discontinucus
solutions suggests a connection,

We show there is a precise sense in which any two dimensional crystailine form can be described in
terms of rarefactions and contact discontinuities for an associated scalar hyperbolic conservation law. As a
byproduct of this connection, we obtain a new analytical formula for crystal shapes in two dimenston. We
explore a possible extension to high dimensions.

We also formulate the problem in the level set framework and present a simple algorithm using the
level set method to plot the approximate equilibrium crystal shape corresponding o a given surface energy
function in two and three dimensions,

Our main motivation for establishing this connection is to encourage a transfer of theoretical and
numerical techniques between the rich but disparate disciplines of crystal growth and gas dynamics. The
work reported here represents a first step towards this goal,
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1. Introduction

In this paper we develop a mathematical connection between two quite different physical phenomena:
the shapes of crystalline materials, and dynamics of shock waves in a gas.

Both of these phenomena have long research histories: The problem of determining the equilibrium shape
of a perfect crystal was posed and first solved by Wulff in 1901 [28]. In nature this ideal “Wulff shape” (see
figure 1) is observed in crystals that are small enough to relax to their lowest energy state without becoming
stuck in local minima.
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Ficure 1. (a) A 2D Wulff crysial. (b) A 3D Wulff erystal.

The problem of determining the dynamics of a gas initialized with an arbitrary initial jump in state was
posed and partially solved by Riemann in 1360 [21]. Solutions to this “Riemann problem” can be observed
experimentally in shock tubes, where a membrane separating gases in different uniform states is rapidly
removed. The Riemann problem has since been generalized to mean the solution of any system of hyperbolic
conservation laws subject to initial data prepared with a single jump in state separating two regions with
different constant states.

The intuitive link between Wulff crystals and Riemann problems is the similar nature of the discontinuous
solutions. Crystalline shapes are characterized by perfectly flat faces—facets—separated by sharp edges,
whereas shocked gases are characterized by regions of constant pressure separated by steep jumps (see figure
2). It is tempting to imagine that the sharp edges in a crystal shape can be though of as shock waves in
SOMmE Sense.

To explore this shock wave-crystal edge analogy more precisely, we represent the crystal surface in terms
of its unit normal vector. The normal has regions of constant direction separated by jumps in direction,
which suggests it may satisfy the same sort of equations—hyperbolic conservation laws—~that govern shocks
in nonlinear gas dynamics. The analogy continues to hold if we consider the most general behaviors of
Wulff crystals and Riemann problems: Wulll shapes are constructed entirely from facets, rounded faces and
sharp edges, for which the normal direction has regions of constancy, smooth variation, and isclated jumps.
Correspondingly, the solution to a Riemann problem for any hyperbolic conservation law is constructed
entirely from constant states, rarefactions (smooth variation), and shocks or contacts (isolated jumps).

We will show that the precise connection is this: the normal vector to the Wulff shape of a crystal in fwo
dimensions is the time self-similar solution of an associated Riemann problem for a hyperbolic conservation
law. In this representation, it does indeed turn out that crystal facets are the constant states in the Riemann
problem and the curved faces are the rarefactions, but the sharp corners are contact discontinuities, not
shocks.
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FIGURE 2. The left is a 2D square Wulff crystal. The right is the plot of the angle between
outward normal and the horizontal azis vs the polar angle.

The most immediate consequences of this representation is a new analytical formula for the Wulfl shape,
derived using formulas and methods from the theory of Riemann problems.

For clarity, we will summarize the analytical results here; these are explained in detail as they are derived
in the main text. Let the Wulff shape be described in a polar coordinate system with the origin at its center.
Choose the horizontal axis such that it intersects with the Wulff shape at a point where the unit normal to
the Wulff shape coincides with the horizontal axis. (For example, the horizontal axis can be chosen as the
line emanating from the origin and passing through the minima of the surface tension.) The boundary curve
of the shape can be parameterized by giving the angle v between the normal and the horizontal axis as a
function of the polar angle #. This curve v(f) gives the time self-similar viscosity solution v(€,¢) = v(£/t)
to the hyperbolic conservation law

with flux function
¥ gt
(1.2) Flv)= %UZ +/0 tan~! (7 ((s:))) du
and mitial data
(1.3) r(E<0,t=0) = 0
(1.4) v(E>0,t=0) = 2m,
where y(v) is the erystalline surface tension as a function of the surface normal direction, §(v) is the Frank

convexification of y(r) {described in section 3.4) and tan~! has range [~#/2, 7/2]. The new formula for the
Walff shape that results from this connection ig

d .
(1.5) vy = -~ ggn%[ﬁ'(u) — o],
where F is the flux function from the conservation law.

The primary goal of this paper is to expose the connection between faceted crystal shapes and shock
waves and related phenomena from gas dynamics. Because readers familiar with the theory of Wulff shapes
come from a material science background, they are unlikely to know the theory of Riemann problems from the
field of gas dynamics, and vice versa. To fill in these likely gaps, we will present the elementary backgronnd
for both problems prior to deriving our new results. Most of our proof will be somewhat formal, referring
the mathematically inclined readers to relevant publications for rigorous treatment. In addition to making
the present paper more readable, we hope this inclusive approach will foster future interaction between these
two disparate research communities.
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The paper is organized as follows: we start with the essential background on the Wulff problem and
the Riemann problem, emphasizing their similarities. Then we show how to represent the Wulff shape as
the solution to a Riemann problem, via two seemingly quite different approaches: the first approach starts
from the Euler-Lagrange equation of the surface energy and conmects it with the Riemann problem of a
scalar conservation law under a suitable choice of variables. The other approach uses the self-similar growth
property of the Wulff shape and shows that it aolves a Riemann problem for the same conservation law. In
the process, we develop the new formula (1.5). We present two simple illustrative examples and comment on
further possible extensions of these ideas. We then formulate the Wulff problem in the level set setting and
use it to derive some theoretical results about Wulff shape. This method is also a convenient and versatile
tool for plotting the Wulff shape of a given surface tension function in both two and three dimensions. We
present numerous examples demonstrating this and verify some recently obtained theoretical results in {19}
concerning the Wulff shape in the numerical section. The appendix contains proofs of some results in the
main text that require certain degrees of technicality.

2. The Wulff Problem and the Legendre Transformation

This section will briefly review and develop some general resulis about the Wulff crystal shape that are
valid in any dimension. The next section will concentrate on the Wulff crystal shape in 2D.

9.1. The Formulation of Wulff Problem. The Wulff problem is to determine the equilibrium shape
of a perfect crystal of one material in contact with a single surrounding medium. The equilibrium shape is
determined by minimizing the total system energy, which is composed of contributions from the bulk and
surface of the crystal. If we fix the bulk energy, the problem becomes that of finding a shape of given volume
with minimal surface energy.

If the snrface energy density—that is, the “surface tension”—is constant, the solution is the shape of
minimal surface area, which is a circle in 2D and a sphere in 3D. However, in many solid materials the
surface tension depends on how the surface is directed relative to the bulk crystalline lattice, due to the
detailed structure of the bonding between atoms. Assuming some standard orientation of the bulk lattice,
the surface tension, v, will be a definite function of the normal vector to the surface, #, say v = y(7). In
that case, if the material is bounded by a surface T', the total surface energy is

(2.1) E:/P'r(ﬁ)dfl,

which must be minimized subject to the constraint of constant volume enclosed by T

This problem makes sense both in two and three dimensions, and essentially 2D crystals do arise ex-
perimentally in the growth of thin films [7]. The formula we derive in this section applies equally well in
both dimensions. In the next section, we will concentrate our attention on the 2D problem, where we can
make the precise connection to a Riemann problem. In this case, (7} is the energy per unit length on the
boundary, and we we seek to determine the bounding curve, T', of minimal surface energy that encloses a
given area.

2.2, Waulfl’s Geometric Construction of the Solution. Wulff presented the solution to this mini-
mization problem as an ingenious geometric construction, based on the geormetry of the surface tension. Let
7 : 5% 1 — R* be the surface tension which is a continuous function, where d = 2 or 3. Wulff’s construction
is as follows (refer to figure 3):

e Step 1. Construct a “polar plot” of y(v). In 2D, this is simply the curve defined in r-v polar
coordinates by # = y(r), 0 < ¥ < 27. In 3D, thisis a surface around the origin in sphere coordinates
r-v.

e Step 2. For each point P on the polar plot, consiruct the hyperplane through P and normal to the
radial vector emanating from the origin to P. (Note this is typically not the tangent plane to the
polar plot at P.)

e Step 3. Construct the inner (convex) envelope of this family of hyperplanes. This is the minimizing
crystal shape, and rescaling it to have the proper volume yields the solution to the constrained
problem.
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FIGURE 3. Waulff’s geometric construction.

We will call the geometric shape obtained through the above procedure Wulff crystal shape or simply
Wulff shape. It is easy to see that the region enclosed by Wulff shape is

(2.2) W={xeR:x-0<~(6), forall 8 € S},

which is convex.

It is possible to write an analytic expression for the envelope of a family of smoothly parameterized
lines or planes, and doing so yields formula (2.3) in any dimension. In particular, we get a simple formula
(3.1) in 2D. The stipulation from step 3 to use the “inner” envelope means that the multivalued swallowtails
occurring in the envelope equations must be clipped off to obtain the true shape.

It is easy to see that the construction places facets in directions of local minima of surface tension,
which is a sensible energy-reducing strategy. Indeed the entire process is simply to position a planar face
at every possible orientation, with distance from the origin proportional to its energy, and then simply take
the inmermost set of facets as the crystal shape. However, it is difficult to prove rigorously why Wulff’s
construction gives the minimal energy shape. J. E. Taylor [27} and others [2, 9} have given general proofs
that this construction does yield a mininizer of the energy, and this shape is unique upto translations. See
also the recent paper [19] of Osher and Merriman.

2.3, The Wulf Shape and the Legendre Transformation. Wulff’s geometric construction de-
scribed above can be mathematically formalized by the use of the Legendre transformation, which we define
below.

DeFINITION 1. Let ¢ : S9=1 — RT be a continuous function.

1. The first Legendre transformation of ¢ is:

_ @]
(23) 0= o [e9]

e LO-)

2. The second Legendre transformation of ¢ s

(2.4) ¢*(v) = sup [C(O)(0 - v)].

>0
4l=1

The geometric interpretation of Legendre transformation should be clear from figure 4 and the remarks
below.
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FIGURE 4. Left: the first Legendre transformation. The solid line is the plot of {, and
the dashed line is the plot of (i, the corresponding Wulff shape. Right: second Legendre
transformation. The solid line is the plot of ¢, and the dashed line is the plot of (*, the
support funclion.

Remark 1. The first Legendre transformation (o{v) gives the Wullf crystal shape. This is easy to see from
equation (2.2) in polar coordinates:
W = {(r,v):r(r-0)<{(9), foralfe -1y

. [ €00)
= <
(w):r < inf |60k}
|18]l=1
= {{r,v):r <G}
Remark 2. The second Legendre transformation ¢*(v) gives the support function of the region enclosed by
the polar plot of (. Recall that the support function po of a bounded region  which contains the origin is
defined by

(2.5) pa(vy =max{x -v:x€Q}, forv & g4-1.

We will see shortly that the first and second Legendre transformation are dual to each other in certain
sense. The following relations are obvious by definition:

ILemma 2.1.
(2.6) Gy <L) £C7)
) MORESIOR

Since ¢ is defined on a curved manifold §4-1 sometimes it is convenient to study the extension of  to
the whole kY. We extend ¢ : S9! — R¥ to R% by defining

(2.8) {(z) = mg(%), for z € R%, with {(0) = 0.

Such an extension ( is homogeneous of degree 1. If ¢ is differentiable, we have the following important
relation due to Euler:

(2.9) 3o g () = (@)
j=1
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Note that each of the first partial derivatives of ¢ is homogeneous of degree 0, and the second partial
derivatives are homogeneons of degree —1. We will abuse the notation and write { as ( when no ambiguity
arise.

DeFNITION 2. ( is convex if the polar plot of % is convex. ¢ is polar convex if the polar plot of { is
convex.

The following lemma gives the necessary and sufficient condition for ¢ to be convex in terms of its
extension.

LEMMA 2.2. ( is convez if and only if its homogeneous extension of degree 1 ¢: R — RY is a convez
function on R,

See Appendix I for the proof.

As we have seen, the Wulff shape W = { z 1 |z < C*(ngl-) } is always convex. By definition, ¢, is polar
convex. From lemma 2.1, ¢* is convex. We put these facts In

LEMMA 2.3. (4 is alweys polar convez and (* is always convex.
Now let us introduce
(2.10) () = (G (@), ) = () (v).
From the definitions and the lemma above, we know that 6 is always convex and ¢ polar-convex.
DEFINITION 3. We call ((v) the Frank con;fexiﬁcation of ¢, and {(v) the polar convexification of .
We proceed to prove the following important relations:
LeMma 2.4,
(2.11)

(
e ("= (@)=t

Proof: From the definition,

: _ . )
¢(w) 8%330[6*(9)(9 V)] = Se‘?f[(,ﬁ?iu (;]_—5.")*(9 )]

()
su g1 =<((v).
sup 250 -] = ¢()
The other inequality can be proved similarly.
The key ingredient in proving the two equalities is the repeated use of the duality relations (2.7):

B - (@)= iy

1 1 1
- 1/(-;.;);m—g-

The other equality follows from the above and the duality relations (2.7). O

Both ¢ and ¢ have simple geometric interpretations. From the definition, the steps used to obtain ¢ can
be described in words as following: draw the polar-plot [ of ¢. Let Q be the region enclosed by I'. Through
each point on ', draw the hyperplane(s) tangent to I' which lie outside €. Note that such a plane may not
exist, such as at points that curved inward, and may not be unique, such as at the points that bulge outward:
This corresponds to the steps used in constructing the support function. Then find the inner envelope of
all such tangent planes. This corresponds to the construction of the Wulff shape of the support function.
The inner envelope is the smallest convex set that contains §2, i.e. the convexification of Q. We thus get
a simple procedure to obtain ¢ plot the graph of ¢ in polar coordinates, convexify the plot and cbtain a
convex graph. This is the polar plot of {. Using the duality relation (2\/.12), we can obtain 6 by first drawing

the polar plot of —}, then convexifying the region enclosed o get (%

i

1A

) = %, then inverting it to get . See
the figures in section 5.5. These arguments show that
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LEMMA 2.5. IfC is convex, then é’ = (. If ¢ is polar-convez, then {=¢(.
We now show the following important

THEOREM 2.6. 1. The Wulff shape of ¢ and ¢ are the same. That is,

(2.13) (&) =¢.
2. The support function of ¢ and ¢ are the same. That is,
(2.14) &) =¢.

Proof: We already know that ¢ < ¢. Hence (f)* < {.. One the other hand,
£(6) = max[¢.(v)(8 - )] 2 G (v){(v - 8),for all v € S
w0
Jv|=1
Using this inequality and the definitions, we have:

Me(¥) = in _m_(f(ﬂ) in -”"—'—"“C*(V)(y ) =Ll
(C)*( ) - ‘l" ;fu [(9 . y)} 2 \lg.,é‘g [ (9 -U) } C*( )

EST 8|

|

From the above discussion, we see that given a convex body K C R?, the surface tension whose Wulff

shape is K is not uniquely defined. However, if we require that the surface tension is convex, then it is

uniquely determined by K. If the boundary of K is given by 7 : §4-1 _, Rt then the convex surface tension
function whose Wulff shape is K is given by the second Legendre transformation v = r*.

Now let us further assume that ¢ : S4-1 — R* is a C* function. We extend ¢ to RY to be a homogeneous

function of degree 1. Then the first Legendre transformation can be rewritten as

(2.15) ¢.(6) = inf [i’%] = inf g(;’fg)

x>0 1 X x§>0

Suppose the infimum is reached at certain x = x(f) € RZ, and let p = ;. We have
9 X \ a¢ Op;
0 = 8wdc(x-9)_;3pj dz;
e (és__ 0iz; )
B - Op; \x-8 (x-0)?
_oag 1 a8
T Bpix-0 (; apjp’) X0

= L%
B x'g[api C(p)&,],

using relation (2.9). Thus we have

((p)fi = 5 -(p).

Since p = & = #5 , where 22 = A(f) is the unit normal to the Wulff shape at R = ((8)0, and

(2.16) () = D{(R),
(2.17) G0y = 1D¢R)],

_ D{(n)
(218) * = DeE)T

For a given 6, the 7 determined by (2.18) may not be unique unless ¢ is strictly convex.
Equation (2.16) gives us a convenient way to get the Wulff shape for a given surface tension function 7.
We simply draw the surface (in 3D} or curve (in 2D) parameterized by 7. The surface or curve will generally
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self-intersect, except when 7 is convex. We may clip off the intersecting part, and obtain the Wulff crystal
shape. See next section for examples in 2D,

There are equally simple relations for the second Legendre transformation. From the duality relations
(2.7}, we have

1

PN = DT 8 s
& - P
D¢t
().
e

Note that here it is 1/¢ that is extended as a homogeneous function of degree 1, and hence ¢ itself is
extended as a homogeneous function of degree —1. From the above relations, we get

=

(2.19) Cip = —l%?,%(e),
(2.20) C@ = e
(2.21) ﬁ _I_g%i(g)'

Let us look at two examples.
Example 1. In 2D, the surface $ension function = is usually given in term of the angle v of normal 7 to a
fixed horizontal axis, i.e. ¥ = 7(v). We extend v as a homogeneous function of degree 1 in the following way

(2.22) y(z,9) = V22 + gPy(tan™} %)’
and easily get
(2.23) 1o (B)i(8) = Dy(v) = y(W)A(¥) + 7 (V)T (),
where
a(¥) = (cosw,sinv),
#v) = (—sinv,cosv).

When ¥ is convex, that is when v + ~" >0 , equation (2.23) is a parameterization of the Wulff shape in
term of v and the first Legendre transformation of 7 is given by

(2.24) 7(0) = V72 () + (V)

where v is determined by
ad
(2.25 0 =v+tan! (——m> .
) 7
See section 3 for details.

To find the second Legendre transformation, we extend v to the whole space as a homogeneous fanction
of degree —1 by defining

(2.26) (o, y) = —g\/_zlt—_yi'y(tan_i %)

From the general relations (2.19)~(2.21), we obtain

R 7 (0) sy oA (A
(2.27) 7 (w)a(v) F0) 170 y(0)a(8) — v ()70,
(2.28) yv) = 70

where # is determined by

(2.29) v=46—tan"" (‘:—((g%) .
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Example 2. In 3D, suppose the surface tension function is given in terms of spherical coordinates, v =
v(v, ), where 0 <v <27 and =% < ¥ < 5. We extend v to the whole space by defining

-1 ¥ -1 z
2.30 z,y,2) = Vx?+y? + 2?2 y(tan V2 tanTt e},
(2:30) 1z, y,2) = Ve +y ! - a:2+y2)

(2.31) Dy =198 + Lo+ i,
where |

# = (costcosy,cossiny,sin Y,

i = (—smy,cosy,0},

P = (—sinypcosy,—-siny sin v, cos ¥}

Equation (2.31)is a parameterization of Wulfl shape in terms of v and ¥ when ¥ is convex. The first
Legendre transformation is given by
1 &y

(2.32) v (0, 8) = \/';(V’ )+ mé’;

where v and 1 are implicitly defined by equation (2.18).

2 2
f
e

2.4. Growing a Wulff Crystal. Now we consider a surprising and interesting property of objects
moving outward with normal velocity equal to the surface tension function 5. This is discussed in more
detail in section 7.3 below.

In [19], Osher and Merriman proved a generalization of a conjecture made by Chernov [4, 5]. Namely,
starting from any (not necessarily convex or even connected) region, if we grow it with normal velocity equal
to (not necessarily convex) y(v) : g4-1 . R+ where v € S%°! is the unit normal direction, the region
asymptotes to a single Wulff shape corresponding to the surface tension 7. This is not totally surprising,
because if we start with a convex region whose support function is p(v) and move it outward with normal
velocity (v), with y(v) convex, the evolution of p(v,t), the support function of the growing region at time
t, satisfies:

8
(2.33) { % (v, 1) = v(¥),
p(v, 0)= P(V)‘
Thus the evolving region has support function
p(v,t) = p(v) + t7(v),
so the growing region asymptotes to the Waulff shape associated with y(v). This argument is only valid for
convex initial shape and convex . In particular, it shows that a growing Wulff shape under this motion just

expands itself similarly, since p(v) = 7(¥) for a convex v. This is also true for a nonconvex . See [19] and
section 7.3 below for more details.

2.5, Typical Forms for Surface Tension. From Wulff’s construction, we see that the crystalline
form depends on the geometry of the polar plot of the surface tension. While Wulff’s construction is valid
for an arbitrary surface tension function, the polar plots of physically relevant surface tensions have several
characteristic features. These are worth noting in order to appreciate the crystalline forms in nature and
also in order to formulate representative examples.

A physical surface tension should have reflection symmetry, y(?) = y(—f). Further, it i3 known that
modeling a crystalline material as a regular lattice of atoms with given bonding energies between neighbors
necessarily leads to a continuum limit in which the polar plot of 7 consists of portions of spheres (circles
in 2D) passing through the origin {10]. In particular, a 2D plot consists of outward bulging circular arcs
that meet at inward pointing cusps. A simple example coming from a square lattice {X-Y) model of a 2D
crystal is v(v) = |sin(v){+]| cos(r/)|. The polar plot consists of four semicircular arcs arranged in a clover-leaf
fashion. The cubic lattice (X-Y-Z) model of a 3D crystal is y(R) = |ig| + iyl 4 |A5]. Tts plot in spherical
coordinates consists of eight spherical pieces in a similar fashion. Its Wulff shape is a cube. See figure 5,
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FIGURE 5. (@) Plot of ¥(v) = | cosvi+ |sin vi. (b) Wulff shape of v on the left. (c} Plot of
v(R) = g + [y] + B2 (1) Waulff shape of v on the lefi.

Physical surface tensions depend on the material temperature as well, and increasing temperature tends
to smooth out the cusps in the surface tension plot.

From Wulff’s construction, we can see that each cusp in the v plot will result in a facet on the crystal
shape. Increasing the material temperature smoothes out the cusps, which in turn rounds out the original
facets of the Wulff shape.

3. The Wulff Crystal Shape in 2D

In 213, a unit vector can be represented by its angle to a horizontal axis. Many of the general results
developed in the last section have interesting concrete expressions. Although we can obtain many of the
results in this section by a simple change of variables and then apply the general results, as we did in the
example above, we will see that 2D Wulff problem has its own fascinating properties which may be missed
by this “general-to-special” approach. Instead, we will use the general results as a guideline and develop the
9D theory from the ground up. A comprehensive discussion of the 9D Wulff problem and related matters
can be found in the book of Gurtin [11].
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Choosing the angle between the ontward unit normal to the horizontal axis as parameter, the 2D version
of the Legendre transformations of a function ¢ : St — Rt are

(3-1) : @) = 9—§<i%f<9+§ [cos%lgvl V)} ’
(3.2} ¢ = sip [¢(v)cos(f —v)].

- E<r<t+t

3.1. The Legendre Transformation in 2D. We briefly Teview some basic facts about plane curves.
For convenience, we will change the notation of the Legendre transformation in the section. Given r: 8" —
R*, a continuous function. Let v : S* — R? be the polar plot of r, L.e. x(8) = r(8)(cos §,sin ), and denote
the resulting curve as I'. The second Legendre transformation of r is the support funciion of I' and will
be denoted as p. One the other hand, given a positive continuous function p : St - R*, its first Legendre
transformation gives the Wulff shape and will be denoted as 7.

We will use s to denote the arclength parameter of I', and 0 the angle between r and the horizontal
x-axis. Let ¥ = g—: be the tangent vector and # be the outwards unit normal. Let v € [0,27) be the angle
between 7 and x-axis.Then f = (cos v,sinv), ¥ = (—sinv, cos V).

The curvature of the curve T has a simple expression in term of v:

dv
K=o

Recall that the support function of the curve I' is defined as
(3.4) p(v) = maxfr(8) - A},
Suppose the maximum is obtained at # = 6(v). Differentiate with respect to v, we geb:
(35) P(v) = 2(6) - 7(v).
Note that r = (r - i)t + (r - 7). Combining the definition of p and the above equation, we get
(3.6) r(0) = p(n)A(v) + P (V)T (),

which gives us a simple way to express the curve if we know its support function.
Differentiating equation ( 3.5) with respect to v gives

(3.3)

(37) P) =~ pv),

or equivalently:
1
K= ————
p() +p"'(v)
This gives us a convenient way to express the curvature of a curve given its support function.
Recall from the last section that for a positive function on 5! to be a support function, it must be convex

in the sense that the polar plot of its reciprocal be convex. The curvature of the polar plot of 1/p is easily
shown to be

(3.8)

Pp+p")

(39) 5= T g

Thus p is convex if and only if p+p" > 0.
From the above results, we can find explicit formulae for the first and second Legendre transformations
in 2D, Given p : St — R, its first Legendre transformation {6} = p.(#) is simply:

(3.10) r(8) = Vpv) + (v}

To determine v for a given 0, let

(3.11) o = tan™? (iz((—:j)m) .



THE GEOMETRY OF WULFF CRYSTAL SHAPES AND ITS RELATION

We have
r(f)

~

Do
(3.12)

which implicitly defines v for a given ¢.

or equivalently
(3.13)

That is to say, p has to be convex.

On the other hand, suppose we are given r: 5t

its support function p, we note that

iy

Define

(3.14)
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p(v)

p'(v)

0 [+ )
() (cos(a + v), sin(a + v}).

§=y+tant (%) ,

To ensure the inverse exists, we need

a6 _ plp+p")
v pz +pr2

I}

a(v) +

=0,

p(v)+p"(¥) 2 0.

—» R*. To find its second Legendre transformation, l.e.

"(8) = r'(8)7(6) + r()7(8).
"0

g =tan” (r(@

We have the following expression for the tangent vector at r(f)

#{v)

il

Thus
(3.15)

r—l(—ﬂ =sin fn cos 57
£ = sin 63(0) + cos (0)
(—sin(8 — @), cos(0 — ).

' (6)
)

V:E'——tan‘l(

which determines 8 for a given v. To ensure that the inverse exists, we require

ov

pe

=

or equivalently

where R = % This is equivalent to that
The support function is found to be

p(v)

and

p(v)

where 8 is defined by equation (3.15).

+ 202 ="y R(R+R") >0
1'2-%-]1'”]2 - R2+|R’|2 =¥

R(8) + R"(0) > 0,

r is polar convex.

r{0) - A(v) = r(8)A(0) - ~{v)
r(0) cos(0 — v) = r(8) cos()
r2(6)

p(v){cos(f — B), sin(6 — 8))

__0) _ reya) - (o)
gy OO @O,

We summarize the results in this section in the following
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THEOREM 3.1. 1. Given p : St — RT, a continuous piecewise differentiable conver function, its

first Legendre transformation 18
r(8) = Vp2() + P ()

and

2(9) = pR)() + 2 (W) ()

§=v+tan" (?;%3)—)

where v is determined by

for a given 8.
9. Given r: St — R*, a continuous piccewise differentiable polar convex function, its second Legendre
transformation is

r*(6)

MO T )

~ 0oy — r(0)70)]
P(V)“”' r2(9)+r’2(6) [’P( )n’( ) T( )T( ) 1

where 0 is delermined by
p—tan—t (O}
v=4§—tan (?’(9)

3.2. The Euler-Lagrange Equation. We can apply standard variational calculus to obtain the Euler-
Lagrange equations for the minimizing boundary curve in the 2D problem. For our purposes, these equations
are best expressed when the curve is parameterized in terms of the angle, v, between its unit normal vector
and some fixed axis, as a function of arc length s along the curve, as was done in the previous section. The
curve is completely specified by v(s).

[n this parameterization, the Fuler-Lagrange equation become

(3.16) (@) + 7" @)ws = A,

where ) is the constant Lagrange multiplier associated with the volume constraint. It is worth noting that
v, = K, the curvature of the curve; in particular, this shows that when the surface tension is constant, the
solution is of constant curvature, i.e. a circle.

For the derivation of the Euler-Lagrange equation of the surface energy, which contains (3.16) as a special
case, see Appendix ITI.

and

for a given v.

3.3. Multivalued Solutions. Equation (3.6) give us a simple ways to obtain the Wulff shape given
the surface tension function y. We can represent the Wulff shape of ¥ using » as parameter:

(3.17) x(v) = y()(v) +7 (V)T (V).

This is true only when 7 is convex, i.e. y+7"” > 0. In this case, the curve I' defined by x(v) is convex. When
the convexity condition fails, the curve will self-intersect and thus have swallowtails. See figure 6. This can
be easily seen by noting that

(3.18) X' (v) = (v(v) + 7" (F).

It is clear that the curve kinks and reverses direction whenever v{(v) +'(v) changes sign, as it does at
each corner of a swallowtail. Suppose the curve x selfiintersects at v = vz, and ¥ = vg, then the following
condition must be satisfied

(3.19) (o )i(ve) + ¥ (ve)F(ve) = vvr)i(ve) +7 (vR)F(vR)-
In this case, we can obtain the Wulff shape gimply by clipping off the swallowtail.
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FIGURE 6. Left: Plot of formula (3.17) when y(v) = 1+sin?(2v). Swallowlails appear since
this 4 is not convez. Right: Wulff shape from Wulff’s geometric construction. Notice that
by clipping off the swallowtails in the graph on the left, we get the true Walff shape.

There is yet another way to obtain the Wulff shape from . The Euler-Lagrange equation can be written
as a simple first order ordinary differential equation (taking A as 1, which is arnounts to a rescaling of the
length of the curve I')

dv 1
ds — (y() + ")
which completely specifies the curve up to a scaling.

If v + 9" does not change sign, there are two possibilities. If v + 7" stays positive, the right hand side
is always finite and can be integrated to compute a convex shape (since the curvature K = ¥ is positive).
This is the unique solution to Wulff’s problem. If y + 7" 2 0, and becomes 0 at some points, the resulting
curve is still convex, and yet has kinks at points where ¥ + 7' vanishes.

However, if ¥ + 7" does change sign, the curve one obtains from this integration will not be convex, can
have kinks (points where curvature & = v; is infinite), and will typically cross over itself, so that it does
not even define a possible material shape. The result can be considered as a multiple valued solution to the
problem, since in polar coordinates with origin at the crystal center it corresponds to having a multivalued
radius as a function of polar angle. This multivalued solution can be regularized to obtain the desired
sohrtion by “clipping off” the non-physical parts of the shape created by self-crossings.

(3.20)

3.4. Frank’s Convexification of Surface Tension. Many different surface tension functions can
lead to the same Wulff shape. This is clear from Waulff’s geometric construction, which effectively ignores
the behavior of the parts of the « polar plot farthest from the origin, i.e. the high energy parts of the surface
tension function. Thus in general we have the freedom of using a surface tension that is equivalent to the
original v, in the sense that it has the same Wulff shape.

The breakdown of equation (3.17) and (3.20) ultimately stems from a change in sign of ¥ + ¥, We
would thus like to use our freedom to define an equivalent surface tension, ¥, for which

(3.21) S44" > 0.

It turns out there is a classical procedure known as Frank convexification which yields such an equivalent
surface tenston.

The Frank convexification of 7, denoted ¥, involves two Legendre transformations and appears compli-
cated. See formula (2.10) in section 2.3. But there exists a simple geometric procedure to obtain ¥ from v
by taking the polar plot of 1/7(v), forming its outer convex hull, and defining this to be the polar plot of
1/%(v). The results in section 2.3 shows that the relationship between the surface tension plot and the Wulf
shape becomes a standard geometric duality when viewed under the inversion mapping. See also the article
of Frank [10].
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Now let us take a closer look at the above procedure. The normal direction to the curve r(r) = T(ly) is

(3.22) § = v +tan™" (%) :

Thus

o — Y477
yo2 2
T Ay
The curve {ails to be convex only when 7 -+ 7" < 0. There are basically two situations where this can
happen. One situation is that there is a region on the plot of r = v(v) that “bumps” out. For the plot of

r= ﬁ, it corresponds to a region that curves inward. Thus the convexifying curve r = ?(1}3 is a straight

line, tangent to the curve r = #y) at two points (v, —r_&},—)) and {¥r, ?fi_,ﬁ) The other situation is that the
plot of # = v(v) has a inward cusp at ¥ = vps. Then the curve 7 = le;j has a kink at ¥ = var, and this

(3.23)

curve can be convexified by two lines which meet at the tip (v, m), and are tangent to the curve at two

points {(vz, 1_(?171,—)) and (vg, m) See figure 7.

FIGURE 7. Left: the first case; Right: the secand case.

In the first case, the polar plot of 4 contains a circular arc whose extension passes through the origin

and
(3.24) 5(v) = ~{vg) sin{v —‘VL) + v(vr) sin(ve — V)’ for vi. < v < VR,
sin{vg — v1.)
One can easily derive the following jump conditions
(3.25) y(vp)cosvy — ' (vp)sinwy = y(vr)cosva — +'(vgr)sinvg,
(3.26) y(vp)sinvy + 9 (vp)cosvy = y(vr)sinve+ ¥'(vgr) cosvr

from the second order contact of the line with the original curve. Note that these equations are exactly the

self-intersection condition (3.19).
Tn the second case, the polar plot of 4 has two circular arcs and meet at » = vy and form a cusp there,
and we have

(3.27) vy =

yl{vr)sin(va - v) + y(var) sin(v — VL), for vy v < VM,
sin(vpr — vL)

v(vm)sin(vr - v) +7(vr)sin(v -~ va) ,for vir v < vr.
sin(vg — vu)

(3.28) ) =

At vpr the convexified surface tension ¥ is continuous and §(vy) = y(var), but v and ¥ each have a
jump in derivative there. The following inequalities are satisfied:

(3.29) o) <5 (vi) <0< 7 W) <7 i),
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where
e oy var) cos(vr — va) — {(ve)
Viu) = sin(vapr — Vi) ’
Yk = y(vr) — yvar) cos(ve — vm)

sin(ve — ¥a1)
In both cases, we have the following inequality
(3.30) y(v) > F(v), for vr v <va.

We note that when this convexified surface tension is used within the general formula (3.17) for the
multivalued solution to Wulff’s problem, the resulting curve

(3.31) x(v) = §()a(v) + ¥ ()Hv)

has 1o self-intersections and thus is the correct Wulffshape. In the first case discussed above, §(v)+%"(v) = 0
on [vg,vg), thus the Wullf shape defined by (3.31) has a sharp corner where the normal jumps from vy, to
vg. In the second case, §(v) +4"(v) = 0 on [vr, var) and (var, ve) and ¥(var) +5(var) = oo. The normal to
the Wulff shape jumps from vz to vy, forming a corner there, then stays equal to vas and forms a facet, and
then jumps again from va to vg, forming another corner. Thus the second case corresponds to two corners
connected with a facet.

The Frank convexified surface tension provides the basis for our general Riemann problem representation
of the Wulff shape.

3.5. Two Formulae for the Normal Direction. Recall that the Wulff shape is given by the first
Legendre transformation

7(v) ] _

cos(f — v)

74(0) = e-%é?iwg [
So the problem of finding the Wulff shape for a given v is reduced to find the v(f) for a given § where
the infimum is reached. This section concerns finding explicit formulae for v(6) which we will see shortly is
closely connected with the Riemann problem for a scalar conservation law.

We point out some technical difficulties here. First of all, for a given 6, there may exist more than cne »
that minimizes Eﬁa‘i}ﬂ This occurs partly because v may not be convex. We can get rid of this difficulty by
replacing v by ¥, since ¥ and ¥ have the same Wulff shape. But even if this convexity condition is satisfied,
there is still no uniqueness when y(») +7"/(v) = 0. Such a situation arise at the corner of a Wulff shape. We
deal with this ambiguity by requiring »(f) to be increasing and continuous from the right in 8. Secondly, 1t
is a subtle matter how to choose the range for the normal angle v and the polar angle § of the convex Wulff
shape so that under the above assumptions on ¥y and v(6), the one to one correspondence between v and
0 is naturally defined. This can be achieved by choosing the horizontal axis so that it intersects with the
Waulff shape at a (global) minima of the surface tension. At this point, both the normal angle and the polar
angle are 0 or 2m. Since the Wulif shape is convex, »{#) must be a nondecreasing function in 8. Thus the
p—0 correspondence can be chosen as a function from [0, 27] to itself. This will be our choice of horizontal
axis in our theoretical analysis below.

Qur first expression of v(#) is

LEMMA 3.2. For each 8 € [0,2%), there is a unique v = v(8) that is increasing, condinuous from the
right and is implicitly defined by

(3.32) 9 =v+tan~" (%i’—))) :

We postpone the proof and introduce

DEFINITION 4.

(3.33) Flv)= %yz + fo " jan~! ('f;((;‘*)) ) du.
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We notice that

! = v+tan™! ¥)

(3.34) Flv) = v+t (%})) ,
vy 3G + 1)

(3.35) F'y)y = 5200+ 72 (7) ;

Since 8 = F/(v) > 0 and ¥ + 7" > 0, F is always nondecreasing and convex.
Our second expression for v{f) is

THEOREM 3.3.

(3.36) v(6) = _Edg in (F() =00}

We outline the proof of the above two results here. Refer to figure 8 to get the idea. Lemma 3.2 follows
from the fact that F’(v) is an increasing function in » and formula (3.12).

o

FiGURE 8. Plot of 8 = F'(v} vs v.

To prove Theorem 3.3, suppose the infimum of F(v) — fv is reached at 7. 'The first order condition
d
E;[F(J/) e BV |p=p= F/(P)—8=0

gives

§ =i +tan"" (ﬂf;g))) .

So 7 = v{(#) except at points where F” (v) = 6 over some interval v € [vr,vr]. (As a function of 8, v
jumps from vy, to vg.) Such 0 are isolated. Ignoring this situation, we have

ths = —';—9 [F(v(0)) - B ()]
= —Fw(0)(6) + v(@)+ 0 (6)

So our result is valid except at countable isolated points. The values of v(#) at the jumps are uniquely
determined by the requirement that v is increasing and continuous from the right.
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4. The Riemann Problem

4.1. The Riemann Problem Formulation. The original Riemann problem was to determine the 1D
dynamics of a gas when the initial data consists of constant states to the left and right separated by a single
discontinuous jump in value.

The equations of motion for a gas are generally formulated as integral conservation laws for mass,
momentum and energy. In one spatial dimension (1D), these state that the rate of change of the amount of
conserved quantity contained in any interval [1, zs] is due to the difference between the flux out at z» and
the flux in at 21:

(4.1) 4 [ a0 = o2, ) = F(elor, )

where u(z,t) is the density of the conserved quantity, and f(u) is the corresponding flux function.
When the solution u is smooth, by letting #; — 2 become infinitesimal these integral conservation laws
can be reduced to differential equations. The result is a system of hyperbolic conservation laws of the form

(4.2) w4 f()e =0

for the conservative convective transport of mass, momentum and energy.
Riemann’s problem was to find the solution of equation (4.2) for arbitrary piecewise constant initial data

(4.3) u = wur,z<0,
(4.4) u = ug,®>0,

where uz and ug are the constant states to the left and right of the origin.

The problem as posed is physically idealized, since the conservation law (4.2) does not include any
viscous or diffusive transport effects. In a real gas the viscous effects are usually small, but they do play
a role when the states have steep spatial gradients as in the Riemann problem. Indeed, it turns out that
idealized Riemann problem allows multiple solutions. The unique physically relevant one is the “viscosity
solution”, i.e. the limiting solution as viscosity goes fo zero u = limm,jo u¢ from the viscous version of the
conservation law:

(4.5) u o F(1)e = Uy,

In contrast, this regularized equation has unique well behaved solutions for any ¢ > 0.

Both the Riemann problem and the viscosity solution make sense for general systems of hyperbolic
conservation laws, and the names commonly refer to this more general context. The Riemann problem
solutions provide insight into the fundamental propagation of discontinuities in the system. For our purposes,
we will only need to consider a single conservation equation, so that u is a scalar state, with scalar flux f(u).

A comprehensive discussion of the the Riemann problem for gas dynamics and related matters can be
found in the text of Courant and Friedrichs [6].

4.2, Multiple-Valued Solutions. The solutions to the Riemann problem have a simple form in which
a disturbance emanates from initial discontinuity at z = 0. These solutions can be found by assuming the
time self-similar form u(s,t) = w(x/t), which implies the graph of u(z,?) has the same shape at all times,
differing only by a spatial rescaling. Substituting this form into the conservation law 4.2 results in the
equation

(4.6) (=0 + f (u))us = 0,

where § = z/t is the similarity variable. The formal solution consists of regions on the left and right where
u is constant with values uz and ug, joined by a region in which w(@) = (F)7(8). TIf f”(u) changes sign
between 1z and ug, then the inverse of f' is multivalued and this v can be considered a multivalued solution
of the Riemann problem.

Such a multivalued solution is not physically meaningful, so some additional principle is required to
extract a single valued solution by ” clipping off” extra values. However, from a plot of the multivalued
solution it is not immediately obvious where to clip.
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The proper single-valued, self-similar solution to the Riemann problem is given analytically by

(47) U(B) = —d;dgu g&l{lu (f(U)—HU), ifup < ugn.
(4.8) u(f) = _ 4 max (f(u) —fu), if ur > ug.

df ur>uZur

This formula was first derived by Osher in [15] and [16]; It can be understood as an analytical interpretation
of the geometric construction given in the next section.
Note that in (4.7) f can be replaced by the convexified f. In the case when ur < ug, f is defined by

(4.9) fult) = uLg{}lgﬂﬂ[f(ﬂ)—l‘?ul,
(4.10) fluy = _og;aé}im[f*(ﬂHHU]-

"The case ug, > up can be defined stmilarly.

It follows that f(u) = f(u) if f”(u) = 0 on the interval uy < u < tui. f is always convex and has a
nondecreasing derivative.

The solution to the Riemann problem at 8 = % is defined as follows.

e Case 1. There exists a unique u(#) such that f(u(8)) = 0 and #(u) > 0 in a neighborhood of u(f).
In this case u(8) = (f’)"l(ﬁ). This point lies in a rarefaction fan.

e Case 2. f'(u) is constant over ar, < u < ar (f(u) is linear over ay, < u < ag) and ¢ = fi(ar) =
f'(ar). In this case, the resulting solution has a jump at ¢ u(0~) = ug and uw(#t) = ugr. This
increasing jump in u corresponds to a contact discontinuity.

e Case 3. f' has an increasing jump al u = g (f has a kink at u = ug). Then

u(8) = wo, for f(ug) <0< f'(uf)-
This corresponds to a constant state.

We shall show that these three situations corresponds to three scenarios in Wulff crystal shape. The
rarefaction wave corresponds to regions where the angle of the normal increases smoothly with the polar
angle. The contact discontinuities correspond to the corner on a Wulff crystal where the angle of the normal
jumps. The constant states correspond to the facets, where the normal to the Wulff shape points to a
constant direction as the polar angle imcreases.

4.3. Geometric Construction of the Solution. The general conservation law (4.2) can formally be
written as the convection equation u + v{ujus = 0, where the convective velocity is v(u) = f'(u). The
solutions to this can be visualized by letting each value w on the graph move horizontally with constant
speed v(u).

Based on this we obtain a simple geometric construction of the (possibly multiple-valued) solution to
the Riemann problem. Each value from the initial step function u simply moves at its constant speed; in
particular, cach u value from the “step” itself, where u ranges between uy, to ug at the single point z =0,
will propagate at its constant speed v(u). Thus the resulting graph of v at any t > 0 will, when turned
on its side, simply reproduce the graph of v(u), u between uy and ug. This implies that u{z,1) will be a
mltivalued solution of the Riemann problem if the graph of v(u) is not monotone, i.e. if v' = f" changes
sign, as mentioned in the previous section.

To extract the physically correct single valued solution—the viscosity solution—we apply a geometric
generalization of the conservation of the area under the graph of u implied by the original conservation
law (4.2): At each overhang in the multiple-valued graph, introduce a jump that clips off the same amount
overhanging area as it fills in on the underhang. Refer to figure 9.

The application of this clipping procedure to the multivalued solution at any time ¢ > 0 will yield the
proper single valued, time-self similar solution. Due to the self-similarity in time, the same shape resulis
independent of ¢. Note the profile consists of constant regions to the far left and right, smooth regions where
no clipping was necessary— “rarefactions” —and jumps where a clip was performed. These jumps in furn are
classified as a “contact” if the velocity v(u) is the same on each side of the jump, or a “shock” if the velocity
causes u values one one side to overtake those on the other. Thus values appear to flow into a shock from
both sides as time goes by.
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FIGURE 9. The clipping procedure to the multivalued solution.

While this clipping procedure is reasonable from the perspective of conserving u, it is not so easy to
understand why it yields the true viscosity solution, ie. the solution selected by the action of a small viscous
dissipation.

5. The 2D Wulff Crystal as the Solution of a Riemann Problem

From the summaries of the Wulff Crystal and the Riemann problems, we can see a number of points
of similarity in addition to the discontinuous nature of the solutions. Both problems admit self-similar
solutions. Both are generally formulated in terms of integral equations. Both lead to governing differential
equations that formally have multiple-valued “solutions”. In both cases the multiple-valued solutions occur
due to a lack of convexity, in the sense that a second derivative changes sign (in the Wulff problera its the
sign of y + 4", in the Riemann problem, it is ). And in both cases, there is a geometric construction that
effectively truncates these multi valued solutions to yield the unigue physical solution.

With thig background in place, we are prepared to discuss the precise connection and differences between
the two problems. There are several approaches that we can connect the Wulff shape with a Riemann problem
of a scalar conservation law.

5.1. From the Euler-Lagrange Equation to a Scalar Conservation Law.

5.1.1. The Basic Connection. The first precise formal connection comes from rewriting the Euler-
Lagrange equation (3.16) from Wulff’s problem as the equation for the time self-similar solution of a Riemann
problem 4.6. To do this, we define a function “fux function” F(v) by the relation {assuming A=1)

(5.1) F' =y 9",
Then the Euler-Lagrange equation (3.16) can be written as
(5.2) PO =1,
and integrating this yields

(5.9) F ) -s=C,

where C is the constant of integration. By appropriate choice of the origin for the arclength parameter s,
we can have ¢ = 0. In this normalization, multiplying through by v, yields

(5.4) (F'(v) —s)vs =0,

which is identical in form to the time self-similar equation (4.6). This in turn is the equation for the Riemann
problem for the conservation law

{(5.5) vi 4+ (F(¥))e =0
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Thus at least formally the normal angle ¥(s) is the time self-siznilar solution to a Riemann problem
for this conservation law. This would explain the crystal facets as constant states, the smooth faces as
rarefactions, and the jumps in normal angle at crystal edges as shocks or contacts, However, this formal
connection is not generally valid, because the differential equations used in the derivation only govern smooth
solutions, i.e. crystal shapes with no edges and Riemann problems with no jumps. Whether a crystal shape
with edges is the solution to this Ricmann problem must be investigated separately. It turns out that the
conditions at jumps are different in the two problems, as described in the next subsection. Thus to completely
realize the Wulff crystal as a Riemann problem solution requires a more subtle connection.

5.1.2. Differences Between Wulff and Riemann Jump Conditions. If the solution to a Riemann problem
contains a propagating discontinuous jump, the differential equation for the conservation law (4.2) is not
applicable at that point. However, the more general integral conservation law (4.1) still holds, and applied
to a small interval containing the jump it yields the Rankine-Hugoniot jump condition

(5.6) Vet —u”) = flut)— flu™)

where V is the constant propagation speed of the discontinuity and vt and u™ are the right and left side
values of u at the jump. This condition constrains the allowed jumps in a Riemann problem.

Similarly, if a Wulff crystal has a sharp edge with a jump in normal angle v, the Buler-Lagrange eguation
(3.16) does not apply at that point. In this case, we can still identify a condition that governs the allowed
jumps in angle. In the formal solution curve (3.17), the sharp corners on a crystal occur at points of self-
\ntersection of the curve. These points separate the primary crystal shape from the artificial “swallowtail”
shaped appendages that must be removed. Thus the jump condition at the edge is simply the condition for
self intersection of this curve at two distinct normal angles vz, and vg (corresponding to the normal direction
on either side of the edge): z{vy) = «(vg), or by the formula (3.17)

(5.7) y(we)a(vr) + 7 (vr)HeL) = v(va)alve) + ¥ (WR)T (vr).

Taking the two components of this vector condition vields two scalar jump conditions.

If we compare the jump conditions for the specific Riemann problem (5.5) we formally associated with
the Wulff crystal (i.e. f=F from (5.1)}, and the jump conditions (5.7) that hold for the true Wulfl shape,
it turns out they are different. The former has one constraint while the latter has two, and in addition, they
allow different jumps. As we will see, the additional constraint comes from the fact that the allowed jumps
is a contact discontinuity and must satisfy

(5.8) Flug) = f'(ur) = Jlur) = fur)
Up — UL
One can easily check that the flux F defined above does not possess this property at the corner.

This difference in jump conditions means that the discontinuous physical solutions to the Riemann
problem (5.5) for v(s) do not vield the correct normal angle function for Wulff shape. Thus for crystals with
corners, a more careful construction is required to realize them as the solution to a Riemann problem.

The origin of this difference for discontinuous solutions can be traced back to the viscosity regularization
used to define the unique solution of Riemann problem for conservation law (4.2). Evidently, this is not the
proper regularization technique for use on the Euler-Lagrange differential equations for the Wulff problem.
In retrospect this is not so surprising, since a proper regularizing correction for these equations should be
derived by adding a physically reasonable energy penalty term to the original crystal energy (2.1), and using
the variational calculus to derive the corresponding additional term in the Euler-Lagrange equations. The
proper form of such a regularizing energy correction is considered in Gurtin’s book [11].

5.1.3. Reparameterization of Euler-Lagrange Egquation. In order to represent an arbitrary Wulff crystal
as a solution to a related Riemann problem, we must take advantage of two additional degrees of freedom
in the basic derivation. This added freedom will allow us to determine a flux for the Riemann problem such
that the time self similar solution matching both the smooth parts and the jumps in the crystal shape,

The first freedom is that surface tension function y can be replaced by an equivalent (i.e. resulting in
the same Wulfl shape ) yet convex function ¥. This choice of ¥ will free us from considering self-intersection.
But facets and jumps are still allowed.

The second degree of freedom is the choice of parameterization of the Wulff shape curve. So far we
have used arc length, s, but if we used any other parameterization, o(s). the change of variables in the
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Euler-Lagrange equation (3.16) would have the general form (using the equivalent 4 instead of )

(5.9) JFHW)+5"@)va =0,

where J = a,. If J = J(v), we can follow the derivation of the basic Riemann problem from section 5.1.1
and conclnde that the flux function F(v) given by

(5.10) B = I3+

defines a Riemann problem whose time self similar solutions match the smooth behavior of the Wulff shape
v(a). The remaining freedom in choice of J can be used to match the proper jump conditions at the crystal
shape corners.

In principle, this condition gives a set of equations defining the change of parameterization, J, and thus
the flux F. In practice it would be tedious to blindly attempt to solve these equations. Fortunately, the
proper reparameterization is one of the obvious possibilities, namely a change to standard polar coordinates
for the Wulff shape curve. If we parameterize the normal direction at a point on the Wulff curve by the
polar angle for that point, ¥ = v(0), we can show by using chain rule that

by = — .
T+

The corresponding flux function from (5.10) is then defined by

(5.11)

93 +1)

(5.12) Pl =

"This can be integrated to obtain an explicit formula for the flux function,
1 ’ ¥ (w)

5.13 P = —y2+/ tan™t ( : du.

( ) 2 2 0 F{(u)

The time self similar viscosity solution to the appropriate Riemann problem for the corresponding
hyperbolic conservation law v + F(v) = 0 is exactly the Wulfl shape parameterized as v(f).

We now verify by directly checking that the contact jump conditions (5.8) agree with the Wulff jumnp
conditions (5.7) in this case. Suppose v jumps from vy, to vp. Then from the discussion in section 4.2,
(@) + 7' (v)=0for v SV < VR and F is linear over this intexrval, Note that

0
§ = F'(y) = v+ tan™? (’YA—Q}—)> )
) H(v)
Yo the first equality in contact jump condition (5.8) means

fr = ér.

The conclusion follows from (3.24) in section 3.4.
Tn retrospect, the correct form of fiux is also the most natural one if we write the corresponding conser-
vation law as
ov

(5.14) =t F'(V)g_z =0

whose characteristic equations are

(5.15) { =),

=0

which simply say that 1 is constant along the ray emanating from the origin with polar angle 8 = £/t . This
is obviously true for the self-similar growth of Wulff crystal shape.
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5.2. Self-Similar Growth of Wulff Shape and Riemann Problem. In section 2.3, we have seen
that Wulff shape growing with the normal velocity equal to its surface tension is a simple self-similar dilation.
We now try to find the evolution equation that governs the normal angle. We assume v is convex in this
section. Otherwise just replace v with its Frank convexification ¥.

To start with, choose the x-axis so that it intersects with Wulff shape at a minima of the surface energy.
From Wulll’s construction, the normal at this point and the x-axis coincide. Since the growth is self similar,
this point will remain on the x-axis. As before, let v be the normal angle to the positive x-axis. and s the
arclength parameter. In Appendix II, we derive the evolution equation of ¥ to be
dv v s
2+ [ Bw ey s =0,

If we let F*(v) = y(v) + 7" (v), then the above equation becomes
@_ + .,F_(Vl =0

o ds

This is the same as (5.5) which we derived above.

Note that using the arclength s as a parameter is not a good choice, because for a self similar growth,
the point on the interface that moves on a straight line away from the origin corresponds to different values
of s at different time. This issue actually predicts a problem with this connection. As we have seen before,
the above conservation law does not give the right solution.

The correct equation can be obtained by a change of variables in the equation (5.17) which governs the
evolution of the angle of the normal. We introduce the following new set of variables:

(5.16)

(5.17)

=1,

(5.15) { e Zhs

where 8(t, s) is defined implicitly by:

g

»v(8)
(5.19) 2= [ Bty @l

and »(8) in turn is defined by
’
f = V—I—taﬂ_l (7 (V)) .
1)

The equation under this new set of variables is

ov  OF(v
(5.20) 2y _éé_)_ _o,
where F(v) = %+ [ tan™* (",’;——((?) du. This coincides with (5.13) above. See Appendix II for the
derivation.

5.3. Main Theorem and Its Consequences. We have at least formally demonstrated through two
quite different approaches that the Wulff shape is connected with the Riemann problem for a scalar conser-
vation law. This is the major result of this paper. We summarize it in the following theorem and explore
some of its consequences.

THEOREM 5.1. Let v : S — RT be continuous and let its Frank convezification ¥ be piecewise differ-
entiable. Let W be the Wulff shape corresponding to surface tension v, as defined by Waulff’s construction,
and v(0) be the angle of the outward normal to W as a function of polar angle g, in the polar coordinate
system with origin at the centroid of W, and the horizonial azis passes through a global minima of the surface
tension. Then for all 8 where v(8) is well-defined and differentiable

d .
(5.21) vty = 7 Délggn%[F(V) — B,
where F' is the function on [0, 27] defined by

(5.22) F(v)= 5’;+ j; tan_l(%g—)))da.
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Furthermore, v(€,1) = y(%) is the time self-similar viscosity solution to the Riemann problem

(5.23) n+(FE)e = 0
(5.24) WE<0,4=0) = 0,
(5.25) WES0,t=0) = 2m

The proof follows from Theorem 3.3 and Osher’s formula (4.7) for the Riemann problem for a scalar
conservation law.

This theorem serves as a bridge that connect the world of gas dynamics, which has a long history and has
been extensively studied (See the book by Courant and Friedrich [6]) with the fascinating world of crystal
shapes which is characterized by facets, edges and corners. We can characterize these shapes in term of
the flux #, which is a convex function. The facet corresponds to a kink in the graph of I' in R?, which in
turn corresponds to constant states in the world of gas dynamics; The corner corresponds to a piece of a
straight line in the graph of F%, which in the world of gas dynamics corresponds to contact juraps; We observe
rounded edges when a crystal melts, and the sharp corners become smooth out. These regions correspond to
the smooth region in the graph of F, and, in the conservation law analogue, they correspond to rarefaction
waves.

We can also characterize these phenomena with the polar plot of §. Here the facets correspond to cusps,
and the comers correspond to circular arcs in the polar plot of .

Conceptually, we have fully clarified the initial intnitive similarity between these disparate problems:
at least in 2D, it is completely accurate to say that the corners on a crystal are contact discontinuities,
the smooth faces are rarefactions, the facets are constant states, for a generally discontinuous solution of a
hyperbolic conservation law.

5.4. A Convex Example. We consider the surface tension
(5.26) v(v) = | cos()| + | sin(v})].
"This is an important example, since this surface tension arises in the continuum himit of the simple X-Y
lattice model of a crystal. However, it is also quite simple to analyze. We will also remark on how it relates
to the general case where appropriate,

Note that the key measure of convexity, v + +", vanishes almost everywhere, but does not change sign.
In fact, as a distribution it is

(5.27) A +) = Sk
k=0

(5.28) > 0.

Because this quantity appears in the Euler-Lagrange equation (3.16) and in the generalized solution (3.17),
these are both degenerate. The solution curve z(v) = y(w)R(r) + 7 (¥)F(v) is readily computed, and its
image consist of just four isolated points, shown in figure 10 (e),

(+1,+1), O<v<$.
(-1,41), O0<w<m.
(-1,-1), 0<v<¥.
(+1,-1), O<w<2m

(529) .’B(V) =

Connecting these dots into a continuous curve yields a square, which is the Wulff shape. Note that in this
example, no multivalued swallowtails oceur because there is no sign change in v +7". Also, the image curve
consists only of isolated vertices, since, by equation (3.18), the tangent vector o' is proportional to v + 7"
and thus vanishes almost everywhere.

Waulff’s geometric construction also leads to the same shape. The surface tension polar plot is the “four
leaf clover” shown in figure 10 (a), consisting of four symmetrically positioned arcs of circles that, if extended,
would pass through the origin, Wulif’s geometric construction places one facet at each cusp in the polar
plot, and together these form a square as shown in figure 10 (d). The virtual facets placed at all other points
along the polar plot lie entirely outside this square, and so the inner envelope defining the Wulff shape is
the square itself. The simplicity of the the construction is due to the fact that the polar plot is composed
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FiGURE 10. (a) Plot of surface tension v. (b) Plot of % (¢c) Plot of y(¥)a(v) + 7' ()#(v).
(d) Crystal shape from Wulff’s geometric construction.

of circular arcs; these are always “dual” to a single vertex in a polygonal Wulff shape (refer to [10] for the

general properties of this duality).

Next we consider the details of the Riemann proble
flux function (5.13). Recall the that the flux function is
4. However, the surface tension function in this example is already “convex”, in the appropriate sense, i.e.
~++" > 0. Thus ¥ = 7, and this is a major source of simplification over the general surface tension case.
Note that in general the Frank convexified surface tension will replace any nonconvex portion of the polar
plot (i.e. segment where v + 4" < O with the arc of a cirele passing through the origin, since that is the

curve of neutral convexity (i.e. with v+ 4" = 0. Because of this, the surface tension used in this example is

representative of what generally occurs after convexification.
To compute the flux function, it greatly simplifies the trigonometry to note that

(5.30)

() = V2 cos(v — $(v))

where the phase shift ¢(v) is

(5.31)

T
o

™ T
) = Z(zk_l)’(k_1)§<”<k2

or, more succinctly,

(5.32)

¢ = 75— D,

m construction. The first step is to compute the
based on the Frank convexified surface tension,
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where [z] denotes the least integer 2 .
From this we get that

)
(5.33) % = tan({—v + ¢(1)),
,Y!
(5.34) tan_1(7) = —v + ().
Applying this in the flux formula 5.13, we get
v? v
(5.35) Flv) = 5+ fﬂ —y + o(y)dy
¥
(5.36) = fo $(y)dy
T
(5.37) = g([ﬂ]2 + (1 = 2u])([u] - u)),
where © = ﬂ—';,z- The graph of F is shown in figure 11. F can easily described by noting that it is a piecewise
Knear function that linearly interpolates the values F(kT) = %kz, for integers & = 0,1,2,.... These values

in turn lie on the parabola f(») = v*/x. Note that the linear segment of the graph beginning at v = k%
has slope (2k + 1)%. Considering the relation to the general surface tension case, note that the piecewise
linear segments of the graph of the flux correspond to portions of the polar plot where 4 + ¥ = 0 (or,
geometrically, the surface tension polar plot is a circular arc), and that these will be present wherever the
surface tension required convexification. Thus they will be a typical feature of the general case.

0
0

i} 1 H 3 4 5 [ 7
FIGURE 11. The fluz function (the solid line). The dushed line is the graph of v%/m.

With the flux F in hand, we can now work out the analytic form of the Riemann problem solution from
formula (5.21). The first step is to find, for a given § in [0, 2«], the minimal value of F(r) — 0v. Note this
function is also a piecewise linear (in ») function inscribed in a parabola, and so its minimum will be at the
vertex where its slope switches from negative to positive as indicated in figure 11. This in turn will cceur
where F(v) changes from having slope less that & to slope greater than §. Call this point Vmin(0). It can be
described precisely as follows: if @ lies between th = (2k— 1)% and 0 = (2k 4+ 1)Z, then the transition in
the slope of F will occur at vmin{f) = (k — 1)%; at which point the slope changes from 61 to fa. Note that
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for a given f, k is simply the nearest integer to ?% Thus we can write

g T
5.38 Varin(8) = (N(—=) — Do
(5.35) win(®) = (N (75) = D
where N{z) is the nearest integer to z. In particular, the minimizing argument is a piecewise constant

function of 4.
Continuing to unravel the Riemann problem solution formula (5.21), we see that for 8 in an interval for
which the minimizing argument vmin(f) remains constant with value vmin, we have

(5.39) Gsrrl}glzw(F(v) — V) = F(Vmin) — Wmin

and thus the solution to the Riemann problem for that range of f is

(5.40) v(f) = —;g Dgglzﬂ(F(v) - )
(5‘41) = _;_H(F(Vmin) - gvmin)
(5.42) = Vi,

Applying this over the respective ¢ intervals corresponding to Vmin = 0, /2, m, 3n/2, we obtain the complete
Riemann problem solution as

0, 0<8< /4
r/2, w/4<8<3n/d
(5.43) vy =< =, 3w/4 < 0 <57/4.

3r/2, Brjdé<f<Tr/d
2ar, Trfd < <2

This is precisely the angle of the normal vector (to the z-axis) as a funetion of polar angle 0 for a square
shape centered at the origin. Thus the solution to the Riemann problem describes the square Wulff shape.

Finally, we can also recover the Wulff shape via the geometric solution to the Riemann problem. For
this, we first graph the initial data for v{£,t), which has left and right states 0 and 27 with the jump at
¢ = 0. Then we graph v(v) = F' (v) along the v axis. In this case, v(v) is the piecewise constant function
with values (2k 4 1)7/4 over the v intervals (k7 /2, (k+1)7/2),for k=0,1,2, 3. Because of the convexity of
the flux F(v), there are 1o overhangs in the resulting plot, i.e. it defines a single valued function of v{£) over
the ¢ axis. This function is the self-similar solution, »(z,t) = v(z/t). We see as before that v{#) is the same
function found via the analytic solution to the Riemann problem, and thus it again describes the square
Waulff shape. Regarding the general case, note that the flux will always be convex, since Fr= %} > 0.
Thus in this geometric construction, the graph of v(v) will always result in a single valued »(€), and there
will be no need for the equal area procedure of clipping off multivalued overhangs as described in the general
geometric algorithm for solving the Riemann problem.

5.5. A Nonconvex Example. Now let us consider the following surface tension
(5.44) (v} = 1+ |sin(2v)|.

The Wulff shape of this 7 is also a square, See figure 12 (d). This surface tension is nonconvex, since

ey 11— 3sin(2v), for v € [0, ZlU]m, 37”]
(5.45) v(w)+ 7" (v) = { 1+ 3sin(2v), for v € [, 7] U [Ezl,gw]_
changes sign as v goes from 0 to 2. It turn out that its Frank convexification §(v) = |ecosv|+ | sin(¥)],

which is exactly the surface tension that we discussed in the section above. Replace v by ¥, we are back to
the example in the last section. Refer to figure 12,



THE GEOMETRY OF WULFF CRYSTAL SHAPES AND IT8 RELATIONS WITH RIEMANN PROBLEMS 29

? T T T T ¥ T T 1

03[
15

48[
1L
oAar
G5F 2

o 1 0

. A
(a,) 2 BT 3 T 3 05 3 15 2 (b) s
25 s A i —nt . ; H
R ]
15
15 1
1 AV
1k |
05
osf
of 1 o <
sl
05
-1F
-
A5
15
a2t
28 N P Lo 2
(c) Ty s 1 48 0 s 1 15 2z 25 (d) Y 45 4 s o 05 1 15 P

FiGUuRE 12. (a) Plot of surface tension . (b) The solid line is the plot of #, and the
dashed line is the plot of % (¢) Plot of v(v)i(¥) + v (¥)#(v). The self-intersection of the
plot indicates that this y is nonconvez. (d) The Wulff crystal shape from Wulff’s geometric
construclion.

6. Some Comments on The Wulff Problem in Higher Dimensions

We have scen in section 2.3 that the growth of Wulff crystal shape with its (convexified) surface energy
is simply a self-similar dilation. Suppose we grow a crystal from a infinitesimal initial Wulff shape, and at
time t = 1 the Wulff shape is given by W(8) = 7«(9), then the unit outwards normal at a certain later time
satisfies

At tW(0)) = A(l, W(8)).
Denote tW(#) as £, and differentiate with respect to ¢, we get
(6.1) iy + W(6) - Ve = 0,
where V¢ is the gradient of 7. Recall that W () = Dy(#), we get the following
R <= Oy a9
6.2 — ——{A)—— = 0.
( ) ot +kz=:1 Ong (")Bik

This is a system of hyperbolic equations. The question of whether this system can be transformed into a
system of conservation laws through a choice of suitable variables is still open.
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At present, the relation between 3D Wulff shapes and nonlinear wave dynamics is unclear. However, the
original intuitive connection between crystals and shock waves remains compelling in 3D, and the possibility
of some such relation calls for further investigation.

7. The Level Set Formulation for the Wulff Problem

The level set method of Osher and Sethian {17} has been very successful as a computational ool in
capturing the moving interfaces, especially when the interface undergoes topological changes. [t is also
useful for the theoretical analysis of the variational problem associated with Walff crystals. We now briefly
review this method and apply it to the Wulff problem.

7.1. The Level Set Representation of Surface Energy. Suppose {2 is a open region in B¢ which
may be multi-connected. Let I' = 50 be its boundary. We define an auxiliary function ¢ so that

P(z) < 0,if z €82
p(z)=0,ifz el
$(z) > 0, otherwise.

(1.1)

For example, we can choose ¢ to be the signed distance function to the interface T'. Indeed, for computational
accuracy, this is the most desirable case. We call ¢ the level set function of I

Many geometric quantities have simple expressions in terms of level set function. For example, the
outward unit normal direction A = 1'3‘%’ the mean curvature kK = V - I%gl—’ and the area element (or
arclength element) dA = 6(¢)|V|dx. The surface energy over T' can be expressed as

(1.2) 56 = | 7(%%)6(¢)1V¢ldr

where § is the 1 dimensional § function.

7.2. The Euler-Lagrange Equation for the Wualiff Problem. Once we write the surface energy
in terms of the level set function, the Wulff problem becomes to find the particular level set function that
minimizes the surface energy subject to the constraint that its zero contour enclosed a fixed volume. We
extend + to the whole space as a homogeneous function of degree 1(which we still denote as 7} and introduce
a Lagrange multiplier A. The Lagrangian is:

(7.3) = [ (1%> 5(8)\Vglda— A [ H(=d)ds,

where H{¢) is the Heaviside function which is 6 for ¢ < 0 and 1 otherwise.
In Appendix T1I, we show that the Euler-Lagrange equation for (7.3) is

2.8 [oy, Vol _
9 > o o] =>

or in a more compact form

Vé
(7.5) v o &) =
where the constant A is chosen so that the volume is as given.
Note the denominator in the above expression is simply the perimeter (in 2D) or area (in 3D)of I'. In
2D, equation (7.4) becomes the familiar formula (3.16).

The gradient flow of the Wulll energy is '
ve)
7.6 = Vi |VDy | == | — Al

where A is given by
(1) |19 [prg] syl
| - T3()IV pldz

so that the area is fixed and the energy is decreasing under the gradient flow.
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Equation (7.6) is fully nonlinear weakly parabolic type equation when v is convex in the sense defined
in section 2.3, and is of mixed type when is not. How to regularize the variational problem by adding an
appropriate penalty term is an interesting question. We shall discuss this issue in future work. See Gurtin’s
book [11] for some discussions of this matter.

7.3. The Hamilion-Jacobi Equation for a Growing Wulff Crystal. Now Jet the interface move
with normal velocity equal to V, which might depend on some local and global properties of the mnterface
. Denote the boundary at a later time ¢ as T'(), and the associated level set function as ¢(f,®). Let =(t)
be a particle trajectory on the interface. By definition, ¢{t,z(f)} = 0. By differentiating with respect to 2,

and noting that V = () - ]%%%P we get
(7.8) ¢+ VIVel =0

This is a Hamilton-Jacobi equation if V depends only on 2,1, and V¢. The location of the interface is find
by solving this equation and then finding its zero level set {2 : ¢(t,2) = 0}. Thus a vast wealth of recent
extensive theoretical and numerical research on Hamilton-Jacobi equations can be applied to the moving
interface problem.

It was shown in [19] that Wulff shape growing with normal veloeity equal to surface tension is a self-
similar dilation. For any other shape {which may be multiply connected), one can place two concentric Wulff
shapes, such that one is contained by this shape, and the other contains this shape, and then let them grow
with surface tension. Since the arbitrary shape will always be confined between the two ‘Wulff shapes by the
comparison principle for the viscosity solutions to Hamilton-J acobi equations, one immediately concludes
that the asymptotic shape growing from any initial configuration is a Wulfl crystal shape. For details of the
proof with error bounds, see the recent paper [19] by Osher and Merriman. This approach give us a very
convenient way to find the Wulff shape numerically for a given surface energy, especially in 3D. The next
section contains many examples demonstrating this,

By embedding the interface problem into a one dimensional higher space, it appears that a substantial
increase in computation cost is incurred. This is not true, because we are only interested in the behavior of
the zero level set. A localized method can be used to lower the computational expense. This is discussed in
[1, 25] and a more recent paper [20]. The method in [20] is the one that we used in our numerical examples
below.

8. Numerical Examples

We present in this section some numerical results obtained by solving equation (7.8) with V = g T

that is,

(8.1) b1+ 1=V =0, z€R,E>0
V|
with a fast localized level set method coupled with a PDE based re-initialization step developed in [20] using
the ENO [18] or WENO [14] schemes for Hamilton-Jacobian equations.
First, let us briefly review the numerical schemes that we shall use below for a general Hamilton-Jacobi
equation:

(8.2) ¢+ H(V$)=0, eeRLt>0

vV
|

To simplify notation, we will only write down the formulae for the 2D case. The extension to higher
dimensions is straightforward.
"The semi-discrete version of (8.2) in 2D is:

Gy - _ _
(8.3) ﬂB—tJ = _H(¢:,5j5¢x,ij;¢j,ij: Gy is)hs

where qSiij and ﬁé;:,ij are one-sided approximations to the partial derivatives ¢, and ¢y at {#i,7;), respec-
tively. H is a numerical Hamiltonian that is monotone and consistent with H. See {8] or [18] for more
details.
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In our computations, qﬁiﬁ and qSiij are calculated with the 3rd order ENO scheme of Osher and Shu

[18] or the bth order WENQ scheme of Jiang and Peng [14] for Hamilton-J acobi equations, and H is chosen
as the following Lax-Friedrichs (LF) flux:

. toau vt o
o) At = HORT T - Gt )= 5 )
where o and # are artificial viscosities defined by:
(8.5) o= urenli)é] |Hy(u, )i, A= “gfﬁ] | Ha(u, v)}.
vE[C,D} ve[C, D]

Here Hy = 8H/du, Hy = OH [Ov, [A, B] and [C, D] are the range of ut and v, respectively.

Solutions to (8.1) often will become either too flat or too steep near the interface {¢ = 0} even if the
initial data is a perfect signed distance function. In order to avoid numerical difficulties and retain accuracy,
an additional operation, which is called re-initialization, is needed to reset ¢ to be a distance funciion again.
This becomes essential for the localized level set method of [20]. In [26], a PDE based re-initialization
method was proposed. By solving the following equation:

(8.6) {qﬁz + sign(¢o)(|Vé| —1) =0 in RYx Ry,

$(z,0) = ¢olz)
to steady state, the original level set function $o becomes a distance function to the front defined by {¢0 = 0}.
For (8.6), we use the Godunov numerical Hamiltonian:

HGod(u+ um ot v) = { S\/[?na.x((u'*“)—,(u”)-l-)]z -+ [max((v*’)—,(u—)-k)]Z, if 45?3 > 0.
o sy/fmax((ut)t, (u)")? + [max((v+)*, (v~)7)]?, otherwise,

where ¢3; = dolzi, ¥ ), (a)* = max(a,0),(a)” = max{—a, 0), and s = ¢o/+/¢f + Az is an approximation to
sign(qbo).

For the time discretization, we use the 3rd order TVD Runge-Kutta scheme developed in [23]. Consider
the following ODE:

(8.7)

(59) Borg),  wO=do
The 374 order TVD Runge-Kutta method at the n*h step is:

¢ = ¢" -+ ALL($"),
(39) §B = 4 S+ L),

o = g N + 4L+ L))

Tn all the examples below except for the first one, the computation is performed in the region [—1, 1}
in 2D, and [~1,1]® in 3D. The time step At is chosen as .1Az, and for the re-initialization step it is .bAz.
Since the computation is only done near the front in both the approximation to (8.1) and (8.6), we observe
2 considerable speed up of approximately 7 times over the global method. In example 2, 3, 4 and 5, we
start from a circle or sphere purely for simplicity in preparing the initial data. It is interesting to see initial
objects merge and asymptote to the Wulff shape. This is displayed in figure 98 in example 6, where we start
from amultiply connected initial shape.

Example 1. To test our main result Theorem 5.1 in section 5.3, we solve the scalar conservation law
(5.23)—(5.25) directly with the 3rd order ENO scheme for conservation laws developed in [24] by Shu and
Osher , for the case y(v) = | cosv{+]| sinv|. We have found the flux function F(v) for this problem in section
5.4. See figure 13.

Example 2. (2D) We start from a circle and evolve it with normal velocity equal to y(v), where v is the
angle between the ocutward normal direction 2 = Tg% and the x-axis, —7 < v < 7. We use a 200 x 200
grid. The pictures in figure 14-22 on the left are the crystalline shapes obtained from Wulff’s construction,
the corresponding pictures on the right are the shapes obtained from evolution. We print out the evolving
shapes every 50 time steps.
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7 T ¥ T T T T

FIGURE 13. Solution of the comservation low computed with the 3rd order ENQ scheme.
The computation is done on [0,2%] with 256 grid points to time t = 1.5.

Example 3. (3D) We start from a sphere and evolve it with normal velocity equal to (v, ¢}, where ¥ and
¢ are the spherical coordinates, ~ Spv<w, ~F<p< . Weusea grid of 100 x 100 x 160. We choose
v, ) = () h:(p) for i = 1,2 and 3. In figure 23, hi(p) = 1+ 2]sin(¢)}, and the corresponding Wulff
shapes are prisms with different bases that depend on y(¥). In figure 24, ha(ip) = 1+ 24/|sin e+ 5

and the corresponding Wulff shapes are pyramids with different bases depending on v(v). hs(e) = 1+
2/Tsin([p] — §)i, and the corresponding Wulff shapes are bi-pyramids with various bases depending on

{¥).

Example 4. We define

n)=1+2 f-vy—1
y(h) =1+2, /| max f-vi |

where the v;’s are the twenty vertices of a regular polygon of 12 faces that inscribes a unit sphere. We can
expect that with the given surface intensity v, the Wulff shape obtained from Wulff’s geometric construction
is a regular polygon of 12 faces, a soccer ball like object. We demounstrate this conjecture by starting with a
sphere, growing it with the above defined 7. See figure 25 for the numerical result. We use a 100 x 100 x 100
grid in our computation.

Example 5. In this example, we study the behavior of the ratio B/ yv1-i/d i the evolution process. Here
E= f7 ~(R)d4A is surface energy, V is the volume enclosed by the surface. In a recent paper [19] of Osher
and Merrirnan, it was shown that, starting from a convex initial shape, this ratio decreases to its minimum
as a shape grows outward normal to itself with velocity v(v), and the decreasing is strict unless the shape is
the Wulff shape. This was proven for a general, not necessarily convex, 7. In the level set formulation,

g IEhi@)velde
yi-id ™ [ H(—¢)dz

(8.10)

where 8(¢) is the 1D 6 function, H (¢) is 1D Heaviside function, d = 2 or 3 is the dimension.
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FIGURE 14. 7(v) = 1+ |sin(v + 7).
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Figure 16. v(r) =1+ 3|sin(3(¥ + P

In our computation, 8(¢) is approximated by:

0 if |¢] > ¢,
(8.11) §(¢) = —& (14 cos(TE)) iflg] > £,
— (1 +cos(FE)) + A (1 4+ cos(#22))  otherwise.
The Heaviside function H(¢) is approximated by:
0 ' if ¢ < —e,
_1 g 1gip(iE i _£
§(1+£+7{5?ﬁ(;$)) 1 4x 1 ol 27T 1f¢§ {:‘2,
(8.12) H{¢)=q —sll+o+ fsm(T)) +3@+ Tt sin(#52)) ¢ <73,
fr g Lan(E) 43 it <
1 otherwise.
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FIGURE 17. y(v) = | cos(v)] + |sin(¥)].
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Ficure 19. y{v) = 1 + |sin(3(» + FDI.

where ¢ = 3Az.

We start with a circle in 2D and a sphere in 3D. As was show in [19], the ratio decreases, and is a convex
function of time. If we start from a nonconvex shape, our computations seem to show that this ratio also
decreases.

Example 6. In this example, we start from a nonconvex, multiply connected shape and show how it grows,
merges and finally asymptotes to a Wulff shape. This demonstrates the versatility and simplicity of our
method. See figure 28 and 29.

9. Appendix

1. Proof of Lemma 2.2. In this appendix, we prove the following result stated in section 2.3.
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FIGURE 22. y(r) = 1 + |sin(4v)].

Lemma 2.2 ~ is convez if and only if ils homogeneous extension of degree 17 : RY — R* is a conver
function on R4

Proof: Suppose the homogeneous extension of degree 1 7 : R? — R*t is a convex function on R%. Hence
the region K = { @ : 3(z) <1} is convex. But K = {e:]eiv(F) S J={z: ]zl < } which is the

7(11%)
region enclosed by the polar plot of % By definition, v is convex.

On the other hand, suppose v : S9! — R* is convex, ie. K = {a:]z] < "y_l(l‘“?l } is convex. Note
K={z: |zl <! } = {z:4(z) <1} since 7 is a degree 1 homogeneous function. We further conclude
that

Ko={s:7() <c}

is convex for any ¢ > 0. We claim that this implies 7 is convex over R4,
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(a) (b)

(c) (d)

FioURE 23. Wulff shape of prism. (a) y(v,¢) = (1 + 3| sin(2(v + THDAlp). (b) (v, ) =
(1 + |sin(2(v + 2ODhilp). (©) 1) = (L [sin(Gr + FNDAsle). (d) 7,9y = (1 +
|sin(3(v + FNDh1le)-

Refer to figure 30. Pick any two points P and @ from R4, and a arbitrary t € (0,1). Without loss
of generality, let us assume HP) < ¥(@Q). Let To, It and T'; be the level contour of ¥ taking values
F(P), (1 — t)7(P) +17(Q) and ¥(Q), respectively. Let the origin of RY be denoted as O, and the half line
OP emanating from O mtersect I'y at T and Ty at R, and the line segment 0 intersect Ip at S and I'; at
I/, Denote a = %%}. Then since ¥ is homogeneous function of degree l,R=aPand T = (1-1)P +1R.
Note that since %%-} = |g , we have PS || RQ). Similatly, TU || RQ. Suppose PQ) intersects TU at W, then

% = % = t. Hence W = (1 —t)P +1Q. Since the region K, enclosed by I'; is convex, we have W € K

and therefore #(W) < #(T"), which is ¥{(1 — HP+1Q)y < (1 - )¥(P) + t%(Q).

II. The Evolution Equation for the Normal Angle in 2D. In this section, we derive the evolution
equation which governs the motion of the normal angle of a growing shape in 2D. It is stated without proof
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(a) (b)

() (d)

FiaURE 24. Wulff shape of pyramid and bi-pyramid. (a)y(v, ©) = (14} sin(2(w+3)) halp)-
(b)v(v,0) = (1+|sin( 2w+ 5N Dha(e). (e)y(v,p) = (L+]sin(G(v+7))Dhale)- (A e) =
(1 +|sin(3(v + F)Dhs(e)-

‘1 section 5.2 for the special case when the curve is a Wali shape. A good reference on this topic is [12].
Let T : St — R? be a smooth simple closed curve in 2D that is parameterized by «.

Let the curve move with normal velocity V, which may depend on some local or global properties of the
curve. Tf we denote the curve at some later time ¢ as r(Z, ), then

©9.1) %:“ —Va,
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F1GURE 25. A regular 12 polygon growed from a sphere with surfece energy.

where the partial derivative % is taken for o fixed. Similarly, the partial derivative (,f—a is taken for t fixed.
We want to make this point clear since some confusion may arise in the following analysis.

Let w(t,a) = |Z&(t,«)| and s be the arclength parameter, which is only defined up to a eonstant.
However 53; is well defined in the following sense
d 1 9
9.2 — = =
(92) ds ~ wlt,a)da
Note that ¢ and s may not be independent variables, and thus
o a a o
3 — .
(93) ptas — Os ot

Let ¥ = _a_: be the unit tangent vector, and # the unit outwards normal. Denote by @ the angle between

r and the positive x-axis, and v the angle between # and the positive x-axis. The Frechet formulae give us:

28— _wkn,
(5.4 { %—% = wkf
Using these relations, it is easy to show that:
dw
(9.5) B kVw
and
a o g a a

For proofs of the above results and more details, please refer to [12].
Applying the above results to 7 and 7, we get

LEMMA 9.1,

on _ oV, Of OV,
T gs 0 ot os

(0.7
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FIGurE 26. 2D.7(v) = | cos(v)| + | sin(#)].
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FiGURE 27. 3D.4{#) = |ne| + [ny| + nal.

Proof:
g oy 8 Oy V?l

or 99y _

1 58s dsot " Bs

a ... .oV,
= a(Vﬂ) - gVF= 50"
0 = g<ﬁ+>-<6—ﬁ%>+<ﬁﬁ>
e - T ot ' ot
L4
- ot’ Os’
Hence the first equality.
From the above Lemma, we immediately get:
Hv oV
9. — = .
(9-8) bt ds

Now we introduce the time/arclength coordinate system:

=1
(9.9) { : = s(t, ) = [y w(t, a)de
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FIGURE 28. The growing and merging of the initial nonconver and multiply connected shape
into the Waulff shape. y(v) =1+ [sin(3{v+ F)I-
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FiGURE 20. The change of energy and area ratio in the above process.
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0

Freure 30. Contour of a homogeneous function of degree 1.

In the this system, we have

oo v ouls
ot ar  Os ot’

ds * Jw &
Et* = L *aTdC{ —]{; }GV'H}da

£ 12
= / Vnds:f Vdv,
0 ¥o

where v is the normal angle of the reference point with o = 0. Note that

ov _ove
ds ~ Ov Os’
We thus obtain the evolution equation for v in this system:
l71% Y av v
(9.10) o U V(r)dv + ";97] > =0

In the self-similar growth of Wulff crystals, the velocity V = v(v) and we can choose the reference point
so that vy = 0 and 7/(0) = 0. We replace 7 by and get

v ¥ " v
= +/0 () + 9" ()] duse = 0.

This conservation law gives incorrect jump conditions at corners. The correct equation can be obtained
by a change of variables in the equation (9.11) that governing the evolution of normal angle. We introduce
the following new set of variables:

(9.11)

T =1,

(9.12) { £ =16(1, 5)

where 8(, s) is defined implicitly by:

s 8 v(8)
(9.13) s= [ VW) i = [ b+ rene

and v(#) in turn is defined by
!
§=vy+tan’ (M> )
1(¥)

where W(#) = 7.(#).
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By the chain rule, we have

ov _ ov v
ot~ o 8cor
v _ vk
ds O£ ds’
0 il
a - e
o _ 9
s 0Os
We have the following
L N | C) N
5T PO 70
a _ 1 1)
ds ty )+ 1)
and thus
TR VI 7 T
at —  8r  0¢ ty2() +yHr) )]
o _ v )
ds Ot vy + vy
Inserting these expression into equation (9.11), we get
dv  OF(v)
67+ a¢ =0

2 I
where F(v) = & + [, tan™! '%‘}ldu.

III. The Euler-Lagrange Equation of Surface Energy. The Lagrangian (7.3) when 7 is a homo-
geneous function of degree 1 is of the following form

(9.14) £ = [Tz = A [ e
Take 9 € C§°, we have
6L def . 1
<gp¥> = lmllte, A) — £{¢, M)

- ] (Dy(V@) - V8(8) + Y(T)5H($)b + 6(~9)d }da

= j (L [5(6) Dy(V)] + 1(TH)61(8) + M(P)}hde
=[O DTS = 6T DAV + AT - 26()
- f (V- Dy(V4) — A}6(¢)dz

- . g i

= - [(7 x99 - Ny g @IVl

Hence the Euler-Lagrange equation is
(9.15) V-Dy(Vé) = A,

where the Lagrange constant A is chosen such that the volume enclosed is as given.
Noting that when 7 is a homogeneous function of degree I, then D)y is homogeneous of degree 0 and
hence ¥(V4) = 7([o5p)-
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For extensions of y which are not necessarily homogeneous of degree 1, the Euler-Lagrange equation can
be obtained through a similar but more involved calculation and is found to be

(9.16) T - [y(8) + Var(i) — (Tay(R) - A)] = 0.
where 7t = !—g% is function of space variable 2, and the V means gradient with respect to &, and Vj means
gradient with respect to the variables of (extended) 7.

For example, if we extend 7 to be constant in the radial direction, then Viy(f) 72 =0 and the Euler-
Lagrange equation would be

(9.17) V- [y(a) + Var()] = 0,

which is different from equation (9.15). We will use the homogeneous extension of degree 1 next.
The gradient flow of the surface energy with the volume constraints is

4= IVl [vm (%ﬁ—l) - ,\] ,

IV Do) B sl
(9.18) A= GONT :

The reason that we have included the extra term |V is to make the above equation rescaling invariant, 1.e.
¢ can be replaced by h(¢) with 2 > 0 and Rr(0) = 0.
The surface energy on the gradient flow is diminishing. To see this, let

F=V-Dy(Vé)

where

and we have

W~ L [Avopenias
- - j F(F — N)S(phi)|Vé|ds
= _f}"(:f-‘——)\)dA.
Y

where dA = 8(¢)|V¢ldz is area element in 3D and arclength element in 2D, Using the Schwarz inequality

(9.19) |/J—"dA|2 gfﬁdA/dA,
it Y b

one easily sees that

dE
(9.20) = <o
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