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Active contours without edges

Tony F. Chan and Luminita A. Vese

Abstract--In this paper, we propose a new model
for active contours to detect objects in a given
image, based on techniques of curve evolution,
Mumford-Shah functional for segmentation and
level sets. Our model can detect objects whose
boundaries are not necessarily defined by gradi-
ent. We minimize an energy which can be seen as
a particular case of the so-called minimal partition
problem. In the level set formulation, the prob-
lem becomes a “mean-curvature How”-like evolv-
ing the active contour, which will stop on the de-
sired boundary. However, the stopping term does
not depend on the gradient of the image, as in the
classical active contour models, but is instead re-
lated to a particular segmentation of the image.
We will show existence of minimizers for our prob-
lem and propose an algorithm using level sets and
finite differences, Finally, we will present various
experimental results and in particular some exam-
ples for which the classical snakes methods based
on the gradient are not applicable. We will also see
that interior contours are automatically detected
and that the initial eurve can start anywhere in
the image, and not only around or inside the de-
sired objects.

Heywords— Snakes, active contours, energy min-
imization, partial differential equations, segmenta-
tion, level sets, functions of bounded variation, fi-
nite differences.

I. INFTRODUCTION

The basic idea in active contour models or snakes is
to evolve a curve, subject to constraints from a given
image ugp, in order to detect objects in that image. For
instance, starting with a curve around the object to be
detected, the curve moves toward its interior normal
and has to stop on the boundary of the object.

We first recall some of the classical active contour
models or snakes ([13], [5], [16], [6}). Let £ be a
bounded and open subset of IRY, with 8% its bound-
ary. Let ug be a given image, as a bounded function
defined on © and with real values. For N = 2, O is
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a rectangle in the plane and uo takes values between
0 and 255. Denote by C{s) : [0,1] — IR* a piecewise
C10, 1] parameterized curve.

In all the classical snakes and active contour mod-

els, an edge detector is used to stop theevolving curve

on the boundaries of the desired object. Usually,
this is a positive, decreasing and regular edge-function
g(IVug|), such that lim._.., g(t) = 0. For instance,

1
1+ |VGy * ugl?

9(|Vuol) = ,p21,

where (7, * 4, a smoother version of wp, is the convo-
lution of the image ug with the Gaussian G,(z,y) =
o2~ l=*+v?1/40 " The function g{|Vuo|) is strictly
positive in homogeneous regions, and near zero on the
edges.

The snake model [13] is: inf¢ J1(C'), where

)= [0 Pastr [ gVl Co)IPds. (1)

The first term in (1) is the internal energy and con-
trols the smoothness of the curve (we considered here
only the rigidity term, with the first order derivative;
the elasticity term, with the second order derivative

can also be added). The second term is the external -

energy and attracts the contour towards the edges of
the object in the image uo.

In problems of curve evolution, the level set method
and in particular the mean curvature motion of S.
Osher and J. Sethian {20] have been used extensively,
because it allows for cusps, corners, and automaltic

topological changes. Moreover, the discretization of.

the problem is made on a fixed regular grid.
We now recall the equation which governs the mo-
tion by mean curvature [20] in any dimension N:

86 _ 1vuldiv(Z¢

5 = [Veldiv( i)

#(0,z) = ¢o(z), t € [0,00), v € RY.
Here, ¢(t,-} is the level set function, assumed to be
Lipschitz. By this evolution equation, the level sets
of ¢, {z € R" : #(f,z) = ¢} move in the normal

direction with a speed equal to the mean curvature.
Once we start with an initial curve, which is the zero
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level set of ¢y and such that ¢p has opposite signs
inside and outside the curve, we can follow the zero
level curve of ¢(t) and this gives a representation for
evolving curves by mean curvature. The operator
K{g)(z) = div(lg—i%%i—) represents the curvature of
the level-curve of ¢ passing through =z.

A geometric active contour model based on the
mean curvature motion is given by the following evo-
lution equation [5]:

28 = g(1vuoDivel (div (5) +)-
in [0, oo[x IR
&(0,z) = ¢o(z) in R?,

(2)

where ¢(|Vug|) is the edge-function defined before
with p = 2, and v is a positive constant. ¢p is the ini-
tial level set function. Its zero level curve moves in the
normal direction with the velocity g(|Vuo| ) (K (¢){z)+
1) and therefore stops on the desired boundary, where
g vanishes. The constant v is a correction term chosen
so that div( gi 2) ) + v remains always positive. This
constant may be interpreted as a force pushing the
curve toward the object, when the curvature becomes
null or negative (on the other hand, the presence of
the constant » is a constraint on the area inside the
curve, and this also increases the propagation speed).

Other active contour models based on. level sets
were proposed in [16], again based on the image gra-
dient. The first is

b0 = [Vol(—v + iy IV G * uo(w)] — Ma)),
- (0,2) = ¢o(z) in R* - :

where v is a constant, and My and M, are the max-
imum and minimum values of the magnitude of im-
age gradient |VG, * ugp(z)|. The second model [16] is
similar to the geometric model {5], but with p = 1.
Related works can be found for instance in [17] and
[18].

The geodesic model [6] is:

it (0) =2 [ 10 oIV Clo))ds. (3)

This is a problem of geodesic computation in a Rie-
mannian space, according to a metric induced by the
image ug. Solving the minimization problem (3) con-
sists in finding the path of minimal new length in that
metric.

The equivalence between the models (1) and (3) is
proved in two different ways in 6] and [1].

The geodesic active contour model [6] has also a
level set formulation:

88 _ |wg)(div(g(IV ol rgy) + v (I Vo],

in [0, oo[x IR?

#{0,z) = ¢go(z) in R?.
Here again the constant v is added to increase the
evolution speed and to attracts the curve towards the
boundary and constitutes in fact an extra area-based
speed.

Because all these classical snakes or active con-
tour models rely on the edge-function g, depending
on the image gradient |Vugl|, to stop the curve evolu-
tion, these models can detect only objects with edges
defined by gradient. Also, in practice, the discrete
gradients are bounded and then the stopping func-
tion g is never zero on the edges, and the curve may
pass through the boundary. On the other hand, if
the image ug is very noisy, then the isotropic smooth-
ing Gaussian has to be strong, which will smooth the
edges too. In this paper, we propose a different active
contour model, without a stopping edge-function, i.e.
a model which is not based on the gradient of the im-
age ug for the stopping process.. The stopping term
is based on Mumford-Shah segmentation techniques
[19]. In this way, we obtain a model which can de-
tect contours both with or without gradient, for in-
stance objects with very smooth boundaries or even
with discontinuous boundaries (for a discussion on dif-
ferent types of contours, we refer the reader to [12]).
Moreover, our model has a level set formulation. Also,
interior contours are automatically detected and the
initial curve can start anywhere in the image.

The outline of the paper is as follows. In the
next section we introduce our model as an energy
minimization and discuss the relationship with the
Mumford-Shah functional for segmentation. Also, we
formulate the model in terms of level set functions,
study the existence of minimizers and compute the
associated Euler-Lagrange equations. In Section 3 we
present an iterative algorithm for solving the problem
and its discretization. Finally, we validate our model
by various numerical results on synthetic and real im-
ages, showing the advantages of our model described
before, and we end the paper by a brief concluding
section.

Before describing our model, we would like to re-
fer the reader to the following related works: [27] and
[25] on active contours, [29] and [14] on shape recon-
struction from unorganized points, and finally to re-
cent works [21] and [22], where a probability based

(4)




-

CHAN AND VESE: ACTIVE CONTOURS WITHOUT EDGES

geodesic active region model combined with classical
gradient based active contour techniques is proposed.

IT. DESCRIPTION OF THE MODEL

Our model is the minimization of an energy based-
segmentation. Let us first explain the basic idea of the
model in a simple case. Assume that the image ug is
formed by two regions of approximatively piecewise-
constant intensities, of distinct values u$ and g and
that the object to be detected is represented by the
region, with the value u). Let denote its boundary by
Cy. Then we have ug = u}) inside the object (or inside
Cp) and ug = uj outside the object (or outside Cp).
Now let us consider the following “fitting energy”:

R(C) + F(C)

= / !UQ - 61|2d$ A I’LLO - Cg‘zdﬁ,
inside(C) outside(C')

where (' is any other variable curve, and the constants
¢1, ¢z, depending on C, are the averages of ug inside
C and respectively outside C'. In this simple case, it
is obvious that Cg, the boundary of the object, is the
minimizer of the “fitting energy”:

inf {F(C) + Fo(C)} = 0 & Fy(Co) + Fy(Co).

This can be seen easily. For instance, if the curve C is
outside the object, then Fy(C) > 0 and F3(C) ~ 0. If
the curve ' is inside the object, then Fi(C) =~ § but
F2(Cy > 0. If the curve C is both inside and outside
the abject, then F3(C) > 0 and F5(C) > 0. Finally,
the fitting energy is minimized if C' = Cy, i.e. if the
curve ' is on the boundary of the object. These basic
remarks are illustrated in Fig. 1.

In our active contour model we will minimize this
fitting energy and we will add some regularizing
terms, like the length of ¢ and/or the area inside
C. Therefore, we introduce the energy F(C,e¢1,c¢2)
defined by:

F(C,c1,c0) = p - (length(C))? + v - area(insideC')

|ug—62|2d.7;,

+M o Iuo—C1|2d.’£+Agf )
inside(C) outside{C’)

where ¢) and c¢p are constant unknowns, and g > 0,
v > 0, A7, A2 > 0 are fixed parameters. Of-course that
one of these parameters can be “eliminated”, by fixing
it to be 1. In almost all our numerical calculations,
wefix Ay = Ay = 1, and v = 0, i.e. we do not need the
area term in the energy (this term can be used when
for instance we may need to force the curve to move
only inside, or only outside).

FI(C)>0, Fz(C)%O F](C)%O,Fz(C)}O
Fitting > 0 Fitting > 0

F}(C) > 0, Fz(C) >0 Fl(C) = 0, FQ(C) = 0
Fitting > 0 Fitting = 0

Fig. 1. Consider all possible cases in the position of the
curve. The “fitting energy” is minimized only for the
case when the curve is on the boundary of the object.

In general, we can take p = 1, as in the Mumford- -

Shah functional for segmentation [19]. For a general
p > 0, in order to balance the terms and their di-
mensions in the energy, if d is the unit distance in
the Q—plane, then p has to be measured in units of
(size of up)?-d*~?, and v has to be measured in units
of (size of ug)®. '

A different choice for p than in the Mumford-Shah
functional, where p = 1, to rescale the energy, is to
consider directly p = 2 (in two dimensions) or p =
WJ{T in any dimension N > 2, from the isoperimetric
inequality [9]. We will discuss more this possibility
further.

Here, by C we generally mean a hypersurface in

RN and “length(C')” means the Hausdorff (N — 1)-
dimensional measure "V ~1(C).
Therefore, we consider the minimization problem:

inf F(C,eq,¢9) (5)

C,c1,e
A. Relation with the Mumford-Shah functional

The Mumford-Shah functional for segmentation is

[19]:
FMS(u,C) = -length(C)

+ )\/ Iuo—ul2da:+/ |Vul*dz,
Q o\C
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where u, A are positive parameters. The solution im-
age u obtained by minimizing this functional is formed
by smooth regions R; and with sharp boundaries, de-
noted here by C.

A reduced form of this problem is simply the re-
striction of FMS to piecewise comstant functions u,
i.e. u = ¢; with ¢; a constant, on each connected com-
ponent R; of @\ C. Therefore, as it was also pointed
out by D. Mumford and J. Shah [19], the constants c;
are in fact the averages of ug on each R;. The reduced
case is called the minimal partition problem.

Qur active contour model forp =1, = 0 and Ay =
Az = A is a particular case of the minimal partition
problem, in which we look for the best approximation
u of ug, as a function taking only two values, namely:

(6)

_ ] average{up) inside C
" | average{ug) outside C,
and with one edge C, represented by the snake or the
active contour.
This particular case of the minimal partition prob-
lem can be formulated and solved using the level set
method [20]. This is presented in the next subsection.

B. The level set formulation of the model

In the rest of this section, we consider the general
case in N dimensions, i.e. ¢ € @ C IRV (therefore the
word “length” should be replaced by “surface area”
and “area” by “volume”}.

In the level set method [20], C is represented by the
zero level set of a Lipschitz function ¢ : RN — IR,
such that '

C={z e R":é(z) =0},
“inside” (C) = {z € RY : ¢(z) > 0}
“outside”(C) = {z € RV : §(z) < 0}.

For the level set formulation of our variational active
contour model we follow for instance {28] and [9]. We
therefore replace the unknown variable ' by the un-
known variable ¢. Using the Heaviside function # and
the one-dimensional Dirac measure § concentrated at
0, defined respectively by:
1, ifz>0

H("‘)‘{ 0, ifz<0,

and

d
6(z) = d—ZH(z) {in the sense of distributions),

we express the terms in the energy I in the following
way:

“ength™ {6 = 0} = jQ VH(¢)| = ]Q §(2)|Vl,

“area{¢ > 0} = /ﬂ H()de,
[ o= alids = [ juo- e H(@)d,
¢>0 {

/M o = ealPde = [ fuo = ca*(1— H(6))de.

Then the energy F(¢,c1,¢2) can be written as:

F(éeve) = u( [ VH@) +v [ A(6)da

—|—,\1/Q|u0—01{2H(¢>)da:-|—/\2/S;|u0wc2[2(l—H(¢))dw.

Again we recall that in our model, p can have the
following values: p = 1 for all N, or p = % for
all N > 2. For the last expression, we are using the

isoperimetric inequality (see for instance [9]), which
Fick

says in some sense that the (length(C ))ﬁ is “com-

parable” with the area(insideC'):

. -
-1

LH(@deC(/QWH(Qﬁ')%) ;

where ¢ is a constant depending on N only. The level
set function ¢ is as before and such that its zero level
set in € is bounded and of finite length. .

We note that, « from (6), solution of our model as a
particular case of the Mumford-Shah functional, can
simply be written using the level set formulation as:

u=c1H($)+ c2(l ~ H(p)).

. The study of the model: ezxistence of minimizers

Let us write the energy F(¢, ¢, ¢q) in the following -

way:

F(yeren) = u( [ 8@)IV6l)" +v [ H(o)da

-i—/\l(c%/QH(qb)dm—chfﬂuOH(qS)da:—i—fQugH(gb)d;r)
+A2(C§'/ﬂ(1—H(gb))d:c—ch]Quo(l— H($))da
+/Qu§_(1—ff(¢))dm).

Keeping ¢ fixed and minimizing the energy
£(¢,c1,¢z) with respect to the constants ¢; and e¢g,
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it is now easy to express these constants function of ¢
by:

Jo uoH{d)dx
Jo H(¢)dz

if fo H($) > 0 (i.e. if the curve has a nonempty inte-
rior in £2), and

C _ fﬂ uD(l — H(é))dm averagel u in
29) = S (g PYeTREe(no) I 10 < 0(2))

if fo(1— H(4))> 0 (i.e. if the curve has a nonempty
exterior in ). For the corresponding “degenerate”
cases, there are no constrains on the values of ¢; and

c1{¢p) = ( average(ug) in {¢ > 0}) (7)

Ca.

Because the unknown constants ¢; and e; have
explicit representations as functions of the un-
known ¢, we can consider the energy in ¢ only:
F(¢, c1(¢), ca(¢). We also remark that, in this case,
the energy F(¢, c1(¢), c2(¢)) can also be expressed as
a function of H{¢) only, which is a characteristic func-
tion. Therefore, we can introduce the energy F de-
pending only on H(¢), and defined by:

F(H(¢)) = F(g,cr(@), e2(9)), 9)

and consider the minimization problem among charac-
teristic functions xg, where E = {z € Q: ¢(z) > 0}
and xg = H(¢):

F(xE)

il

fl(/QIVXEI)p-FV/QXEdl‘
T fﬂ (o — e1(xz)) xpdz

+ [ (u0 - ea(xp) (1~ xp)de.
Therefore, we obtain the minimization problem:

inf F(xe), xe(z) € (0,1} ds — e, (10)
among characteristic functions of sets E with fi-
nite perimeter in , i.e. characteristic functions of
bounded variation ([9]).

We expect, of course, to have existence of minimiz-
ers of the energy F(C, ¢y, ¢2), because this is a partic-
ular case of the minimal partition problem, for which
the existence has been proved for instance in [7]. But
because we use a different formulation of our model,
the level set method, we prefer to show here existence
of minimizers of F among characteristic functions of
sets of finite perimeter {or of bounded variation}. This

can be done using classical arguments on lower semi-
continuous functionals on the BV space.

The functional F(xg) is well defined -on the space
BV(RQ) of functions with bounded variation. We have
to consider this space, because the characteristic func-
tions are functions of bounded variation. We need
the following preliminaries (see [9], [10], [11]): let
0 ¢ RY be an open, bounded and connected set.
We say that u € L}{(Q) is a function of bounded vari-
ation, and we write u € BV (), if its distributional
derivative Du = (Dyu, ..., Dyu) is a vector measui'e_
with bounded total variation, i.e. if:

|Dul(%2)

- sx}p{jnudivfd:r:lf € CHY RY),If1 < 1) < o

A particular case of functions of bounded variation are
the characteristic functions of sets of finite perimeter:
if Eis a set in IR", then the perimeter of £ in @ is
perg(E) = [y |Vxg| and E has finite perimeter in {
if and only if yg € BV ().

The space BV () is a Banach space, endowed with
the norm: '

lulipvi) = llwllz @) + [ Dul($)-

Assume further that 0% is Lipschitz. Then we have
the following basic result (see for instance [9]): if
(2 )n>1 15 & bounded sequence in BV (£), then there
exists a subsequence (n;) of (¢n) and a function
u € BV($), such that u,; — u strongly in L),

as n; — oo, and

| Du|(2) < lim inf [ D, | (€2).
n,;—

We state now our existence result (assume p > 0,
A}, AQ, vz 0)

Theorem 1: H ug € L°°(Q), then the following min- -
imization problem

ixngf(xg), xg € BV(Q), xg(z) € {0,1} dz — ae.,

has a solution.
Proof. Let (Xg, a1 be a minimizing sequence of F,
i.e.

inf Fxp) = lim F(xz.)-

Then there is a constant M > 0 s.t. [Vxg, Q) < M,
for all n > 1. Of course, 0 < xg, <1, dr —a.e.in §;
hence |[xg, ||z q) < 1€, for all » > 1 (we have to jus-
tify this bound in the case when we do not consider the
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area term in the functional, i.e. when v = 0). Then
the sequence yg, is bounded in BV(§). Therefore,
there is a subsequence (XEnj) of (xg,), 7 =2 1, and
a function u € BV(Q) such that xg,
in L}(€2). Then for a subsequence, still denoted E,_,
XEn, — U dx-a.e. in . We therefore deduce that
© = xg, dr—a.e., where E has finite perimeter in .

By the previous lower semi-continuity result, we
have:

— o strongly

([ 1vxel)” < timint ( [ 19x8,1)"

It is easy to show the continuity or the lower semi-
continuity in L1({2) of the fitting energy. For instance,
if {4 xpde > 0, under the usual assumption for im-
ages that ug € L(Q), all the integrals depending
on xg,. converge (strongly) to the corresponding in-
tegrals dependmg on xg. The same remains troe if
we have I — yg instead of yg. For instance, in the
“degenerate” case when [, xgdz = 0, then the first
term of the fitting energy is zero, and obviously the
lower semi-continuity inequality will be satisfied, be-
cause the corresponding term in XEn, is positive or
Zero. :

Finally, we have:

f(XE) S]}lm_f&ff(XEnj)a
¢

by the above lower semi-continuity property of the
total variation and the strong convergence in L*() of
the other terms. Then xg is a minimizer of F among
characteristic functions of sets of finite perimeter in
. : , ]
Once xg is obtained, using xg = H(¢)}, ¢1 and ¢
are uniquely determined by {(7) and (8) (except in the
“degenerate” cases). The level set function ¢ is used
only to represent the snake and has many numerical
advantages, but the problem could also be formulated
and solved only in terms of characteristic functions.

D. The Fuler-Lagrange equations

In order to compute the associated Euler-Lagrange
equation for the unknown function ¢, we have to con-
sider slightly regularized versions of the functions H
and 6, denoted here by H, and 6., such that é, = H..
For the moment, let H. be any C?(Q) regularization
of H, and 6, = H.. We will give further examples of
such approximations.

The associated regularized functional F, of F will
therefore be:

Fu($,c1,¢2) = ]Q 5.(0)|Vgldz) + v /Q H.(¢)ds

A /ﬂ fue1 2 He(@)da+ha [ fuo—eal*(1~Ho(6))dz,

and we consider the following regularized minimiza-
tion problem:

inf F€(¢,61,C2)~ (11)

1,02

Keeping ¢; and c; fixed, and minimizing £, with
respect to ¢, we have the following relations, choosing
3 as a test function of the same type as ¢:

lim ~ (F (¢ + 1, c1, c2) — Fel 1, 2)) =

p( [ @) valdz)”
f p(6U)Vele + 6.(0) Ve )

+f 6.(6)( + Mo — e1)® — Aalug — e2)* )bz = 0.
Q

Integrating by parts and using Green’s theorem, we
ohtain

o [ 6019 0lde)" ([ nel(@)Valid

b:(¢) 0¢
oVl an / (§(¢)|V¢|) °)

+/ be(B)(v + )\1(% —e1)* = Aol — 2)*)ypdz = 0.

Formally developing the divergence operator we fi-
nally obtain:

o( [ aoveiae)™ (- [ wa(o)v (o) vs

b:(¢) d¢
+] 1o g an ds)

+

‘|'/ () + Ao — ¢1)? = Aa(ug — e2)*)pdz = 0,
Q

for all test functions 7. Choosing first 1 € C2(§2), and
secondly zere in £} and non-zero in d§2, we deduce the
following Euler-Lagrange equation for ¢:

5.(6) [up( o &)V S]) div(Z) - v
—Afup — e + Ag(uo - 02)2] =0 in Q,
p(Jo 6:)Vel)" 5822 = 0 on 00

Recall that the expression K(¢) = —div(r%) de-
notes the curvature of the zero-level front.
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E. Regularizations of H and &

First possible regularizations by C*({2) and respec-
tively C1(2) functions, as proposed for instance in
(28], are:

lifz>¢
Hyo(2) = 0if z< —¢
%[14-5—{—%5111 (%)] if |2 <«

and

5 H' 0if |2| > ¢

Le(2) = H1(2) = = [1 + cos (3’%%)], if |2] <e.
In this paper, we introduce and use in our experi-

ments (see further) the following C°°(Q) regularized

versions of # and é, defined by:

1 2
My (z) = 5(1 + - ar.ctan(g)),

d2,.(2) = Hy(2) = ;11: ’ gﬁ“":*_“gf

These distinct approximations and regularizations
of the functions I and & are presented in Figure 2.

As ¢ — 0, both approximations converge to H and
8. A difference is that 6, . has small compact sup-
port, the interval {—¢, ¢}, while 83 . is different of zero
everywhere,

Because our energy is non-convex (allowing there-
fore many local minima), and because 6, . has a very
small compact support, the interval [—&,¢], the nu-
merical algorithm may depend on the initial curve,
and: will not necessarily compute a global minimizer.
In some of our tests using the first approximation, we
obtained only a local minimizer of the energy. Us-
ing the second approximations, the algorithm has the
tendency to compute a global minimizer. One of the
reasons is that the Euler-Lagrange equation for ¢ acts
only locally, on a few level curves arround ¢ = 0 us-
ing the first approximation, while by the second ap-
proximation, the equation acts on all level curves, of
course stronger on the zero level curve, but not only
locally. In this way, in practice, we can obtain a global
minimizer, independently of the position of the initial
curve, and this allow to automatically detect interior
contours (see Section 4).

We mention that, in order to extend the evolution
to all level sets of ¢, another possibility is to replace
6(¢) by [V¢| (see [28]). In our paper, we would like to
keep 8(¢) in the equation, to remain close the the ini-
tial minimization problem. The problem of extending

'————-1

~1

THET
Het -

T
o1 —
B2

08 -
06 F
0.4 B

02 F

Fig. 2. The two different regularizations of the Heaviside
function (top) and Delta function (bottom).

the evolution to all level sets of ¢ was solved here using
the aproximation 6, .of the Dirac 6 function, which is
different of zero everywere. :

For other approximations of the Dirac § function,
we refer the reader for instance to [3].

ITI. THE NUMERICAL APPROXIMATION OF THE
MODEL

To discretize the equation in ¢, we use a finite dif-
ferences implicit scheme and we denote here the space-
variable by (z,y) € Q@ ¢ R* (N = 2). We also
parametrize the descent direction by an artificial time.
The new evolution problem is:

P CI(¢): f ug He (¢)dzdy

Jo He(@)zdy
% - 65(95) [[.Lp( fﬂ 65(¢)Iv¢i)p_ldlv (l—g%l) v

—}\1('&0 — 61)2 + /\Q(TLD e 62)2] in Q,
¢(ta €T, y) = ¢0($7 y) in Q:

p( fo 8(9)1V )" B8 2 = g on 90,

_ Jue{1—He($))dzdy
e2(®) = A lonisan
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We recall here the usual notations for finite differ-
ences: let A be the step space, and (z;,y;) = (tk, 7h)
be the grid points, for 1 < 4,7 < M. Let ¢}, =
#{n At,z;,y;) be an approximation of ¢(t,z,y) de-
pending on k, with n > 0, ¢° = ¢p. The finite differ-

ences are:
AT ;= ig — bimrgy DLdij = di1,; — diyo
DL i = bij — bij=1, Didiy = dijar — ;.

The algorithm is as follows (we essentially adopt the
method from [24] for the discretization of the diver-
gence operator and the iterative algorithm from [2]):
knowing ¢", we first compute ¢;(¢™) and e2($") us-
ing (12), and length{¢™ = 0} = [, 61(¢™)|VP"|dady,
denoted by L(¢™). Then, we compute "+ by the fol-
lowing discretization and linearization of the equation

in ¢

¢7’1+1 _ AN

n At "= g Ej)[”gfl(P'L(Qf’n)p_l)
A:g ¢n+1
AT
(\/( 002 (R + (87504 ‘?5?,3'—1)2/(2’1‘)2)
7 (p L¢P
Af’l_qﬁ;’ﬂ‘l

P17/ (2h) 4 (AL ¢?;,)2/(h2))

LY
(\/(‘ﬁ?ﬂ,j -
—v = M(uoj — e1(¢")F + a0 — ea(¢™)?].

Denoting by Cy, Cz , C3 and (4 the coefficients of
qbf_:'ll i qbt”*'ll‘j, qb:j_il and ¢} ‘7.1 Tespectively, ¢ will
be the unique fixed point of the following linear sys-
tem:

L™ )P~ 1)85(
it 1 MR (0 4 0y 4 € + )

= 675 + Oton(97,) [ (p- L(6™) )
(Cro7j + CadP™]; + Cadttly + CaglHl)

~v = Mo, ~ (") + Xaluoi; — e2(¢")) ]

This linear system is solved by an iterative method,
and for more details, we refer the reader to [2]. '

We also need at each step to reinitialize ¢ to be the
signed distance function to its zero-level curve, be-
cause we work with the regularized function é.. This
procedure is standard (see [26] and [28]), and prevents
the leve] set function to become too flat, or it can be
seen as a rescaling.

This reinitialization procedure is made by the fol-
lowing evolution equation [26]:

¥y = sign($(1))(1 - IV¢[)
{ ¢(07 ) = é(i: ')1 (13}

where ¢(t,-) is our solution ¢ at time {. Then the new
#(t,-) will be ¥, such that ¢ is obtained at the steady
state of (13). We need to do the reinitialization at
each iteration, but only few iterations are necessarily
to solve (13), in order to have the signed distance

function near the front. The solution ¥(t,-) of {13)

will have the same zero-level set as ¢{t,:) and away
from this set, |Vi| will converge to 1. To discretize
the equation (13), we use the following scheme (see
[23] and [26]):

Wit = ] - Arsiga(d(1))G(9]),
where the flux G(zbz ;) is defined as follows: using the
notations

a = (L% 5) h = (%i; — Yi-1,5)/ R,
b= (AL b= ($irr; — ¥ig)/h,
e = (AYi ) h = (i ; — i) [k,

(A '@bz,J)/h (¢i,j+1 - ¢i.j)/h?

the flux & is

[ vmax((a®)?, (67)%) + max((ct)?, (d7)?)
—1, if ¢(t,2i,3;) > 0,

Glij) = { vmax((a™)? (7)) + max(( “)4(dT))
-1, if o(t, 2,95} <0,
L 0, otherwise, |
where ¢t = max(«a,0), &~ = min{a,0), and so on.

In practice, to not perform more iterations than

necessarily, we can check whether the solution is sta--

tionary, computing each time the quantity [28]:

0= 2ol¢m I<h Fﬁ}“ - ¢ ’

where M is the number of grid points where |¢7%] < h.
Recall that ~ denotes the step space. If @ < (At)(h?),
then the solution is stationary and we stop, else we
continue the algorithm.

Finally, the principal steps of our algorithm are:

o Initialize ¢° by ¢, n = 0.

e Compute ¢1(¢") and co(@™) using (12), and
length{¢™ = 0} = L{¢™) if p = 2.
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e Solve the PDE in ¢ from (12), to obtain ¢"*1.

o Reinitialize: replace ¢"t! by the signed distance
function to {¢"*! = 0}.

o Check wether the solution is stationary near the
front. If not, » = n + 1 and repeat.

In our numerical results, we make one iteration for
each step. Only if the image is noisy (like in Fig.
3), we perform 5 iterations to compute ¢"*! and the
distance function, for each fixed ¢;(¢") and cx(¢™).
For the case p = 2, length{¢ = 0} = L(¢") is updated
at each iteration in ¢.

IV. EXPERIMENTAL RESULTS

We end the paper by presenting numerical results
using our model on various synthetic and real images,
with different types of contours and shapes. We show
the active contour evolving in the original image ug,
and in some examples, we also show the piecewise-
constant approximation or segmentation of ug {given
by the averages ¢; and ¢3). In all our numerical re-
sults we use the second approximations Hy and é; of
the Heaviside and Dirac delta functions, in order to
automatically detect interior contours. Also, p = 1
everywhere, except for Fig. 13, were p = 2.

We first consider images with classical contours
with gradient.

In Fig. 3 we show how our model works on a noisy
synthetic image, with different shapes, convexities and
an interior comtour, which is antomatically detected,
without considering a second initial curve (here p > 0,
Vo= 0, A] = Ag) .

In Fig. 4, we show that our model can detect dif-
ferent objects of different intensities, and with blurred
boundaries. In this case, we needed to use Ay < Aq,
and g > 0, v = 0. Again, the interior contour of the
torus is automaticaly detected, without considering a
second initial curve. This is also due to the fact that
the velocity has a global dependence, and the curve
is automatically attracted toward the objects. In this
example we also show that the initial curve does not
necessarily surround the objects.

In Fig. 5 we show how we can detect lines and
curves {not necessarily closed) in a noisy image. The
final level set function is zero on the curves and neg-
ative outside the curves.

In the next examples (Fig. 6, 7, 8 and 9), we
consider images with “contours without gradients” or
“cognitive contours” (see [12]). We also illustrate here
the role of the length term as a scale parameter: if u
is small or even zero, then any small objects are de-
tected; if p is large, then only larger objects are de-

Fig. 3. Detection of different objects from a very noisy im-
age, with various convexities and with an interior con-
tour which is automatically detected, using only one
initial curve. After a short time, an interior contour
appears inside the torus, and then expands. Left: ug
and the contour. Right: the piecewise constant ap-
proximation of ug.

tected, or objects formed by grouping by resemblance.

In Fig. 6 top, without the length term (p = 0},
all circles are detected as independent objects. With
more weight on length term (i.e. a large p), in Fig.
6, bottom, we show that our algorithm can detect
objects defined by grouping according to Kanizsa's
“proximity rule”.

In Fig. 7 we show how the grouping is based on the
chromatic ressemblance or identity, among objects of
the same shape.

In Fig. 8 we validate our model on a very different
problem: to detect features in spatial point processes
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Fig. 4. Detection of blurred objects and with different in-
tensities. Here, the term in the functional which mea-
sures the average hetween the image and the constant
¢: inside the curve is less important than on the outside
(A1 < Az). Also, the initial curve can start everywhere
in the image {the choice for the signes of ¢ inside and
outside the curve is not important).

Fig. 5. Detection of lines and curves not necessarily closed.

No length term

Fig. 6. Results showing the role of the length term and
of y as a scale parameter. Top: = 0 (no constraint
on the length of the curve). Bottom: p > 0 is large
(important constraint on the length of the curve).

in the presence of substantial cluster. One application
is the detection of minefields using reconnaissance air-
craft images that identify many objects that are not
mines. These problems are usualy solved using statis-
tical methods (see for instance [8] and [4]). By this.
application, we show again how our model can be used
1o detect objects or features whith contours without
gradient. This is not possible using classical snakes or
active contours based on the gradient.

A similar application is presented in Fig. 9, where
the white points are Europe nightlights. "
We next consider an image with very smooth con-
tours. In Fig. 10 left, we show results obtained using
our model, while in Fig. 10 right, we show the re-
sults obiained with a classical active contour model
based on the edge-function g({Vug|) (here the geo-
metric model), by which the curve cannot detect the

smooth boundary.

We also show examples of real noisy/blurred im- .
ages, with different types of contours or shapes, illus-
trating all the advantages of our model: the ability
of detecting smooth boundaries, scale adaptivity and
automatic change of topology.
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Fig. 7. Contour without gradient. The detected large
“object” is a “grouping” of smaller objects of the same
color (grouping by chromatic resemblance or identity}.

Fig. 8. Detection of a simulated minefield, with contour
without gradient.

11

Fig. 9. Europe nightlights.

In Figures 11 and 12 we detect the contours of two
galaxies.

In Fig. 13, we consider an art picture from Los
Angeles Times, by Brian Forrest. Here, p = 2 (we
have the square of the length term in the energy) and
the initial curve is the boundary of the image. After a
time, a curve in the middle of the image appears and
expands until merges with the initial evolving curve.

In Fig. 14 we show how the tumor is detected from
an MRI image (here g > 0, v > 0, Ay = Ag). Note
that we use the area term in addition, to force the
initial curve to move only “inside”.

Finally, in Fig. 15, the algorithm detects the con-
tours of a plane from a real noisy image (u > 0,
.)\1 = Ag)

Of course that our model has its limitations. For
instance, it will be interesting to extend the model to
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Fig. 19, Left: detection of an object whith a
very smooth contour using our model without edge-
function. Right: results on the same image using the
geometric model “with gradient” (2). The object is
not detected.

the general case of the Mumford-Shah functional.

On the other side, there are objects which cannot
be detected using the intensity average only. For in-
stance, we show in Fig. 16 (top and middle), two such
examples, together with the averages inside and out-
side the supposed objects, which are practically the
same.

One way to overcome this difficulty, would be to use
other informations from the initial image ug, like the
curvature (see Fig. 17 left), or the orientation of level
sets (see Fig. 17 right). In this framework, we refer
the reader to [15].

In the next results, we replaced in our model ug by
curv(ug) (Fig. 18) and by orientation(ug) (Fig. 19,
where we considered the angle of the normal to the
level curves). Other discriminants may be considered.

Fig. 12. Real image: a galaxie with smooth boundaries.
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Fig. 15. Detection of the contours of a plane from a noisy .

image.

Ingggtoyo Average Intensity  Average
aTeTeTaTeTeTals T
el ?\%V/;,

18) 5 /%/»\iﬁ/

Fig. 16. Examples of images for which the averages “in-
side” and “outside” the objects are the same.

- Curvature  Angle orientation

Fig. 17. Left: image curvature of Fig; 16 left. Right:
image angle of the orientation of level sets, from Fig.
16 right.

Fig. 14. Detection of a tumor in a MRI image.
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Fig. 18. Detection of an object without gradient, formed
by grouping based on shape identity. In our model,
we replaced uo from Fig. 16 left, by curv(ug) (Fig. 17
left).

: AN N
/ 'f \-' :ﬁf\
/ /Ja’f’,«w . ; \3 7

Fig. 19. Similar example, with object without gradient
(here the grouping is based on orientation identity).
In our model, we replaced ug from Fig. 16 right, by
the “image angle” (Fig. 17 right) of the normal of
level curves of ug.

) V. CONCLUDING REMARKS AND DISCUSSIONS

In this paper we proposed an active contour model
based on Mumford-Shah segmentation techniques and
level set methods. Our model is not based on an
edge-function to stop the evolving curve on the de-
sired boundary. Also, we do not need to smooth the
initial image, even if it is very noisy and in this way,
the locations of boundaries are very well detected and
preserved. By our model, we can detect objects whose
boundaries are not necessarily defined by gradient or
with very smooth boundaries, for which the classi-
cal active contour models are not aplicable. Finally,
we can automatically detect interior contours start-
ing with only one initial curve. The position of the
initial curve can be anywhere in the image, and not
necessarily arround the objects to be detected. We
validated our model by various numerical results.
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