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ABSTRACT OF THE DISSERTATION

Multilevel Methods on Unstructured Grids

by

Susie Go
Doctor of Philosophy in Mathematics

University of California, Los Angeles, 1999

Professor Tony F. Chan, Chair

The construction and performance of multilevel methods, including multigrid and
domain decomposition methods, applied to elliptic problems on general unstruc-
tured grids will be studied. The difficulty in using unstructured grids with multi-
level methods stems from the need to find a hierarchy of grids, which is not readily
available for unstructured grids.

The problemms of non-nested spaces and non-matching domain boundaries which
arise in the coarsening of unstructured grids for multilevel methods will be dis-
cussed, and some analysis and computational approaches will be provided for the
construction of unstructured methods which can achieve multigrid convergence

rates. In particular, several different interpolants used in the coarse-to-fine transfer
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of information between levels are constructed and shown to satisfy the approxi-
mation and stability properties which are essential for optimal convergence rates.
Numerical results for model elliptic problems are presented and demonstrate that
these methods retain optimal convergence rates.

Using the same tools and analysis, applications beyond that of the model ellip-
tic problem are studied. An unstructured multigrid algorithm for solving elliptic
eigenvalue problems will be developed by adapting an existing structured multigrid
algorithm for the computation of several eigenvectors and eigenvalues.

This unstructured multigrid eigenvalue solver will be used to solve the practical
and relevant problem of finding a partition of a graph using a spectral bisection
algorithm. When the graph is a finite element mesh, an equivalence between
the discrete and continuous Laplacian operator will be shown and used to adapt
recently developed multilevel elliptic algorithms for unstructured grids to solving

the graph partitioning problem with a true multigrid convergence rate.
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CHAPTER 1

Introduction

The development of efficient numerical algorithms specifically designed for par-
allel computers has emerged as an important area of research as computational
resources today continue to improve. Multilevel methods such as domain decom-
position and multigrid are particularly well suited for use in a parallel setting .
and are powerful tools because they are optimal methods in the sense that their
convergence speed can often be proven to be independent of the problem size.

Another rapidly-developing tool is the use of unstructured grids for solving
large-scale problems on complicated geometries. The primary motivating reasons
for using structured grids over unstructured grids are becoming less obvious as
computers become faster and have more memory. Cartesian or mapped Cartesian
grids are very popular because they are directional, so efficient methods can be
used, such as the alternating direction implicit methods (ADI) and fast Fourier
transforms (FFT). This was a very compelling reason to use such grids when
computer resources were more limited. This structure, however, imposes severe
limitations on the types of domains which can be considered. In addition, adaptive

refinement cannot be easily done without affecting large portions of the grid, so the



ability to adapt the grids for resolving steep gradients in the solution is a source
of difficulty.

Unstructured grids are becoming an increasingly popular alternative because
they can provide the flexibility needed to adapt to rapidly changing or dynamic
solutions as well as to more realistic and complex geometries [9, 23, 43]. These grids
have irregular connectivity and so do not have to adhere to the strict structure of

Cartesian-based grids, see Figure 1.1 making adaptation a local problem.
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Figure 1.1: A structured grid (left) and unstructured grid (right).

These two powerful tools, multilevel methods and unstructured grids, however,
do not lend themselves naturally for use with each other. Multilevel methods
require a hierarchical grid structure. For structured grids, the hierarchy can be
naturally recovered from the fine grid. Unstructured grids usually do not arise from
some general refinement process so no natural coarse grids exist in unstructured
meshes. The use of unstructured grids for multilevel methods will usually lead to

a hierarchy of non-nested spaces since the coarse elements are not typically unions



of fine elements, so difficulties exist in identifying how to comstruct coarse grid
problems/ épaces /boundary conditions. The traditional solvers must to be modified
so that their efficiency will not be adversely affected by this lack of structure. They
must be redesigned to handle these issues without sacrificing too much in terms of
complexity and performance.

The focus of this research is in the construction and analysis of multilevel
methods, including multigrid and domain decomposition methods, on unstructured
grids which are as efficient as their structured counterparts.

Many different approaches have been developed recently (see for instance [28,
38, 42, 45]). One technique generates a coarse grid hierarchy by using independent
grids created by some grid generator (for example, the one which produced the
original grid). Another approach uses agglomeration techniques to create a coarse
space hierarchy. Still another method uses a graph approach by forming maxi-
mal independent sets (MIS) of the boundaries and interiors of the mesh and then
retriangulating the resulting vertex set. The advantage of using a maximal inde-
pendent set approach is that the grids are node-nested and thus efficient methods
can be used to create the interpolation and restriction operators needed to transfer
information from one level to the other. A disadvantage however, is that for com-
plicated geometries, particularly in three dimensions, special care must be taken
to ensure that the coarse grids which are produced are valid and preserve the

important geometric features of the fine domain.



In Chapter 2, the model elliptic problem and the standard multigrid (MG) and
domain decomposition (DD) algorithms will be introduced. A brief discussion of
the necessary properties for optimal convergence rates will be given in this chapter
as well. For more details, see [11, 12].

Chapter 3 defines interpolants which can be used to solve second order elliptic
problems on unstructured meshes and which are shown to satisfy the stability and
accuracy properties needed for optimal convergence. Numerical results on general
elliptic problems are given to show that the unstructured methods are as efficient
as their structured counterparts.

In the remaining chapters, demonstrations of the general use of the unstruc-
tured techniques beyond the model elliptic problem are shown by applying them to
different types of problems. In Chapter 4, a well-known structured multigrid eigen-
solver is adapted for solving eigenvalue problems in the unstructured case by using
the interpolants defined in 3 to construct an unstructured multigrid eigensolver.

An application of solving eigenvalue problems arises in one approach to solving
the N P-complete graph partitioning problem, which is an important component
of parallel computing, particularly in domain decomposition. In Chapter 5, it is
shown that when the graph is a standard finite element mesh, the graph Laplacian
is spectrally equivalent (up to a diagonal scaling) to the mesh Laplacian. This
equivalence can be exploited to adapt recently developed multilevel elliptic algo-

rithms for unstructured grids to solving the graph partitioning problem with a true



multigrid convergence rate and some numerical results using the unstructured el-
liptic eigenvalue algorithm of the previous chapter will be provided to demonstrate
this.

Finally, the software environment which was used for the algorithm design of

all the methods will be briefly presented in the appendix.



CHAPTIER 2

Preliminaries

2.1 Model elliptic problem

Elliptic problems are one of the most extensively investigated problems in ap-
plied mathematics. Their relation to many physical models is well known and the
theoretical and numerical results obtained in this area are very useful in practice.
As a first approximation to more complicated physical and mathematical models
(such as those in computational fluid dynamics), elliptic problems are sometimes
the only ones for which rigorous theoretical results are known. The design of nu-
merical methods for such model problems can often be adapted and applied to
more complicated situations. Elliptic problems are also important in their own
right, for example in computational fluid dynamics in the solution of the pressure
equation, implicit time integration schemes, etc.

In this section, we will state the model problems we consider. Our goal is to
design effective solvers for the resulting systems of linear equations after discretiza-

tion. Detailed discussions of the finite element element discretizations that we use



can be found in [49, 20, 6, 32].
Let 2 ¢ Re be a polygonal (d = 2) or polyhedral (d = 3) domain. We will

consider the following self-adjoint elliptic boundary value problem:

~ i 3@ mam ) tbu=f in &,
u=0 on [Ip, (2.1)
zd it uax Sur =0 on Iy,
where (a;;(z)) is symmetric, uniformly positive definite, and bz) > 0in 2. T'p
and Ty are such that ', UTy = 0. v = (1, 7,) is the unit outward normal to
a0,
The variational {or Galerkin) formulation of this elliptic problem is: Find v €

H(Q;T'p) such that

a{u,v) = f(v) for all v € H}(;Tp), (2.2)
where ,
du v
af (> aym—7—+ b{z)uv)ds
fu1 "0x; Ox; (2.3)

floy = Jo flz)vde.

Here H1(Q;Tp) denotes the Sobolev space which contains functions which van-
ish on I'jy with square integrable first derivatives.

We will use the simplest finite element discretization of the elliptic problem
(2.2). Cover Q with simplicial finite elements (triangles in R? and tetrahedra in

R3), Th. Then the discrete problem can be formulated as follows:



Find wuy € V}, such that:

aluy,vy) = f(vg) for all v, € V,, (2.4)

where V; is the finite dimensional subspace of H}(;I'p) consisting of continuous
functions linear on each of the simplexes forming the partition.
The values of the discrete solution on the grid nodes are then determined by

solving the resulting system of linear equations:

Au=f, (2.5)

where A is a symmetric and positive definite matrix, f is the right hand side and
the nodal values of the discrete solution u; will be obtained in u after solving
the system (2.5). To obtain an accurate enough approximate solution of (2.2),
one often has to solve huge discrete problems which are badly conditioned, with

condition number growing like O(h~2), where h is the characteristic mesh size.

2.2 Tterative methods

Linear iterative methods are methods which solve a linear system of equations
Au = f by taking an approximate solution, u#~1, and improving it by adding a

correction term to obtain a better approximation, u®:

wF = uFl 4 ekt (2.6)



where the correction term, eF-1, is defined as the solution to the following error

equation
Aek-1 = [ — Auk-1, (2.7

If equation (2.7) were solved exactly, the iterate, u*, would be the exact solution
to 2.5 and the iteration would stop. Typically, the error equation is only solved

approximately, so that

ekh—1 — M—l(f _ Auk”l)

where M1 is an approximate inverse of A. Then the linear iterative method is

written as
ub = uF1 o MY - AuRl), k=10,1,2,... (2.8)
M~1 is called the iterator. Note that
ub —u= (I — M~ A (u —uP).

Thus as k& — 0o, the iterative method converges to the solution for any initial

guess, u®, if and only if
p(I—M—A) < 1. (2.9)

where p(I — M—1A) denotes the spectral radius of (/ — M~1A). In developing
preconditioners, the approximate inverse M1, should be to easy to apply and be

such that M—*A is small.



Splitting A in the standard way: A = D — L —U, where D is the diagonal of 4,
and —L and —U are the strictly lower and upper triangular parts of A, respectively,

an approximate inverse for A given by

M =w

yields Richardson’s method, while the choice

M-1 = D1

yields the Jacobi method, and

M- = (D - L)

gives the Gauss-Seidel method.

The rate of convergence for these simple relaxation schemes depends on the
condition number of A. For finite element and f{inite difference equations such as
(2.5), the asymptotic convergence rate for Gauss-Seidel method is of order 1 —
O(h?), which makes the method impractical for small mesh sizes A.

These basic methods can be accelerated by Krylov subspace methods, e.g. the
preconditioned conjugate gradient (PCG) when A is SPD and the preconditioned
GMRES (PGMRES) for general non-symmetric A. The convergence of the PCG
method depends on the condition number of the matrix M~—1A, as seen in the

following well-known theorem:

10



Theorem 2.2.1 Let A and M be SPD matrices and ||v||4 = (Av,v). Let u be the
solution of the system (2.5). Then for the k-th iterate u* the following inequality

holds

[l — u¥[la

<2 (V WM A) - 1) i — | . (2.10)

— WM A +1

Our particular interest will be focused on multilevel methods (such as domain
decomposition methods and multigrid methods) used as preconditioners in PCG.
The popularity of these methods as preconditioners is based on the fact that they
exactly fit in the applications where finite element or finite difference method is
used. In other words, the design of such preconditioners uses the properties of
finite element spaces which allows precise optimal constructions and theoretical

analysis to be done.

2.3 Multilevel methods

For many practical problems, the system of linear equations which arises from
finite element or finite difference discretizations becomes very large. A challenge is
how to effectively solve such large systems of linear equations, since direct meth-
ods face the problem of excessive memory requirements and number of the floating
point operations needed. Because of this, many researchers have turned to iter-
ative methods. As parallel computers become more dominant, more attention is

being focused on multilevel methods such as multigrid and domain decomposition

11



methods. These methods are popular because the amount of work required to
solve a problem is on the order of the number of unknowns, while the convergence

rates are independent of the problem size.

2.3.1 Multigrid methods

In this section, we briefly describe the multigrid methods for solving linear
systems of discrete equations. We will consider the case where these systems are
obtained via finite element discretization of an elliptic partial differential equation.
Detailed discussion on multigrid methods can be found in standard references, e.g.
Briggs [7], Bramble [2], Hackbusch [29], and Xu {52, 53].

The idea behind multigrid methods is based on the fact that simple relaxation
schemes such as Gauﬁ—SeideI, Jacobi and Richardson possess a good smoothing
property; that is, they reduce the highly oscillatory part of the error very well in
just a few inexpensive iterations. This part of the error lies in the subspace spanned
by the eigenvectors corresponding to large eigenvalues, i.e. the high frequencies.
The global error, or the low frequencies unfortunately cannot be corrected well by
such iterative schemes and this is where multigrid helps. The low frequencies from
fine grid (say original one) are transfered to the coarse grid, where they behave
like high frequencies, and are smoothed quickly by a simple relaxation scheme.

Recursive application of this idea leads to the multigrid method.

12



Denote the space which contains the solution u by V; and assume that the
coarse grids are given and with each grid associate a finite dimensional space
(like V; for the fine grid). We denote these spaces by Vp,...,V_;. To unify the
notation in this section we define A, :== A. We assume that the operators Ay, k =
0,...J — 1, are given (these operators correspond to different approximations of
A on the coarse grids). We also assume that the prolongation operator R and
the smoothing operators S, are also given. One can consider the action of the
smoother on g € V} as a fixed number of GauB-Seidel or Jacobi iterations with
right-hand side g and zero initial guess.

The multigrid method can be viewed as a way of defining a preconditioner, M,
and can be described in matrix notation by the action of M;'g. In the simplest
case when one pre- and post-smoothing steps are applied, the action of M} s

then obtained through the following steps:

Algorithm 2.3.1 (V-cyele correction scheme multz’g'ritg)

13



0. If k=0, then z, = Ay fo-
1. Presmoothing: Apply one transposed smoothing ileration with initial guess, z} = 0.
& =20 + SF(fp — Ay2d) = St T,
2. Descend to coarse level:
a. Restrict the residual, fF1
foor = B (fi — Aey)
b. “Solve” Ap_itry = fo_q (recursive call to V-cycle MG
¢. Interpolate back and correct:
Gy = &)+ Rlzp_y
2. Postsmoothing: Apply one smoothing iteration with initial guess 2.

ap = & + Sp(fo — AxZrta)

Note that the above definition is recursive. For some general right-hand side, g,
the action of M 'g is defined in terms of M;;g. Consider now the simplest case:
a two-level method (when J = 1). Then the correction scheme multigrid method

can be written compactly (omitting the index 1) as

M-1g = [S+ 57~ SAST

(I — SA)RT AT R(I — AST)| g.

14



2.3.2 Domain decomposition methods

Domain decomposition (DD) methods are divide-and-conquer methods which
take a large problem defined on a physical domain, and appropriately decompose
it into many smaller problems defined on subdomains. These smaller subdomain
problems can then be solved quickly and independently of each other and their solu-
tion suitably combined, usually via an iterative process to obtain the solution to the
original problem. Domain decomposition methods fall into two broad categories:
overlapping DD (Schwarz methods) and nonoverlapping DD (substructuring or
Schur complement methods). Qur description here follows that in Chan-Mathew
[15]; see also the recently published book by Smith, Bjgrstad and Gropp [48]. We
will not discuss the nonoverlapping domain decomposition methods here. For a

detailed description and investigation of these methods we refer to [15, 48].

2.3.2.1 Overlapping DD

In overlapping DD methods, a set of p overlapping subdomains are formed by
taking a set of nonoverlapping subdomains {{¥/}i_,, and extending them to larger
subdomains, {;}’_; by some small distance, § > 0 (see Fig. 2.1). We will assume
that 89, does not cut through any element. Corresponding to each subdomain (2;,

we define a subspace V' of V* by

Vi={veV* v=0 on Q\}.

15



The partitioning induced by such a decomposition amounts to an overlapping
block decomposition of the system (2.5). Thus, the overlapping DD methods can
be thought of as block iterative solvers, either overlapping block Jacobi or block

Gauf-Seidel, depending on whether or not the the most updated iterates are used.

Q

Figure 2.1: Generating a set of overlapping subdomains.

The main ingredients required in all DD methods are:

e Restriction operators: Let R; be the n; X n restriction matrix of 1’s and 0’s
which takes a full-length vector in R and maps it to a restricted vector in
Rri where n; denotes the number of unknowns in subdomain {2;. The effect

on an n-vector is injection onto the subdomain, §2;.

o FEutension operators: Let RT be the n X n; extension matrix, which is defined
as the transpose of the restriction matrix, R;. The effect on an n;-vector is
identity on the subdomain, {;, and zero extension outside the subdomain,

ie on 1\ Q.

o Subdomain operators: Define the local stiffness matrix on ; to be A; =
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R;ART, where A; € Rrixn. Because the restriction and interpolation matri-
ces consist only of 0’s and 17, the local stiffness matrices are simply principal

submatrices of A.

e Subdomain solvers: Let A7 symbolically denote the solver for the restricted

operator. These can be either exact or inexact solvers.

The additive Schwarz (block Jacobi) method on p subdomains is given by:
whti/p = yb+(i-0/p + RTAZIR(f — Auf), i=1,..,p

In this form, it is seen that corrections are done simultaneously on p subdornains.

Rewriting this as one equation reveals the preconditioned iterative method:
ubtt = uk 4 MY f — Auf)

where the preconditioner M,, is given by:

Additive Schwarz preconditioner.

(block Jacobi on A)

P
M1 =" RTAZ'R,. (2.11)

=1

Instead of simultaneous corrections, the corrections can also be done suc-

cessively, to yield the multiplicative Schwarz (block GauB-Seidel) method, for
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uktifp — k+E-1)/p | R?A,‘-_IRi(f — Auk+(i—1)/P).

Because the most currently updated information is used, this method will gen-
erally converge faster than additive Schwarz. The drawback is that it is less parallel

(but this can be remedied by appropriate coloring of the subdomains).

2.3.2.2 Coarse grid

The domain of dependence for elliptic problems is the entire domain, but be-
cause Schwarz methods decompose the problem into smaller, independent prob-
lems, information from one subdomain must travel large distances to reach another
subdomain. To avoid deterioration of the convergence rates of these methods, some
sort of mechanism for the global transfer of data is needed. This is achieved, to
some degree, by the overlapping of subdomains in the Schwarz methods. More
overlap leads to more coupling between subdomains.

However, this adds redundant work and communications overhead if too much
overlap is introduced. Dryja and Widlund (25, 26] showed that the condition

number for additive Schwarz (2.11) is given by:

zn=o(ws+ (%))

The condition number is independent of A. For sufficient amount of overlap (choos-

ing 6 = O(H)), the condition number is O(H~2) and so will increase as H tends
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to zero. This means that the method will not be scalable to a large number of
Processors.

This deterioration can be remedied by introducing a coarse grid to achieve ad-
ditional global coupling. In addition to the subdomain restriction, interpolation
and stiffness matrices used in the one-level Schwarz methods, we need coarse ver-
sions of them: Ry, RL, Ay = Ry ARL, and AF'. Here, Ry and R will instead
be the full weighting restriction and linear interpolation matrices, respectively,
which are commonly used in multigrid methods. The two-level additive Schwarz

preconditioner can then be written as:

Additive Schwarz preconditioner with coarse grid.

[
M1 = RLAG Ry + Y RTAT'R,.

i=1

It can be shown that the condition number for this two-level method is

(M LA) = O(1 + (H/8)?),

asc

and the method can be made independent of H, k with sufficient overlap by choos-

ing § = O(H). R
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2.3.2.3 Multilevel Schwarz

Maultilevel Schwarz is an extension of two-level Schwarz with L different coarse
levels, each level being decomposed into p; subdomains as previously described. We
will denote the i subdomain on the [th level as: Q. Several different variants of
multilevel Schwarz can be created, depending on when the most currently updated

information is used:

¢ Fully additive multilevel methods would be additive among subdomains on

the same level as well as additive between levels.

o Multilevel methods which are multiplicative among subdomains on the same

level, but additive between levels can be viewed as “additive MG”.

o Classical V-cycle MG can be viewed as a multilevel Schwarz method which is
multiplicative both among subdomains on the same level as well as between

levels.

The fully additive multilevel Schwarz preconditioner can be written as:

Fully additive multilevel Schwarz preconditioner.

L m

Moty = 22 2 (BT (A)THRY.

j=1 =1
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2.4 Introduction to convergence theory

As mentioned in Section 2.2, the estimate of the convergence rate of the PCG
requires an estimate of the upper bound of xK(M~1A). In particular, estimates on
the extreme eigenvalues of M~1A must be obtained. In this section, we first give a
general framework for bounding «{M~1A) and then we show how such an analysis
can be carried out for the overlapping domain decomposition method. Such an
analysis can show (or predict) the convergence rate and in most cases gives a good
guess as to how the parameters and approximate operators should be chosen in
order to get an optimal iterative method. For a similar approach in analyzing the
convergence properties of iterative methods using general subspace splittings for
structured meshes, we refer to [52].

We shall adopt a matrix approach for analyzing the domain decomposition
methods, in the hope that it is more intuitive and easier to understand. Such a
presentation of the analysis can also be found in (see e.g. i48]). More references
concerning the theoretical analysis of the domain decomposition methods also can
be found there.

Let {) be a fixed domain in R4, The norm in Sobolev space H*({) is defined

to be:

B

llully = (HZ /Q[Do’u(w)]zdm) ,
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and the seminorm in H*(?) is defined by:

EX
2

= ( ) J/ [D‘*u(w}]zdm\
Nt /9 /

e
where « = (ay, . . ., &) is a multi-index, D* = — o and o = ag+. . oy
dzt ...y
When the domain (e.g. ) needs to be emphasized or clarified, the notation for

the seminorm and norm will be |ul, o and |lul; o, respectively.

2.4.1 Subspace correction framework: matrix formulation

Onur initial setting in matrix form is as follows: Let 2 be covered by p overlap-
ping subdomains Q;,7 =0, 1,..., p. Each subdomain ©; corresponds to a subspace
V; C Rn. The subspaces are defined through the restriction operators E; € R™*",
i =0,1,...,p, and we set V; = Range(R;)

REMARK. Note here that we will interchangeably use the notation for the
coarse grid versions denoted with subscript H in the previous section, with the
subscript 0, when convenient. Here, V;, denotes the coarse space.

We wish to construct a preconditioner for solving the following linear algebra
problem

Au=f, A€ R™ isSPD. (2.12)

Let us first explain the intuition behind the construction of a preconditioner

based on this splitting of R*, It is natural to take the best approximation to the
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solution from each subspace, and then to extend these different approximations
to the whole R somehow in order to get a global solution. Thus the question is:
What is the best correction to the k-th iterate u* from V;7

If we measured the error in the A-norm, || - ||4, then this question can be

reformulated as the following minimization problem:
min {|(u* + £y;) — A7 flla- (2.13)

The solution is given by:

y; = (RART)IR(f — Au?) = AP Ry(f — Aut). (2.14)

The next iterate is then obtained via the equation (note that we correct here

only in one subspace V)
uktl = b + RTAZIR,(f — Aub) (2.15)

Example. The Jacobi iteration (see Section 2.2) corresponds to the splitting
V, = span{e;} where ¢; is the i-th unit coordinate vector. The restrictions, I, in
this case are defined as R;v = (v, ¢;)e;.

Performing these subspace corrections simultaneously gives the additive sub-
space correction preconditioner:

P
M7= RTA'R;.

asc
=0
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Defining now the projections F; = RgA;lRiA, forz=0,...p, we get

r
MoiA =3 P

i=0

As we pointed out earlier, the convergence of the PCG method depends on the
condition number of M-1A. Thus our goal is to find an upper bound for £(M-1A)
which amounts to finding an upper bound for Ay, (M- 1A) and a lower bound for

Apain( M=LA).

min( ase

The estimate on the upper bound for A, (M 1A4) is easier and it follows

directly from the following simple lemmas.

Lemma 2.4.1 P, is a projection in (-,+)a, t.€.
AP@ = J-plTAs P.iz = F; HPzHA <L

Proof. This follows by direct verification. [

Lemma 2.4.2 The mazimal eigenvalue of the preconditioned matriz salisfies the

following inequality:

Amax(MZLA) < p+ 1.

Proof. This follows from the simple fact that

P
2B

1=0

P
< NPla=p+1
(=0

A =

r(3r) <
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REMARK. The bound given in the previous lemma can be easily improved to:

/\max(M_lA) -<- ne + 1= C1y

asc

where n, is the number of colors to color (), ’s in such a way that no two neighboring
subdomains are colored the same color.

We next give an estimate on the lower bound for Amin(M7L1A). This estimate
is based on the following Partition Lemma which plays a crucial role in the con-

vergence analysis of the domain decomposition methods.

Lemma 2.4.3 (Partition Lemma). (Matsokin-Nepomnyaschikh [{1], Lions [40],

and Dryja-Widlund [24, 25]). Assume that there ezists a constant ¢, such that

14
Cmin Yl < calully (2.16)
- Vi! =0
then
1
Amin(Mg;-iA) 2

€2
The assumption we have made in the partition lemma (equation (2.16)) means
that for any given u, a stable decomposition must exist in the sense that the sum

of the “energy” of all the pieces u; lying in V] is bounded by the global energy norm
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of the decomposed vector. This assumption can be viewed as a condition on the
Vi’s, i.e. the subspaces must not introduce oscillations (high energy components)
in ;.

Combining lemmas 2.4.1- 2.4.3, we get our main theorem:

Theorem 2.4.1 If assumption (2.16) holds, then for the condition number k(M-1A),

asc

can be bounded by:

(MZ1A) < ey (2.17)

This result suggests how to construct the decompositions in order to obtain
optimal preconditioners. It is immediately seen that we want the constants ¢;, ¢,
to be independent of the problem parameters such as the number of subdomains,
the characteristic mesh sizes h and H, jumps in the coefficients of the underlying
PDE, etc. It is also desirable to make ¢; and ¢, as small as possible in order to
get a condition number close to 1. But ¢; and ¢, depend on the size of overlaps
in the subspaces V.. More overlap will decrease ¢,, but the number of colors ¢
will increase. On the other hand, small overlap will lead to large ¢, and small ;.
Thus the space decompositions have to be made in such a way to ensure that the

product ¢, ¢, is as small as possible.
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2.4.2 Application to two-level overlapping domain decomposition meth-

ods

As an example of the application of the above theory, we will present a detailed

estimate for the condition number of the two-level Schwarz method.

2.4.2.1 The intuitive idea

As in the previous section, we first present the basic intuitive idea using a
simple 1D version of (2.1).

We want a splitting which satisfies the partition assumption (2.16). Take £ to
be a fixed open interval on the real line and cover { with p overlapping subdomains
Q,i=1,...,p (see fig 2.2). Consider the partition of unity 0; corresponding to
this covering. By construction the functions f; satisfy

r

S8 =1, 0<8, <1, 10,100 S 678, (2.18)

k3 g

i=1

where § is the size of the overlap and |6}, ., denotes the maximum, norm, i.e. the

maximum of the s-th derivative of §;. We define u; = f;u, so we have u = LZ_qu;.
Since A corresponds to a discretization of the second order elliptic operator,

4o(z)L, it is easy to see that the A-norm and the H'-seminorm are equivalent

in this case: |jull4 ~ ||du/dz||,. Our goal is to bound ju;f|4 by ||ull4. Locking at

Fig. 2.2, we see that the function u; changes from |fullo to 0 over a distance § and
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Figure 2.2: No coarse grid.

wir=|(@)] =< ()

We still need to bound {|ullg by ||ull4. But the function, u, satisfying homoge-

we get:

neous Dirichlet boundary conditions, cannot change rapidly over the interval Q if
there is no significant change in the derivative. The well-known Poincaré inequality

estimates the norm of the function with the norm of derivatives and its application

(2 (2

After summing over all subdomains, we get:

leads to the following:

Sl < 0 () I

Therefore,
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From these inequalities one may conclude that if the overlap is of size O(H),
then x(M-1A) = O(H-?), which is an improvement over O(h~2), but is still
unsatisfactory. We can see that the overlapping subdomains alone cannot provide
a stable partition of u.

Tt turns out that this dependence on H can be climinated by using a global
coarse space, Vi, which couples all the subdomains. The idea is to construct a
coarse grid approximation uy to u satisfying the following two important proper-

ties:

lumlla < ellulla (2.19)

lu —uglle < cHlulla (2.20)

Define w = u — uy and the following partition of w:

P
u; = 0,(u—ug), w=ug+ u. (2.21)

=1
Proceeding as before and taking into account that now the pieces u; change

from 0 to O(H) (not to 1 because of the approximation property (2.23)), we have

pul <o (e < o (%) ot

If we make the natural assumption that § = O(H), the bound for ¢, now reads
HY\?
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Figure 2.3: With coarse grid.

This estimate shows how the condition number can be improved and actually such
a choice of M~1 gives a good preconditioner. Thus, we can see that the role of
the coarse grid Vi is to make [ju — ug|| small enough (O(H)), so that it can be
partitioned in a stable manner.

We would like to comment on the choice of uy. As it can be seen (compare to
section 2.3.2), uy is a purely theoretical construction and there is no need of its
use in the algorithm. One possible choice is uy = Ryu, where Ry is a kind of
interpolation or projection operator. Of course, Ry must satisfy properties similar

to (2.19) and (2.20) namely

|Rpuly < cluly (stability) (2.22)

|JRgu —ully < cHluly. (approximation) (2.23)

A natural candidate for such an operator is the nodal value interpolant on the

coarse grid, uy = Iyu. A drawback of such a choice is that in 3.D this interpola-
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tion does not satisty the stability property (2.22). To see this, we take w to be the

basis function ¢ associated with the grid node @;. Then we have

2

ol = [y, (1) =0(h)

g2 = f, (&) = 0(H).

The last estimate shows that the stability requirement is violated.

If the grid is structured then a good and stable coarse grid approximation to the
elements of V}, is the L, -projection @ g from Vj, - Vi and we can define Ry = @y,
i.e. ug = Qpu. It is known that this uy satisfies the stability and approximation

properties (2.22) and (2.23) (see Xu [52] or Dryja and Widlund [24]).

2.4.3 Convergence of multigrid methods

The convergence properties of multigrid methods (see Section 2.3.1) depend on
many parameters. One can vary the number of smoothing steps, the smoothing
operators, the interpolation and restriction operators, coarse grid operators, etc.
There are two main approaches in constructing multigrid preconditioners. One of
them uses nested subspace splittings of V}, and the other one uses non-nested spaces
or specially interpolated bilinear forms (coarse grid matrices). The discussion of
the convergence in both these cases is given in [2, 3, 52, 53]. Here we give the

simplest convergence result in the case of nested spaces and the so-called full elliptic
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regularity assumption:

lelle < i ljo-

where u is the solution, I is the right hand side of (2.1).

First, consider the case when the spaces V5, ..., V] are nested, ie. ¥ C V; C
...Vs_4 C V; = V,. Again, the stability and approximation properties (2.22)
and (2.23) are crucial in the convergence theory. The stability property (2.22) is
automatically satisfied when the spaces are nested. From the regularity assump-
tion, the following approximation property follows (see Xu [52, 53]):

There exists a constant, ¢;, independent of the mesh parameters (i.e. of the
mesh size h) such that

1

I— P o|2 <ei——N A2 Yo eV, 2.24
| k—lUHAmclp(Ak)H Wl eV (2.24)

where P, denotes the elliptic projection defined by (APyu,v) = (Au,v) Vv € V.
The other operator involved in the definition of M7 is the smoother and we

make the following assumption on it

P(Ak) (’U,’U) < (Ssymm,kvav) < (AEIU, U)- (225)

The smoother Sy, 1 is the symmetric version of 5y and is defined as: Syymm ik =

ST . § — STAS. Inequalities of the type (2.25) are satisfied by the GauB-Seidel
method.

An important thing to mention for the choice of the smoother is that we are
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trying to choose smoother which will quickly capture the high frequency compo-
nents of the error, and we are not going to use it as a solver. For example if the
matrix A corresponds to the five point finite difference stencil, it can be seen that
the Jacobi method (with w = 1) is not good for a smoother. One must use the
damped Jacobi method with w < 1.

The subspace correction framework presented in the previous section applies to
multigrid methods as well. As long as the stability and approximation properties

are verified, the following convergence result holds:

Theorem 2.4.2 Under the assumptions (2.24) and (2.25), the following estimate
s true:

I~ M7 Al <1~ =2 (2.26)

!
A convergence result similar to Theorem 2.4.2 is also true in the non-nested case
(see Bramble et.al. [3] or Chan-Zou [18, 19] for unstructured grids).
The construction of interpolation operators for unstructured grids which satis-
fies the stability property may be an issue and in the next chapter, some possible
stable definitions will be discussed. Additional details can also be found in [18]

and [19].
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CHAPTER 3

Boundary Considerations

Unstructured multilevel methods for solving linear systems like (2.5) require a
hierarchy of coarse grids. Grids which are node-nested have the advantage that
they can be automatically generated and that efficient methods can be used to
create the interpolation and restriction operators needed to transfer information
from one level to the other. Disadvantages are that for complicated geometries,
particularly in three dimensions, special care must be taken to ensure that the
coarse grids which are produced are valid and preserve the important geometric
features of the fine domain.

When applying multilevel iterative methods on unstructured meshes, the grid
hierarchy can allow general coarse grids which are non-quasiuniform and whose
boundaries may be non-matching to the boundary of the fine grid. Care must be
applied when constructing intergrid transfer operators for various types of bound-

ary conditions. In this section, we will discuss some possibilities.
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3.1 Maximal independent set (MIS) coarsening

A maximal independent set of vertices in a graph is a subset of vertices which
is independent in the sense that no two vertices in the subset are connected by an
edge, and mazimal if the addition of a vertex results in a dependent subset. An
automatic approach to generating node-nested coarse grids is to take a maximal
independent set (MIS) of the vertices and call this set, the set of coarse grid nodes,
and then retriangulate it [28, 16]. A sequence of coarse grids can thus be created
by repeated application of this technique.

A simple technique for finding a MIS of vertices is to first choose a MIS of
the boundary vertices by choosing every other boundary vertex and eliminating
all its nearest neighbors, and then find a MIS of the interior vertices by selecting
a random interior vertex and eliminating all its nearest neighbors, and repeating
the process until all vertices are either eliminated or selected. The resulting vertex
subset is then retriangulated using for example, the same triangulation routine
which generated the original fine grid.

For our implementation a simple approximation to this set based on greedy
algorithm can be used. TFirst we find a maximal independent set of boundary
points, say ¥ € V. Then the next front (i.e. the next set in which coarse points
will be found) is formed as follows: Let V; = @, then for any point v ¢ V- UV}, if
Adj(v)NVp = B we set V; = V; U {v}. Then the MIS in V; is found and is added

to V. This procedure is repeated until all fine grid nodes are explored.
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There are algorithms which produce better approximation for the N P-complete
problem mentioned above (see Chan and Smith [16], Ciarlet and Lamour 133], [34],
Ciarlet, Lamour and Smith [35}). Any of these algorithms can be applied in our

case.

3.2 Standard nodal value interpolations

In general, the resulting coarse space Vi will not be a subspace of the fine space
V, since the coarse elements are not typically the unions of some fine elements in
unstructured grids. To construct a coarse-to-fine transfer operator, one can use

the standard nodal value interpolant associated with the fine space, Vj.

Algorithm 3.2.1 (Standard nodal value interpolation)

1. For cach fine grid node,

2. Search through all coarse grid elements until one which contains
it 1s found.

3. If the fine grid node is a coarse grid node, then

4. Set the interpolant to be equal to that nodal value,

5. Else

6. Set it to be a linear interpolation of the 3 nodal values mak-

ing up that coarse grid element (see Fig. 8.1).
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Figure 3.1: Barycentric (natural) coordinates: A(z) = Z—Z&%‘%{%, for 1 = 1,2,3,
where T is the simplex with vertices x4, 75, T5-

This naive implementation of this routine requires O(n?) time, but by exploiting
the node-nested property of the grids, one can implement this in O(n) time, since
only nearest coarse grid elements of a fine node need to be searched.

Tt has been shown [17] that multigrid methods using these standard linear
interpolants satisfies the stability and approximation properties needed for optimal
convergence. Thus, the unstructured methods will retain similar convergence rates
to their structured counterparts.

The transpose of the standard nodal interpolant results in a weighted restriction

operator.
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3.3 Interpolations on non-matching boundaries

Neotice, however, that the standard nodal value interpolant is only well defined
for those fine nodes lying within the coarse domain {1, but is undefined for those
fine nodes lying outside {0;;. That is, in Step 2 of the standard nodal value inter-
polation (Algorithm 3.2.1), there is no provision for what to do if all the coarse
grid elements have been searched, and none contains the fine grid node. In this

section, we give two possible procedures for handling this breakdown.

Standard interpolations here

Figure 3.2: Use standard interpolation for fine grid nodes interior to coarse grid.

What about fine grid nodes which are not interior to any coarse grid element?

3.3.1 Zero extension interpolations

A simple and natural way to remove this deficiency is to assign those fine node
values to zero. This zero extension interpolant works well for Dirichlet boundary

conditions [16, 17} but will be neither accurate nor stable for other types of bound-
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ary conditions. We shall denote this interpolant as the coarse-to-fine interpolant,
A

70 Zero extension with unmodified coarse boundaries. Where coarse
grid boundary conditions are of Dirichlet type, the standard nodal value inter-
polants with zero extensions can be accurate enough for interpolating fine grid

values outside the coarse grid domain Q¥ (cf. Fig. 3.5a), we refer to [16, 17] for

the theoretical and numerical justifications of Z?.

vH(zh)  for b € QN OH,
IPoH (9:;‘) = ! !
0 for ah € O\ O,

Although the interpolant I? is appropriate to use at Dirichlet boundaries it
is not accurate enough, or not accurate at all sometimes, to use at Neumann
boundaries, see the numerical results in [17] and Section 3.5.

We provide a simple one-dimensional example to illustrate why better inter-
polants are needed at non-matching boundaries. This example has a Dirichlet
boundary condition at the left boundary point and a homogeneous Neumann
boundary condition at the right boundary point. The fine grid function, v, and
the coarse grid approximation to it, Uy are shown. For Neumann boundary condi-
tions, the elements from Vj, which have to be interpolated are generally not zero at
the Neumann part of the boundary. Recall from Section 2.1 that V}, is a subspace

of H}(Q,T'p), whose elements are restricted to vanish only on Dirichlet boundary.

Using a zero extension correction is the right thing to do at a Dirichlet boundary,
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but using a zero extension interpolant at a Neumann boundary will not be accurate
enough and will not introduce any correction there. Thus, the only mechanism for
removing errors at Neumann boundaries is by the slowly convergent smoother used

at the fine level.

~es—e— coarse grid ——————=

|

Figure 3.3: Non-matching boundaries: Zero extension interpolation with Zp is not

accurate enough.

To achieve better efficiency, we need to modify this intergrid operator to account
for the Neumann condition. One way to achieve this is by extending the coarse
grid domain to cover any fine grid boundaries of Neumann type and used standard
nodal value interpolation. This approach, first proposed and justified in [17], is
motivated by the fact that standard nodal value interpolants will still provide a
mechanism for coarse grid corrections as long as the coarse grid covers the Neumann
boundary part of the fine grid (see Fig. 3.4).

Let us still denote the modified coarse grid domain by Q. Then for all v €
VH | the interpolant I} is defined as:

T): Zero extension with modified coarse boundaries. Modify the orig-
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Figure 3.4: Zero extension can be done as long as the coarse grid covers the fine

grid (Z}) at the Neumann boundary.

inal coarse grid domain QF to make it appropriately larger so that it covers the
Neumann boundary part of the fine grid domain (see Fig. 3.5b). Let us still denote
the modified coarse grid domain by Q. Then for all v € V¥, the interpolant 7}

is defined as

vi(zh) for zk €N QH,

I (zh) =

0 for 2% € Q \ QF.
This is & natural extension of v# by zero outside the Dirichlet boundary part
of the coarse grid domain. Similar zero extensions were used in Kornhuber-
Yserentant [39] to embed an arbitrarily complicated domain into a square or cube
in constructing multilevel methods on nested and quasi-uniform meshes for second

order elliptic problems with purely Dirichlet boundary conditions.
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Figure 3.5: Zero extension interpolants: a) Unmodified coarse boundaries; b)
Coarse boundaries modified to cover the parts where Neumann conditions exist

(dashed lines). Thick lines represent coarse grid boundaries.

3.3.1.1 Generating extended coarse grid domains

A coarse grid hierarchy is created by successive coarsenings of a fine grid using
a maximal independent set approach. This coarsening method has the nice feature
that the coarse grid nodes are a nested subset of the fine grid nodes which can
be exploited to save work, as opposed to a completely independent grid hierarchy.
The method uses adjacency information to first find the maximal independent set
of boundary nodes by eliminating every other boundary node and then find the
maximal independent set of the remaining interior nodes. The resulting vertex set
is retriangulated using any triangulation algorithm. This method for generating
coarse grids often leads to coarse grids whose boundaries do not match those of the
fine grid. As we have seen, this is an undesirable outcome which should be avoided.
In this section we introduce a boundary adjustment algorithm which extends the

boundaries of the resulting coarse grid to ensure that the fine grid domain is always
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covered by that of the coarse grid. Note that this choice will not be unique and
there are many other ways to extend the coarse domain.

I chose to move vertices around instead of retaining extra vertices to avoid
the possibility that the grid might not coarsen much in areas where the domain is
convex and also to try to better preserve the maximal independent set. The tradeolf
is, the coarsest grid may be quite a great deal larger than the fine grid after several
coarsenings. Also, for our purposes, the boundary coarsening algorithm need only
be applied to the edges where a mixed Neumnann boundary condition occurs. For
practical purposes however, we applied the boundary adjustment algorithm to all
edges regardless of the boundary condition. This will allow the grids to be reusable,
in the event that different boundary conditions for other problems are imposed.

The first step in the boundary coarsening algorithm is to eliminate every other
boundary node, keeping track of the eliminated nodes. Next, check to see if an
omitted fine node will be exterior to the new coarsened boundary edge, and if
s0, move a coarse boundary node in such a way that the omitted node will be
contained in the coarse domain, otherwise, do nothing. The procedure for moving

nodes is as follows:

1. For each coarse boundary node not yet dome, label four consecutive fine
boundary nodes in order as L, C, R, and N (see Figure 3.6}, where node
L is a coarse boundary node, node (' is the fine node to be eliminated, and

node R is generally another coarse boundary node.
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2. If node C is interior to the edge LR, then mark node R as done, and repeat

from step (1) with the next coarse node.

3. If node ' is exterior to the edge LR, then either: (a) node R is exterior to

edge CN, ot (b) node R is interior to edge CN.

4. T node R is exterior to edge CN, then move node R to the intersection point

of IC and BN, otherwise move R such that it is now at the point C'.

5. Mark the coarse node R as done and repeat from step (1) with the next

coarse node until all coarse boundary nodes are done.

c) é C L

a)

b) d)

-4
Figure 3.6: Modifying the coarsened the boundaries

We make these choices so that any adjustment of a node will not make things

44



more problematic as we continue along the boundary. If node ' is exterior to edge
LR, then a sufficient condition for it to be contained in the coarse grid domain,
is that it lies somewhere on the coarse boundary edge LR. So it suffices to move
node R such that it is somewhere on the line defined by edge LC. The simplest
choice is to move node R to the point at node C. Before moving node R, however,
we must remember to treat it as an omitted node also, so if R is interior to edge
CN, the above choice is sufficient. If node R is exterior to edge C'N, we should
impose the additional condition that node B be moved such that it also lies on the
line defined by edge EN. The instances where the intersection point of LC and
RN is very far away (for instance, if they are parallel or nearly parallel), or when
two adjacent nodes are being eliminated, can be handled specially.

The usual weighted interpolation and restriction matrices with zero extension
of exterior nodes can be used, since modifying the boundaries in this way ensures
that all fine grid points are interior to the coarse domains and so all fine grid points

will be correctly interpolated.

3.3.2 Modified coarse-to-fine interpolations

Although the coarse-to-fine operator I} works well for mixed boundary con-
ditions and can be used with the standard nodal value interpolants, it requires

making modifications to the original coarse grid generated by the automatic MIS
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approach to ensure that the coarse domain completely covers the Neumann bound-
ary part of the fine domain. This can be difficult to do for very complicated domains
and can often lead to coarse domains which may deviate significantly from the fine
domain, leading to poor approximation.

To avoid modifying the original coarse grid, we now consider standard finite
element interpolants which provide a definition for interpolating the fine Neumann
boundaries which lie exterior to the coarse domain. The idea is as follows: Let us
consider a fine grid point, &, which lies outside the coarse grid domain. Find a
nearby coarse grid triangle to z (say, 7y with vertices 1,2, x3), and extrapolate
u(z) using the values u(z,),u(z;) and u(z,). Note that such an extrapolation

should depend on the type of boundary condition at .

Figure 3.7: More accurate extension with Z2 done at the Neumann boundary.

To do so, we first introduce some notation. Let 77 be any coarse boundary
element in 77 made up of the three vertices z7, ¢,z and which has an edge on

the boundary 90, denoted by zHzH. We use Q(zf!,zH} to denote the union of

all fine elements, if any, which has a non-empty intersection with the unbounded
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domain formed by the edge z#zH and two outward normal lines to rHzH at two
vertices zff, zH (cf. Fig. 3.8). By including a few more fine elements in some

Q(zH, H), if necessary, we may assume that the fine grid part (£2\ Q) is included

in the union of all Q(x#,zH). Moreover, we assume

(H1) diam Qi zH) < po diam 77,

which implies the measure of Q(zff, ¥ } is bounded by the measure of 7H:
Q(zE, 2] < elrfll,

where g and p are two positive constants independent of A and h. Without
any difficulty, the constant po, and so g, can be allowed in our subsequent
results to depend on the two nodes x#,zH. In this case, piy and p will enter

all the related bounds naturally.

We remark that (H1) restricts the size of the fine grid part near the edge
aHzH but outside the coarse grid domain Q| that is, each local fine grid

part Q(zF, 2f) is not allowed to be too large compared to its nearest coarse

element 7. This is a reasonable requirement in applications.

Then the standard nodal value interpolant associated with the fine space V*
can be generalized outward to each local fine grid part Q(zff, 27) using three
given linear functions #;, #, and #3 which are defined in QUNH but bounded

in Qef, ey UrH and satisfy

0,(z) + 05(2) + O3(z) =1, VYVaeQU 0. (3.1)
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Figure 3.8: Shaded region, ((zff, z#), shows the fine grid part which is not com-
pletely covered by the coarse grid domain.
Note that the functions 0;, 8, and #, above are not necessarily non-negative,
and though they are element 7/7-related, we will not use any index to specify
this relation in order to simplify the notation. Then for any coarse function

vH € VH we define an operator ©; by
0,08 () = 6, (2)0H (a8 )+0,(x)v (2 )+03(2)v ™ (), Va € Qzf, afY)urH,
and assume that

H2) ©,v# =vH on the edge z7zH
h [ %y 2
which means ©,v¥ is indeed an extension of v¥. For convenience, later on

we will always regard ©,v¥ as a function defined also outside Q{zf, zH)UrH

by extending it naturally.

With the above notation, we can introduce the general coarse-to-fine interpolant

Ih:
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Definition 3.3.1 For any coarse function v in VH, its image under the coarse-
to-fine interpolant I, is specified as follows:
(C1) For any fine node z* in NNOH,
Lo (al) = ¥ (2});
(C2) For any fine node z? in O(zH, 2B} \ QI with both =l and 2} of Neumann
nodes,
LM (2%) = Ot (2h);
(C3) For any fine node z? in Oz, =)\ QH with both af and oH of Dirichlet
nodes,
Ty (zh) = 0;
(C4) For any fine node :v? in Q(w{f,:cf)\QH with one of tH and ¥ the Neumann
node and one the Dirichlet node,
Ih'vH(m;?’) = 0, f w;" is a fine boundary node of Dirichlet type;
TyoH(zh) = Onv(zh), otherwise.

The following are two concrete examples of interpolants which satisfy the above
definition and assumptions. We only give the corresponding forms of 8)’s required
in the definition:

12: Nearest edge interpolation. Define the interpolant at a:;‘ by using the

nodes of the coarse boundary edge closest to a:? (see Fig. 3.9):

Ifva(a:;?') = A(mf)vH(m;q) +{1-— A(z?))vH(mf),

49



Figure 3.9: More accurate interpolants: Fine nodal values outside the coarse
domain are interpolated with coarse nodal values on the nearest: a) coarse grid
edge; b) coarse element 71/, Thick lines represent coarse grid boundaries or ele-
ments, dotted lines show the coarse nodes used in the interpolation.
where z7 and zF are the nodes of the coarse boundary edge closest to ac;?, and A is
the ratio of the lengths of two segments of the gdge zHaH cut off by the normal line
passing through z% to the edge (see Fig. 3.9). This kind of interpolation was used
by Bank-Xu [1] in their construction of a hierarchical basis on an unstructured
mesh.

73: Nearest element interpolation. Define the non-zero extension by using

barycentric functions (see Fig. 3.9):
ToH(ah) = Mo (al) + 2, (o (a) + (e (at),

where A;, A\, A; are three barycentric coordinate functions (also known as area or

volume coordinates) corresponding to 7.
Remark 9.1.  Note that the functions A, A, and A; used in the definition

of I? satisfies A, A, %; > 0 for 2% € 77, but not so for 2 ¢ 7. In the case
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as shown in Fig. I3.9b, we have o & 71, N(z) > 0,A.(z) > 0, but A(z) <0
and X (z) 4+ M\ (x) + A{z) = 1. The barycentric coordinates may still be defined,
provided we consider the area of a simplex to be orientation-dependent, that is,
area is > 0 for “right-handed” triangles and are is < 0 for “left-handed” triangles.

By (H1), we always have
A<, M@ < and @] Sy Vo€ Rk, 2T U,

where p1, is a constant independent of & and H but depending only on the constant

@ in (H1).

3.3.3 An illustrative example

To illustrate the differences among the four different interpolants (I, Z}, 72, I%),
let us consider a simple fine grid with 10 nodes, and a 4-noded MIS coarse grid in
which the coarse grid boundary does not match the fine grid boundary. In par-
ticular, the MIS coarse grid that is automatically generated will not contain the
fine grid node, v, (see, e.g. Fig. 3.10). The coarse grids and the corresponding
interpolants are shown in Figs. 3.10-3.13 below:

Note that 72,72, and Z;} are identical except for the way that the value at
fine grid node, v,, is interpolated (row 4). Interpolant I results in a zero value

extension, interpolant 77 extends linearly in the normal direction with the nearest

coarse boundary edge, and interpolant Z3 extends by barycentric coordinates of the
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Figure 3.10: Fine grid and MIS coarse grid and the corresponding linear inter-

polant, 9.

nearest coarse element (note here that the entries are not necessarily non-negative,
but still sum to one). Because all the coarse boundary nodes are also fine boundary
nodes, the definition of the coarse boundary conditions can simply be taken to be
the same as that of the corresponding fine boundary nodes.

Interpolant Z} differs in that the coarse grid domain was modified to contain
the fine grid domain. As a result, the grids are not element nested and some
of the coarse boundary nodes are not nodes from the fine grid. Standard linear

interpolation is done everywhere in this case with no special extensions required.
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1.0000 0 0 0
0.6667 0.3333 0 0
76 s 0.3333 0.6667 0 0
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T A0 0 0 0.3333 0.6667
Course grid 0 0 0 1.0000
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0.5000 0 0 0.5000
05000 0 0.3333 0.1667
0.3333 0.1667 0.5000 0

Figure 3.11: Fine grid and modified coarse grid and the corresponding linear in-

terpolant, 7.

However, choosing the proper boundary conditions for the coarse boundary points

which are not in the fine grid must be determined somehow (see Def. 3.3.1).

3.4 Stability and approximation of the non-nested interpolation

The convergence theory for overlapping multilevel domain decomposition and
multigrid methods require the coarse-to-fine grid transfer operator to possess the

local optimal L?-approximation and local H-stability properties as introduced in
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Figure 3.12: Fine grid and MIS coarse grid and the corresponding linear inter-

polant, 72.

Sec. 2.4. The locality of these properties is essential to the effectiveness of these
methods on highly non-quasi-uniform unstructured meshes.

Because the spaces are non-nested (they are node-nested, but still non-nested,
as coarse grid elements are not unions of fine grid clements), in the theory discussed

in Section 2.4, the uy coarse space approximation to u should be defined as:

Uy = Ih'RHu.

Since Ry € Vg ¢ Vi, we need to use the interpolation operator 7, to map Ry
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Figure 3.13: Fine grid and MIS coarse grid and the corresponding linear inter-

polant, Z3.

back to V,,. The convergence theory now requires both Z, and Ry to possess
the stability and approximation properties. When the mesh is quasi-uniform, the
usual L2-projection, Qg, can be used for Ry. But when the mesh is highly non-
quasi-uniform, the constant in the approximation property (2.23) can deteriorate
if we use Qy. The trick then is to use a localized version of the L*-projection,
i.e. the so-called Clément’s projection. It is known that this projection provides
local stable and good approximations. We refer to Clément [22] for its definition

and Chan-Zou [18] and Chan-Smith-Zou [17] for its use in domain decomposition
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contexts.

Yor 7, we can take the coarse-to-fine interpolants introduced in Sec. 3.3 The
key step then is proving the stability and approximation properties for 7,. The
proof that the non-nested standard interpolation used in the interior is stable and
accurate can be found in Cai [8] and Chan-Smith-Zou [17}. The proof for the

boundary-specific interpolations can be found in [13].

3.4.1 Two-level convergence theory

We need to introduce some more notation (see § 2.1): for 7 € Thand 7# € TH,

N(rH) = union of coarse elements adjacent to 7,
B, = H = max h
k Urtngrza 775 i pax fir,

Sy = Upcp N(r¥), Hy= max H,.

Note that B, is the union of all coarse elements having nonempty intersection
with the subdomain (*. We allow each QF to be of quite different size and of
quite different shape from other subdomains, but make the following reasonable

assumptions:

(A1) Any point z € Q belongs to at most g subdomains of {¥};_; with go >0

an integer.

(A2) b, S Hy; and card{r# e TH; tH C By} <mpfor1<k=<p with ng > 0

an integer.
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(A3) Any point z € QH belongs to at most g, subdomains of {8 ¥

The following theorem gives the bound of the condition number x(MA), for

the two-level additive Schwarz method (2.3.2.2).

Theorem 3.4.1 Under the assumptions (A1) - (A3), we have

2
< —k
k(MA) < max 5

Theorem 3.4.1 indicates that an optimal condition number may be expected if the
local overlap §, is proportional to the local subdomain size Hj.

To prove Theorem 3.4.1, it is essential for any v € V% to find a partition
u = Tyug + TF_ u, with u, € V¥ (1 <k < p) and uy € VH such that Zyuy
is bounded by u in both L?-norm and H!-norm, and preserves the local optimal
L2-norm error approximation to u. This can be done by using the following lemma

and the standard partition {8;}!., of unity for { corresponding to the subdomains

{2+

Lemma 3.4.1 Given any interpolation operator I, satisfying Definition 3.3.1,
then for any ub € V* there exists ufl € VH such that for all 77 € TH, we

have

(1) > Mt = Tuflg s < CE(MIEUtE v ay

rhnrlf#@
ThCQH
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(12) E |IhuH|1,Th < clEuh|1,N(TH):
rhorH 4o
TheH

(!3) v !!Uh —_ Ih.fu'HH?j h S Cdz(T,H) T !Euhﬁ F\T{_H\H
; i pa ! LT )

)
rheQi(zf o) rHeN(rH)

(4) > <0 3 1B ey
rheQ(eH oH) rHeN(H)
REMARK. The inequalities (/1) and (I2) correspond to the parts where the fine
grid domain is completely contained in the coarse grid domain. Their proofs can
be found in [17, 18]. The last two inequalities (I3) and (/4) correspond to the fine

grid parts which are not covered by the coarse grid. Proofs for inequalities (13)

and (I4) can be found in [13]

3.5 Numerical results

In this section, we provide some numerical results of domain decomposition and
multigrid methods on unstructured meshes for elliptic problems on various fine
grid domains (see Fig. 3.14). The well-known NASA airfoil mesh was provided
by T. Barth and D. Jesperson of NASA Ames, and a fine, unstructured square
and annulus were generated using Barth’s 2-dimensional Delaunay triangulator.
All numerical experiments were performed using the Portable, Extensible Toolkit
for Scientific Computation (PETSc) [27], running on a Sun SPARC 20. Piecewise
linear finite elements were used for the discretizations and the resulting linear

system was solved using either multilevel overlapping Schwarz or V-cycle multigrid
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as a preconditioner with full GMRES as an outer accelerator.
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Figure 3.14: Some fine grids: an unstructured square with 385 nodes (left), NASA

airfoil with 4253 nodes (center) and an annulus with 610 nodes (right).

Our approach to generating a coarse grid hierarchy is to find a maximal inde-
pendent set of the boundaries and the interior of the fine grid of the mesh, and
then retriangulate the resulting set of vertices (other coarsening algorithms can be
used here). This process is then repeated recursively for the desired number of
levels. An example coarse grid hierarchy of the airfoil mesh retriangulated with
Cavendish’s algorithm [10] is shown in Fig. 3.15 where G? refers to the first coars-
ening of the fine grid, G' is the coarsening of G2, and (30 is the coarsening of the
G1L.

We shall present numerical results for Schwarz solvers and multigrid methods.
For partitioning, all the domains {except the coarsest) were partitioned using the
recursive spectral bisection method [47], with exact solves for both the subdomain

problems and the coarse grid problem. To generate overlapping subdomains, we
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Figure 3.15: Airfoil grid hierarchy with unmodified boundaries (left) and modified

boundaries (right).
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first partition the domain into non-overlapping subdomains and then extend each
subdomain by some number of elements.

In all the experiments, the initial iterate is set to be zero and the iteration is
stopped when the discrete norm of the residual is reduced by a factor of 10-5.

For our first experiment, we use additive Schwarz to solve the Poisson problem
on a unit square with homogeneous Dirichlet boundary conditions. Because the
fine domain is so simple and Dirichlet boundary conditions are given, non-matching
boundaries are not an issue here and no special interpolants are used. We provide
these results simply for completeness, as multilevel Schwarz results on unstructured
grids have not been previously found in the literature to the authors’ knowledge.
Table 3.1 shows the number of GMRES iterations to convergence with varying fine
grid problem and varying number of levels.

Providing a coarse grid improved convergence, and without it the method 1s
not scalable to the case with a large number of subproblems. Interesting things to
notice are that for a fixed number of levels, multilevel Schwarz is mesh-size inde-
pendent, but that the number of iterations increases with the number of levels for
a fixed problem size. This had also been previously observed for structured meshes
using a multilevel diagonal scaling method in [48] and is due to the additive nature
of the method. Also, increasing the amount of overlap improved convergence, but
in practice, a one-element overlap was sufficient.

In our second experiment, we solve a mildly varying coefficient problem on the
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airfoil:

0 o) J Ju
(14 ay)5) + 5-((sin(3y)) ) = (4ay +2)sin(3y) + 9a? cos(6y)
z ay oy

6'_37 .
with either a purely Dirichlet boundary condition or a mixed boundary condition:
Dirichlet for # < 0.2 and homogeneous Neumann for z > 0.2. For this problem,
the non-homogeneous Dirichlet condition is u = 2 4+ 22sin(3y). Table 3.16 shows
the number of GMRES iterations to convergence using additive multilevel Schwarz
with the different boundary treatments.

The deterioration in the method can be observed when Neumann conditions
are not properly handled.

In Table 3.17, we show results for the same problem, but solved using a hy-
brid multiplicative-additive Schwarz (multiplicative between levels but additive
among subdomains on the same level). As in the additive case, deterioration of
the method occurs when mixed boundary conditions are present. However, we
can achieve optimal convergence rates, even with a varying number of levels with
the hybrid method. Still further improvement can obtained when using a multi-
plicative method (both on the subdomains and between levels) and the method
behaves much like multigrid (see Tables 3.18-3.2). In fact, this is nothing more
than multigrid but with a block smoother. A V-cycle multigrid method with point-
wise Glauss-Seidel smoothing and 2 pre- and 2 post-smoothings per level was used
to produce the results in Table 3.2.

Table 3.3 shows some multigrid results for the Poisson equation on an annulus.
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The forcing function is set to be one and both kinds of boundary conditions were
tested. A V-cycle multigrid method with pointwise Gauss-Seidel smoothing and 2
pre- and 2 post-smoothings per level was used. When mixed boundary conditions
are present, the deterioration is less pronounced in the multigrid method, but it
still exists. It it interesting to note that in our previous multigrid experiments on
a quasi-uniform annulus (see [14]), the observed deterioration in the method was
much more dramatic than those observed here with the unstructured annulus. We
believe that this was due to some extremely poor element aspect ratios on the fine
grid in the quasi-uniform case, compounding the effect of the poor approximation
on Neumann boundaries.

For partitioning, all the domains (except the coarsest) were partitioned using
the recursive spectral bisection method [47], with exact solves for both the subdo-
main problems and the coarse grid problem. To generate overlapping subdomains,
we first partition the domain into nonoverlapping subdomains and then extend
each subdomain by some number of elements.

We solve a mildly varying coefficient problem on the airfoil:

g Ou d du
—((1 —) + —((si —)=F
(1 + a)50) + 5B ) = Flav),
where
F(z,y) = (doy + 2) sin(3y) + 927 cos(by),
with either a purely Dirichlet boundary condition or a mixed boundary condition:

Dirichlet for < 0.2 and homogeneous Neumann for & > 0.2. For this problem,
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the non-homogeneous Dirichlet condition is u = 2 4 2% sin(3y).

Fig. 3.17 shows results when a hybrid 4-level multiplicative-additive Schwarz
method is used (multiplicative between levels but additive among subdomains on
the same level). As can be seen, deterioration of the method occurs with inter-
polant Z? when mixed boundary conditions are present. The next figure (Fig. 3.18)
shows results for the multiplicative Schwarz method (both on the subdomains and
between levels). This method behaves much like multigrid (see Table 3.2). In
fact, this is nothing more than standard V-cycle multigrid with a block smoother
used as a preconditioner. A V-cycle multigrid method with pointwise Gauss-Seidel
smoothing and 2 pre- and 2 post-smoothings per level was used to produce the

results in Table 3.2,

Addilive mulliavel Schwarz or Dirichlet BC Acditive mullfleval Schwaiz on mixed BC
T T 3 v T ¥ T T T

\ - tnterpalant & . —— {nterpolant O
L s tntarpolent 1 19 -+ Interpolant 1
=~ Intespalant 2 — = Interpatant 2
- == Intempolant 3 ) == Interpotanl 3

w° 1 10° Y

an 40 &0 60 ks
Precondilioned GMRES Heralians

Figure 3.16: Additive 4-level Schwarz. Dirichlet boundary conditions (left)
or mixed boundary conditions (right) for the elliptic problem with mildly varying

coefficients on the airfoil grid.
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Figure 3.17: Hybrid multiplicative-additive 4-level Schwarz. Dirichlet
boundary conditions (left) or mixed boundary conditions (right) for the elliptic

problem with mildly varying coefficients on the airfoil grid.

3.6 Conclusions

When using general unstructured meshes, the coarse grid domain may not
necessarily match that of the fine grid. For the parts of the fine grid domain which
are not contained in the coarse domain, special treatments must be done to handle
different boundary conditions. The transfer operators using linear interpolation
with a zero extension is the most natural to implement and is effective for problems
with Dirichlet boundary conditions.

For problems where Neumann boundary conditions exist however, zero ex-

tension is no longer appropriate and special interpolants should be sought. Our
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Figure 3.18: Multiplicative 4-level Schwarz. Dirichlet boundary conditions
(left) or mixed boundary conditions (right) for the elliptic problem with mildly

varying coefficients on the airfoil grid.

numerical results show the significance of the assumption that when standard
interpolations with zero extension are used, the coarse grid must cover the Neu-
mann boundaries of the fine grid problem, otherwise deterioration of the methods
oceurs. The deterioration is most significant when using additive multilevel meth-
ods, but can still be seen for the multiplicative methods. When coupled with highly
stretched elements, the deterioration can be very significant, even for multiplicative
methods.

Although modifying the coarse grid domains to ensure that this assumption is
satisfied is effective, this approach can be problematic to implement for particularly
complicated domains or can sometimes generate coarse grid domains which deviate

significantly from the fine domain.
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An alternative is to modify the interpolants so that non-zero extensions be used
on those fine grid boundaries which have Neumann conditions and which are not
contained within the coarse grid domain. Since we are using the multilevel methods
only as preconditioners, the extension need not be particularly accurate; we used
either constant extension with the nearest boundary nodal value or extension using
the barycentric functions of the nearest coarse grid element, neither of which are

difficult to implement.
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Table 3.1: Additive multilevel Schwarz iterations for the Poisson problem on

a unit square grid. Table shows the number of GMRES iterations to convergence.

Dirichlet boundary conditions

4 of | # of # of 4 overlap elements
levels | nodes | subdomains || 0 [ 1 | 2
6409 266 34 | 63 50
1 1522 64 45 1 36 27
385 16 26 | 19 16
1522 64 19 | 16 16
385 1
2 385 16 19 | 15 15
102 1
102 4 17 i 15 15
29 1
6409 256 28 | 24 25
1522 64
385 1
1522 64 32| 25 26
3 385 18
102 1
38b 16 3126 26
102 4
29 1
6409 256 43 | 37 37
1522 64
385 16
4 102 1
1522 64 42 | 37 37
386 16
102 4
29 1
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Table 3.2: Multigrid iterations for the elliptic problem with mildly varying coefli-

cients on the airfoil. Tables show the number of GMRES iterations to convergence.

Dirichlet boundary conditions
Special Interpolant Used

# of fine MG i # of coarse
grid nodes | levels | grid nodes § 70 | Zj [ Zj 7;
2 1170 4 144 4
4253 3 340 414 |4 4
4 101 4 4] 4 4

Mixed Dirichlet/Neumann boundary conditions

# of fine MG | # of coarse || Special Interpolant Used
017 | I 73

grid nodes | levels | grid nodes
2 1170 6 | 5| 4 4
4253 3 340 6 | 4|5 5
4 101 715 1|5 5

Table 3.3: Multigrid iterations for the Poisson problem on an annulus. Tables

show the number of GMRES iterations to convergence.

Dirichlet boundary conditions
Special Interpolant Used

# of fine MG | # of coarse
grid nodes | levels | grid nodes || 77 1 Z; | 73 1
2 610 4 | 41 4 4
2430 3 160 41 41| 4 4
4 47 4 1 4 | 4 4

Mixed Dirichlet/Neumann boundary conditions
Special Interpolant Used

4t of fine MG | # of coarse
grid nodes | levels | grid nodes || Z; 1 Z; | Z; I:
2 610 6 5 i 4 4
2430 3 160 T 5 | 4 4
4 47 7|15 | 4 4
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Table 3.4: Multigrid iterations for the annulus grid with varying fine grid mesh

sizes. Results are for Dirichlet / Mixed boundary conditions.

# of fine | MG | # of coarse Interpolant Used
grid nodes | levels | grid nodes AS 7} 17 73
2 159 4/11|4/7|4/6|4/6
576 3 47 A/11\4/7,4/6\4/6
4 15 4/1114/7]4/6(4/6
2 575 5/17|5/7|5/7|5/7
2176 3 159 5/1T|5/7|5/7(5/7
4 47 5/17|5/7|5/7|5/7
2 2175 5/25(5/815/815/8
8448 3 574 5/25|6/8|5/8|5/8
4 158 5/25(6/8[5/8|5/8
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CHAPTER 4

A Multigrid Eigenvalue Solver for Unstructured Grids

In this chapter, the techniques from the previous chapter will be combined
with a well-known multigrid eigenvalue solver for structured grids to produce an
effective algorithm for solving eigenvalue problems on unstructured grids. The
efficiency of the unstructured eigenvalue solver will be shown to be similar to that
of the structured solver.

The problem of calculating the eigenvalues of A can be viewed as solving a
non-linear problem [44, 50]. Because of this, the correction scheme (CS) multigrid
introduced in Section 2.3.1 cannoct be used to solve such problems. A variant
of multigrid, known as full approximation scheme (FAS) multigrd introduced by
Brandt [4], is a version which can be used to solve non-linear problems. We begin
with a description for a two-level method where the coarse level is denoted by
subscript-H and the fine level is denoted by subscript-f, followed by a general

multilevel FAS scheme.
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4.1 Two-level FAS multigrid

The difference between FAS and OS multigrid is that the coarse grid variable
to be considered is not the error, eH, but rather a coarse representation of the fine
grid variable

ey = RIZ, +ep.
So instead of solving the coarse grid error equation, we solve
Agzry = AHR;?:T:& + Ty
where ry is the coarse residual, RH(f, — Ay%;). Define
fu = REf, + AgRI %, — R A2,
so the coarse problem can be written simply as
Agzg = [u-

Note that in the case where A is a linear operator, then this coarse grid problem

is equivalent to the coarse grid problem in CS multigrid:
Apzg = Ag(Rl&y+eg) = fu
A}]Rf(i‘h + AHeH = AHRféh + Ty
AH6H = ?"H.

The FAS multigrid method is as follows: Given an initial guess, zy, smooth on

the equation

Apzy = i
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to get a fine grid approximation, #,. Restrict this fine grid approximation to the
coarse grid

— RH=x
.'L‘H—-Rhilih,

and calculate fy

fH = R;?fh "'I“ AHRf;Eh - RfAhflh.
Solve the coarse level problem:
Agzy = fu (4.1)

either exactly (with direct or iterative methods) or inexactly with initial guess z .

Correct the fine grid approximation, &;,

Note that this is not the same correction as in CS, since the coarse level variable
is not a coarse representation of the error, but rather is a coarse representation
of the solution. One then further improves on this corrected approximation by

performing a few post relaxations on A,z, = fj.

4.2 Multilevel FAS multigrid

The FAS method for solving Az, = f, can be generalized for any number of

levels by recursively defining the solution process for the coarse grid problem in
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terms of the two-level method described above for as many levels as needed. We
will use the same notation as in Section 2.3.1. For clarity, denote the restriction
operator from level k+ 1 to k as Rf 1 and the prolongation operator from level &
to k+1 REFL
Given [ levels, define the corresponding problem on each level to be:
Az, = f  finest grid problem
Az, = fi_1 mnext coarser grid problem

(12)

Aoy = fo  coarsest grid problem

where level [ is the finest level and level 0 is the coarsest level and f; is defined
below.

Given some initial guess and starting at the finest level, level I, relax a few
times to obtain an approximation, #; and descend to the next coarser level. To
descend between two levels, k +1 to k for k = [ —1,...,0, two operations are

performed:
e restrict Z;., to level k by
k41 k1

o calculate f; on level k as defined by

fa k=1
fr = (4.3)

R£+1fk+1 + AkRi_l_li%k_]_l - R}]:+1Ak+1'%k-|—1 if k<l
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Repeatedly relax on level & (with initial guess equal to the restriction of #;,4)
and descend until the coarsest level is reached. At the coarse level, the linear
system, Agzy = fo, may be solved by either direct methods or iteratively with
initial guess «°.

Cliven a coarse solution, ascend to the next finer level. To ascend between two

levels, k to k41 for k= 0,...,I— 1, perform the following:

o correct &4 by
- k41 koo
Thpq = By + BT (g — Rk+15'3k+1)

Repeatedly relax and ascend until the finest grid is reached.

The general algorithm for FAS MG could be written as

Algorithm 4.2.1 (FAS multigrid)
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0. If k =0, then x5 = A{J"lfﬁ.
1. Presmoothing: Apply one transposed smoothing iteration with initial guess, z¥.
&y, = 2 + ST(fi — Ayal)
2. Descend to coarse level:
a. Restrict the solution for coarse inilial guess
= Rz,
b. Calculate coarse right hand side f*1
Foor = BE i+ Apa28_, — Ry AE
8. “Solve” A, _qxp_y = fr_1 (recursive call to FAS MG@G with initial guess z_, = Th_q)
4. Imterpolate back and correct:
iy, = + Ry (2o — BIT'8y)
5. Postsmoothing: Apply one smoothing iteration with initial guess Zj.

zy, = & + Si{fr — Axry)

Many variations on the general FAS multigrid method described above can be
found by changing the definition of one or more of the following components in the

method:
e obtaining an initial guess,

o the definition of Ay,
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o the definition of R’g“,
e the number of pre- and post-smoothings done on each level,

¢ solution of the coarse problem.

4.3 Choice of coarse operator

The choice for coarse level operators must also be considered. There are two
different ways to define a coarse operator, One way is to simply rediscretize the
problem, given the coarse grids. Another way is called the Galerkin method, where
the coarse operator is defined by A# = REARRY.

The choice of whether to use a coarse problem arising from rediscretizion or
from Calerkin coarsening is problem-dependent. There are advantages to each
method. Rediscretization can be done antomatically, using the same software that
was used to discretize the fine level problem. Also, rediscretization approximates
the fine level problem well as long as the coarse grids are of good quality.

Alternatively, Galerkin coarsening can be used when purely algebraic methods
are used, when the coarse grids are not given. However, Galerkin coarsening
usually results in stiffness matrices which are more dense than those arising from
rediscretizations (see Fig. 4.1). Because the adjacency matrices inherit all the

nearest neighbors from the previous grid, recursive application of Galerkin coarse
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operators for many levels can quickly become prohibitive.

Ardiscratized dth-fevel coarse aparator Galarkin coarsensd 4-levei oparator

o v ) O — 7 R
l_qlls. otny !I{lih. i =!l i l g
] H il 8 =

w0y - 2

20
sof
20
50
g0
70

80|

Figure 4.1: Spy plots for 4th-level coarse operators: rediscretized (left) and

Galerkin (right).

4.4 Elliptic problems

Consider Poisson’s problem

—Au=f, in{
(4.4)
u=0, onlp
Figure 4.2 shows the convergence histories for solving the elliptic pde using the
FAS multigrid described in Section 4.2 on various uniform and unstructured grids.
The number of unknowns on each fine grid increases by a factor of approximately

four; the meshwidths decrease by about a factor of two. Here, we solve equa-

tion (4.4) with homogeneous Dirichlet boundaries on a unit square. Three-level
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FAS multigrid is used where coarse level problems are calculated by rediscretiz-
ing the problem on a coarse mesh. Two pre- and post-symmetric Gauss-Seidel
smoothings are performed at each level, and an exact solve is done at the coarsest
level. FAS V-cycles are stopped when the norm of the residual has decreased by
a factor of 10-6. The reduction factors for each problem are shown in the legend.
We see that the method is independent of meshwidth for both the structured and

unstructured cases.

FASHIG or stiptic pda on Uniforth grid FASHQ for allipti: pdn on unstiucturad grids
T T T . T T

e GOTT e 0T
- o078 | 1 10 --- 0129 } ]
------ 2065 imemee 0407

norm residual
£

Rorm reskdust

1 L ad : L L 1
10 12 14 2 4 hid 12 14

6 L] L] L}
Humbar of Y—cyclea Humbet of Y-cycles

Figure 4.2: FAS MG for solving an elliptic pde on the unit square with uni-
form (left) and unstructured (right) grids. Uniform grids: Solid line (289 un-
knowns), dashed line (1089 unknowns), and dash-dotted line (4225 unknowns).
Unstructured grids: Solid line (310 unknowns), dashed line (1064 unknowns), and

dash-dotted line (4164 unknowns).
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4.5 FEigenvalue problems

We will use the FAS multigrid method to calculate the eigenvalues of A, which
will be viewed as a non-linear problem, since z and A are both unknowns. Since

the solution of the eigenvalue problem is unique up to a multiplicative constant, a

normalization constraint is added so the eigenvalue problem can be written as

Az = Az, nz)=1 (4.5)

where 7{z) is some normalization functional of the unknown z. Typically, the
normalization is chosen such that |jzi|, = 1.

Brandt-McCormick-Ruge’s [5] method for solving differential eigenvalue prob-
lems uses a FAS multigrid method with Ritz projection for the calculation of several
eigenvector/value pairs. We will adapt their eigensolver for unstructured meshes.
The FAS setup is done in the usual manner:

Given [ levels, define the corresponding problem on each level to be:

(A — Az, = [ n(z)) = o; finest grid problem
(Apy — M)z = fiots Mea(®i) = oy next coarser grid problem
(Ag — Ap)ze = fos no{zg) = o5  coarsest grid problem

(4.6)

where I, is the identity matrix on levels k = 0,...,1. fi is defined by f; = 0 and
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for k <1,

R (A~ M
— k k% k 7
- Rk+1fk+1 + AkRk+1mk+1 - Rk+1Ak+1$k+l

and o, may be defined analogously by ¢, = 1 and for k </,

op = Ri+1o—k+1 + nk(Rﬁ_HfﬁkJrl) - Ri.{.}nk-ﬁ (%k+1) (47)

Note that in this case, the definition of f} does not differ from the definition given
in equation (4.3). In addition, the definition of o (4.7) can be simplified. This
definition is constructed to satisfy 7;(z;) = 1, but in fact, the final solution need
not be scaled to one. Brandt, et. al. chose a simpler normalization which was
casier to enforce while still providing a zero correction at convergence. For further
details, see [5].

To find the first eigenvector/value pair given an initial guess for the eigenvector
and eigenvalue on the fine level, a standard FAS V-cycle multigrid step is taken
keeping A fixed at all but the coarsest level. At the coarsest level, the non-linear
problem Az — Az = f, is solved by repeated relaxation, A-update, and eigenvector
normalization steps. The justification for this is that only the high frequency
errors are being damped out at the fine grid levels, so the size of the solution
obtained at the fine levels remains relatively constant, thus no normalization is
necessary there. The size of the solutions will significantly change only at the

coarsest level, so this is where normalization is performed. The solution to the
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coarse problem is a coarse representation of the eigenvalue solution of the fine
problem, so normalization should be done with respect to the fine level problem.
The eigenvalue, ), is updated at each iteration by calculating the modified

Rayleigh quotient, which is given by:

A= Ray(A) = m;%l |Az — Az — fl|2

= M (4.8)

zTx

To find the next eigenvector/value pair, repeat the FAS V-Cycle MG above, in-
troducing an orthogonalization step in addition to the A-update and normalization
step at the coarse level. Again, since the coarse solution is a coarse representation
of the fine level problem, the orthogonalization should also be done with respect
to the fine level problem.

When all V-cycles are complete, the resulting cigenvector/value pairs can be
further refined by a Ritz step. This should be inexpensive to do if the number of
smallest eigenvalues sought is small.

In the next few sections, the following components were used in each method

unless otherwise noted:

o initial guess was found exactly on the coarse grid using the LAPACK sym-
metric eigenvalue routine dsyev for the coarse level problem Agzg = Ay and

then interpolated up through the levels to provide an initial fine level guess,

s J-level FAS V-cycle multigrid,
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e two pre- and post- symmetric Gauss-Seidel smoothings at each level,

e coarse level problems were constricted using Galerkin coarsening (A, =

k k+1
ka A BT,

e the coarse level problem, Az = Az + g, was solved iteratively using 20 sym-
metric Gauss-Seidel followed by orthogonalization/normalization (with re-

spect to the fine grid solution) and A update using equation (4.8).
o 3 eigenvector/value pairs were found for the Ritz problem.

o grid hierarchy:

Number of unknowns

Level || Unstructured grids Uniform grids

fine 4164 | 1061 | 310 | 4225 | 1089 | 289

interm. || 1061 | 310 86 1089 | 289 | 31

coarse | 310 86 24 289 81 | 25

Figure 4.4 shows the convergence histories for solving the elliptic eigenvalue

problem

—Au = du, nplu)=1inf

Ou
a—n = 0 on BQ
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Figure 4.3: A uniform grid (left) and an unstructured grid (right).

on a uniform grid and an unstructured grid, both on the unit square. The method
on the uniform grid achieves roughly the same con;vergence rate as in solving Pois-
son’s equation, but the unstructured grid shows a degradation which does not
occur with the uniform grid. This appears to be an anomaly, as other grids do not

exhibit the same kind of deterioration.

preblem o d grid
T T
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Figure 4.4: FAS MG for solving an elliptic eigenvalue problem on the unit square
for uniform and unstructured grids. Solid line is the problem on a uniform grid

(289 unknowns), dashed line is on an unstructured grid (310 unknowns).
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4.6 Generalized eigenvalue problems

The FAS MG method for solving eigenvalue problems described in the previous
section can be used for the generalized problem with some slight modification. For

the elliptic eigenvalue problem
— Awu=Au, in {}

with some boundary conditions, discretization using finite elements leads to solving

the generalized eigenvalue problem
Az = ABz, (4.9)
where A is the usual bilinear form and B is typically the mass matrix:
Bi,j - /9 ¢5i¢j dz,

with finite element basis functions ¢; and ¢;.

Given [ levels, define the corresponding problem on each level to be:

(A, — ABpz, = fi, m(z)) = o; finest grid problem
(A_y — ABi_)z.y = fisy, moi{z2) = o1, next coarser grid problem
(Ag — ABo)zo = fo no(ze) = oy  coarsest grid problem

(4.10)
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where A, is the usual bilinear form and By, is typically the mass matrix on levels

k=1,...,1. f, is defined by f; =0 and for k </,

fi = RE g+ (Ag ~ ABR)RE B — RE(Appr = ABry1) &4

Note that in this case, the definition for f, differs slightly from the definition given
in equation (4.3 since By R} | # Rt Bra

The eigenvectors, z, will be orthogonalized with respect to the B-norm, and
the corresponding eigenvalue is given by the modified Rayleigh quotient in the

appropriate norm

Ray(A,B) = még”Am—)\Bm——fHB

2T(Azx — f)
zTBx

where || - || 5 is defined by ||z]|% = 2T B~1z.

Alternatively, we could also consider the matrix B to be some sort of scaling
matbrix,

I, = (BT RiH,

Using the convergence results on the uniform grid as a baseline, the FAS MG
method on the unstructured grid achieves similar convergence rates as it does on
the uniform grid for both the generalized eigenvalue problem Az =AMz, and for
the scaled eigenvalue problem Az = AM*kz. The degradation of the method on the

unstructured grid as seen in Figure 4.4 is no longer there. Figure 4.5 shows the
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results for solving each problem on a uniform grid and an unstructured grid of

comparable size.

prablom on ard scaled probie i d grid
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Figure 4.5: FAS MG for solving a generalized elliptic eigenvalue problem (left)
and scaled elliptic eigenvalue problem (right) on the unit square. Solid line is the

problem on a uniform grid (289 unknowns), dashed line is on an unstructured grid

(310 unknowns).

Figure 4.6 shows the convergence histories for solving a generalized elliptic
cigenvalue problem using FAS multigrid on unstructured grids with varying mesh-
widths. Here, we solve equation (4.9) on a unit square. The number of unknowns
on each grid increases by a factor of approximately four; the meshwidths decrease

by about a factor of two. We see that the method is independent of the meshwidth.
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Figure 4.6: FAS MG for solving a generalized elliptic eigenvalue problem (left) and
scaled elliptic eigenvalue problem (right) on the unit square with unstructured grids
of varying meshwidths. Solid line is the problem with 310 unknowns dashed line

has 1064 unknowns, and dash-dotted line has 4164 unknowns.
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CHAPTER 5

Multilevel Spectral Partitioning of Unstructured Grids

As distributed-memory parallel computers become more commonplace, there
has been a great deal of effort spent to ensure that the performance of numerical
algorithms is not sacrificed as a result of parallelism. Scalability is the ability of
an algorithm to speed up proportionally with the number of added processors.
In other words, two processors should be able to get the job done twice as fast.
However, as the number of processors increases, there is a point when another
factor begins playing an increasingly larger role, that being commaunication among
ProCcessors.

Two important points to remember are that communication among processors
is an expensive operation, and that bottlenecks should be avoided. For problems
discretized on a grid, thjs means that in order to minimize communication, the
number of nearest neighbors residing on different processors should be minimized.
In other words, the number of edges cut in the grid should be minimized.

The second point is that bottlenecks occur when the amount of work on each
processor is not evenly distributed. Assuming that the same amount of work is

done at each vertex, then the number of vertices per processor should be uniformly
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distributed.

These two issues: minimizing the number of edges cut and maintaining a bal-
anced load, lead to the partitioning problem. The graph partitioning problem is an
N P-complete problem and many different approaches have been used for approx-
imating the solution. There is usually a tradeoff between the speed to compute
a partition and the quality of the resulting partition. However, one should strive
to obtain a quality partition despite its potential costliness to compute because a
good partition often leads to better convergence rates of iterative solutions [51].
This is particularly useful if a grid is reused often.

Of the different approaches, the spectral bisection method introduced by [47]
yields very high-quality partitions but is expensive to compute. Them main cost of
the spectral method is in solving the associated discrete eigenvalue problem. In this
chapter, it will be shown that when the graph is a standard finite element mesh,
the graph Laplacian is spectrally equivalent (up to a diagonal scaling) to the mesh
Laplacian. This equivalence can be exploited to adapt recently developed multi-
level elliptic algorithms for unstructured grids to solving the graph partitioning
problem with a true multigrid convergence rate. Using the tools from Chapters 3
and 4, an unstructured multigrid spectral partitioner will be developed and some
numerical results will be provided to demonstrate that optimal convergence rates

are retained.
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5.1 Partitioning algorithms

hen [46] has a very nice survey of the latest graph partitioning algorithms.
Detailed descriptions of many of the partitioning approaches which have been

developed can be found in this survey. Some of the most important partitioning

algorithms are summarized below.

o Kernighan-Lin Given an initial partition of a vertex set, this method swaps
the vertices between the two sets to reduce the number of edges between
them. Repeated application is done until it is either no longer possible to
reduce the number of edges between them, or until a prescribed number of
iterations has been reached. The quality of partitions resulting from this
method is very dependent on the quality of the initial partition it is given.
The Kernighan-Lin algorithm is most frequently used in many partitioners

as a post-processing refinement step.

e greedy These methods find partitions by first selecting vertices which are
approximately at the greatest distance apart in the graph and grows subsets

of vertices until the required number of vertices is obtained.

e coordinate bisection This method bisects a graph using coordinate infor-
mation at the vertices. A straight line bisector is found that divides the
vertices into two approximately equal sets. These methods make no use of

edge information, and so they make partitions which do not minimize the
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number of edges cut.

o inertial bisection Tnertial methods use the coordinates of the vertices of a
graph to find a bisection. The vertices of the mesh are considered as discrete
points and the center of gravity of the mesh is calculated. Then the axis of

minimum angular momentum is found and used as a bisector.

e spectral bisection Spectral methods produce very high quality partitions,
but they are expensive to calculate. The main cost of the spectral method
is in solving for the Fiedler vector (the lowest nontrivial eigenvector of the
associated graph Laplacian). More discussion of this method follows in the

next section.

o multilevel bisection These algorithms make high-quality but expensive
partitioners practical to use by performing the costly steps of partitioners
on an appropriately smaller problem and then “uncoarsening” the resulting

partition back to the original graph.

5.2 The spectral bisection algorithm

Let G = (V, E) be an undirected graph, where V' = {v;}7., is the set of vertices

of the graph, and E = (v;,v;) is the set of edges. The Laplacian of the graph is
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defined as:

s

deg(v;) ifi=7
L= -1 if(v,v;) €L (5.1)

0 otherwise.

Some characteristics of L:

e I, = D— A where D is the diagonal matrix of the degrees of each vertex, and

A is the adjacency matrix of the graph.

s The bilinear form associated with L can be written:

’MTL’U, = Z Z U,:L,ijUj
i
= =2 5 wu;+ Y udeg(s)

(i.7)€E i
= -2 ) wu;+ Y (P +u)
{ig)eE (i.5)€E
- Z (uimuj)z'
(i.j)ek

o I is symmetric positive semidefinite.
o The smallest value and its corresponding vector is (0, I)

o The second eigenvector of L is known as the Fiedler vector and the following

result is due to Fielder:

Let P denote the vertices of a graph G whose second eigenvector
components are non-positive. The subgraph (P, Ep) is a connected

subgraph of G. Similarly for non-negative.
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Let Gy = (Vi, E,) and G, = (V;, E;) be two connected subgraphs of G such

that V; UV, = V and define z € R" to be a vector such that

+1 ifzre V)
‘Ti:
-1 if1eV,.

Then a balanced bisection for G occurs for £ when ¥; z; = 0 and the minimum

number of edges cut is given by minimizing the bilinear form over all such z, since

sTLe = Y (u; — u;)? = 4 number of edges cut
(i.5)eE

Since the bisection problem is N P-complete, the problem cannot be solved
exactly. The spectral bisection method developed by Pothen-Simon-Liou [47] finds
a partition of (@ by relaxing the constraints to allow for 2 continuous and ||z|| = n.
Then the partitioning problem becomes one for solving the discrete Laplacian
eigenvalue problem, Lu = Au, for the Fiedler vector. A bisection of the graph is
found by sorting the components of the resulting Fielder vector, and assigning half
the vertices to one subgraph and the other half to another subgraph. The method
is can be used recursively on the resulting subgraphs until the desired number of
9 partitions is attained, and is known as the recursive spectral bisection (RSB)

method.
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5.3 Currently available software

The spectral bisection problem has been extensively investigated lately and
because of this, many practical implementations of partitioning algorithms are
currently available.

The first spectral bisection partitioner solved the eigenvalue problem using a
modified Lanczos algorithm to compute the Fiédler vector but this was too expen-
sive to be really useful. The multilevel spectral bisection partitioner of Barnard
and Simon was one of the first practical partitioners available. Recursive applica-
tion of the contraction step is applied until an appropriately small coarse problem
is attained. Once a suitably sized coarse problem is attained, the coarse eigen-
value problem is solved in any of a number of ways. Barnard and Simon’s method
solves the coarsened eigenvalue problem using a Lanczos algorithm. The solu-
tion is then interpolated up and used as an initial guess for the Rayleigh quotient
iteration. Since the initial guess is good, the Rayleigh quotient iteration will con-
verge quickly. SYMMLQ) was used to solve the symmetric indefinite system in the
Rayleigh quotient iteration.

The Chaco [30] implementation was a modification of the multilevel RSB
method of Barnard and Simon. The two methods differ mainly in the way the
fine grid problem is contracted to a coarse problem. Barnard and Simon’s multi-
level RSB method used a maximal independent set to generate a smaller coarse

problem while Chaco employs a maximal matching of edges to coarsen the prob-
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lem. In addition, the Chaco software also allowed for easy experimentation with
many different parameters to customize the partitioner for different situations.

The Metis software by Karypis and Kumar [36] provides a very fast partitioner
with many options for customization. Though it is a multilevel method, it 1s not
spectral in the sense that it does not solve the spectral partitioning problem on
the fine graph. Metis also uses maximal matching of edges to generate a coarse
problem, with many different variants provided.

Parallel and dynamic variants of many of these popular partitioners are also
becoming available.

Chaco and Metis allow for many choices and combinations of eigensolvers at the
coarse level, which includes implementations of RSB. Most implementations follow
up the partition with a Kernighan-Lin local refinement which greatly improves the

partition. For further details, see the user guides [31, 37].

5.4 Spectral equivalence of the graph and grid Laplacian

In this section, we show that for standard finite element meshes, the discrete
Laplacian is spectrally equivalent to the continuous Laplacian. This equivalence
can then be used to show that multilevel elliptic eigenvalue solver can be used to
solve the graph partitioning problem with true multigrid convergence rates.

Let I be the Laplacian of the graph of G as defined in (5.1). Let A be the

96



stiffness matrix arising from the finite element discretization of the Laplacian.

Theorem 5.4.1 The graph Laplacian L is equivalent to the stiffness mairiz A in

the sense that there exist some number ¢, c, independent of mesh size, such that
cywl Aw < wl Lw < wT Aw, Yw € RP (5.2)

Proof. Let K be any triangle (n = 2) or tetrahedron (n = 3) in 7. let K be
the reference element with n + 1 vertices &, for i =1,...,n+ 1.

Let F : X — K be the affine mapping defined by F(2) = Bi 4 b such that
the vertices #;,,7 = 1,...,n + 1 of the element K are mapped to the vertices

z:,8 = 1,...,n+1 of the element K. Let u be any linear function on K, with

i3

nodal values u; at z;. Clearly, 4 has the same values at its vertices as u. Moreover,

we have

IVeull32 i) < Cldet(B)IB2IVallZa 4,y (5.3)

where || - 1| is the spectral norm.
By the definition of the matrix norm and the shape regularity assumption, we

can derive the following bounds {21]
1B < ks 1Bl < Chy, (5:4)

and

|B| < meas(K) < Ch%, |B7 < Chyh. (5.5)

97



Then from (5.3), it follows that
IVullZag, < O IV, g (5.)

Now consider the finite dimensional quotient space Pl(I%)/R. It is easy to

1/2
i) & ( S () — a(#; ))2)

£i,E5 ex

check that

A

is a norm on P,(K)/R. We also know that ||V'&|[ig(f() is a norm in P (K)/R.

Therefore, they are equivalent and from (5.6), this implies

WVl < CIVlZ g 2 € 5 (u(m) —u(@))?  (5.7)

i ..'*;JEK

since 4(&;) = u{z;).
Similarly as (5.3), we have
[Vl e, < CBIBIPIVUE gy < Ch IVl (53)
combining this with (5.7) gives

W Vallfa g < 20 (@) —ule)* < (5.9)

w0 €K

From (5.9), we obtain

> [ Rt VP o 3 (g — )2 (5.10)

KeTh i,j€E

where each edge is just counted once.
But note that u”Lu = ¥ (; jyep(u; —u;)?, hence we have proved the equivalence.

a
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5.5 FAS MG algorithm for the spectral partitioning problem

The spectral equivalence of the graph Laplacian and the mesh Laplacian moti-
vates us to use the same tools for solving the discrete eigenvalue problem of spectral
partitioning as we use for the elliptic eigenproblem. Although the solution to the
spectral partitioning problem is a discrete Laplacian eigenvalue problem, we can
still use the FAS multigrid eigensolver described in Chapter 4 for solving the par-
titioning problem. Because of the equivalence of the continuous and discrete prob-
lems, the linear interpolants which arise from a multigrid solver on a continuous
Laplacian can be used for the discrete problem. In this way, the actual fine-level
spectral partition is being solved instead of some coarsened problem which gets
projected up to the fine level.

The FAS MG partitioner, then, uses all the same machinery as the elliptic
cigenvalue solver: the same interpolations and restrictions, the same coarse grid

solution process. Some general issues:

1. Galerkin coarsening makes more sense for solving the graph Laplacian, be-
cause it is a discrete problem based on the adjacencies of the fine graph,
which likely has nothing to do with those of rediscretized coarse graphs.
However, as we mentioned earlier, Galerkin coarsening generally results in

madrices which are denser than those which arise from rediscretizations.

9. The partitioning problem only requires the second eigenvector. So the FAS
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MG method is used to solve the discrete problem, but modified so as to seek
the second eigenvector, since the first eigenvector/value pair is known to be
(I,O). Note that in the Ritz steps, we can improve our approximation to
the second eigenvalue/vector pair if we have a larger subspace to Ritz on.

Because of this, I usually find the first three vector/value pairs.

To recap, the components of the multilevel solver include:

initial guess was found exactly on the coarse grid using the LAPACK sym-

* metric eigenvalue routine dsyev for the coarse level problem A,z; = Az, and

then interpolated up through the levels to provide an initial fine level guess,
3-level FAS V-cycle multigrid,
two pre- and post- symmetric Gauss-Seidel smoothings at each level,

coarse level problems were constructed using Galerkin coarsening (A, =

RE

k+1
k+1Ak+1 Rk )7

the coarse level problem, Agzy = Azg + go, Was solved iteratively using 20
symmetric Gauss-Seidel followed by orthogonalization/normalization (with

respect to the fine grid solution) and A update using equation (4.8).

3 eigenvector/value pairs were found for the Ritz problem.

Figure 5.1 shows the FAS MG convergence histories for solving the discrete
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Laplacian eigenvalue problem Lu = Au on unstructured grids of varying mesh-
widths. It can be observed that the method is independent of meshwidth.

When the discrete Laplacian eigenvalue problem with scaled identity is solved
on the same three grids, we still get the usual multigrid convergence rates inde-

pendent of meshwidth (see Figure 5.1).

o i probiem on wids spocirat (scated} froblam on
3 T T T T T

231 —— oo
027y |4
0278

------ o072 | 3

notm residual

' M
[ [] 0 12 14
Number of Y-cyclas

Figure 5.1: FAS MG for the spectral bisection problem on the unit square with
unstructured grids of varying meshwidths. The coarse problems are defined to be
Lu = Au (left) and Lu = Afu (right) on all levels. Solid line (310 unknowns),

dashed line has (1064 unknowns), and dash-dotted line has (4164 unknowns).

The next series of figures (Fig. 5.2-5.11), show the convergence of the solver
on different grids and compares efficiency of the Galerkin coarsened operator (left)
with rediscretized operators (right) for the discrete spectral bisection problem. It
should be noted that the Galerkin coarsened operators always performed better

than the rediscretized operators and that the problems with the scaled identity T
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(dashed lines) also performed a little better than the standard eigenvalue problems

(solid lines).
o FAS MG with Galerkin coarsened problerns o FAS MG with rediscretized problems
10 T T T T T T 3 10 T v T + T T
— o089 | ] ——  0.097

107" - - 0.017 - - 0.078
107 . E
10 E 1
107 4 _ E

E 2

8 10 E 3 3

£ E

=3 [=)

BT E - E
107 - E

\
10 o \ - -
1077 k 4 10 L 4
ool . . A L . 1070l s s \ 1 .
2 4 <3 8 10 12 14 2 4 <] a8 10 12 14
Nurmmnber of V—-cycies Numbar of V—cycles

Figure 5.2: Uniform square grid (unknowns 289).

Next, we show a comparison for solving the spectral bisection partitioning
problem using the FAS MG scheme with the various interpolants described in Sec-
tion 3.3. Since the spectral bisection problem has Neumann boundary conditions,
we expect that using a zero extension interpolation for intergrid transfers would
not be accurate enough at non-matching boundaries, and this is in fact, what we
observe. Interpolant Z? is the zero extension interpolation, interpolant I} is the
nearest edge interpolation, and interpolant Z? is the nearest element interpolation.

Figure 5.13 shows the bisection for the airfoil grid using the various partitioners

available. The options for Chaco and Metis were set so a close comparison could be
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Figure 5.3: Uniform square grid (unknowns 1089).
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Figure 5.4: Unstructured square grid {unknowns 310).
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Figure 5.5: Unstructured square grid (unknowns 1064).
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Figure 5.6: Structured circle grid (unknowns 654).
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Figure 5.7: Unstructured annulus grid (unknowns 610).
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Figure 5.8: Unstructured annulus grid (unknowns 2175).
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Figure 5.9: Unstructured annulus grid (unknowns 2430).
FAS M&E with Galerkin coarsened problems FAS MG with rediscretized probiems
0211 |
0173 | | ]
& E 5 3
= 3 3
B ] Z
W o
2 q = E
£ g E
=3 [~
= =
3 10 | E
107 E 1077 1
g ) . A . : ] e L : L | .
4 =3 B 10 12 14 2 4 6 -] 10 12 14
Number of V-cycles Number of V-cycles

Figure 5.10: Unstructured 3-element airfoil grid (unknowns 1170).
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Figure 5.11: Unstructured 1-element airfoil grid (unknowns 1067).

made with the FAS MG partition. Options were chosen so they would coarsen to
about 100 nodes and do spectral bisection at the coarse level. No local refinement
was done after the partition was refined back to the fine level.

The various edges cut and times required for bisecting the airfoil are shown in
Table 5.1. We should note that the current implementation was not optimized in
any way and that the main objective was in achieving provable optimal multigrid

performance, that is, obtaining a solution process which was grid-size independent.
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Figure 5.12: 3-level FAS MG for the spectral bisection problem on an unstructured
annulus grid using different interpolants. The coarse problems are defined to be
Lu = Mu (left) Lu = Alu (right). Solid line is 79, dashed lineis 1}, and dash-dotted

line is Iﬁ.

5.6 Concluding remarks

The main cost of the spectral method is in solving for the Fiedler vector (the
lowest nontrivial eigenvector of the associated graph Laplacian). Attempts at ac-
celerating the computation of the Fiedler vector by multilevel methods encounters
the difficulty of adapting standard elliptic multilevel algorithms to solving the dis-
crete graph Laplacian eigenvalue problem. Thus, for example, it is difficult to
construct such algorithms that have convergence rate independent of the mesh
size.

We have shown that Whén the graph is a standard finite element mesh, the

graph Laplacian is spectrally equivalent (up to a diagonal scaling) to the mesh
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Table 5.1: Performance of various bisection methods on the airfoil grid(4253

Partitioner | # of Edges cut (%) | Time (sec)
Multilevel RSB 111 (0.90%) 2.99
Chaco 132 (1.07%) 12.34
Metis 122 (0.99%) 0.59
FAS MG 132 (1.07%) 45.63

Laplacian. This equivalence can be exploited to adapt recently developed multi-
level elliptic algorithms for unstructured grids to solving the graph partitioning
problem with a true multigrid convergence rate. Our current implementation,
though slow, shows that optimal convergence rates can be achieved for the dis-

crete problem.
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APPENDIX A

Software

A.1 The Portable Extensible Toolkit for Scientific computation

The numerical results presented in this work were generated using the Portable
Extensible Toolkit for Scientific computation (PETSc) software, developed by
William Gropp and Barry Smith. This is an extensive, portable ob ject-oriented li-
brary of software routines and data structures for both uni- and parallel processors.

It is currently freely available on the Internet [27}.

A.2 A Finite Element Flow Library for Unstructured Grids

An introduction to a library of finite element space discretizations for the fluid
equations is presented in this section. These routines calculate the Jacobian matbrix
and the residual vector in Newton’s method for solving compressible Euler flow and
can be easily used in combination with the PETSc library of linear and non-linear

solvers.
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A.2.1 Compressible Euler equations

The two-dimensional compressible Euler equations, written in quasilinear form

with conservative variables is

af dg :
where
p pu po
pu pu*+p puv
U= = , and g =
pu pUY pv:+p
pE puld pull

We simplify the notation by writing the 4 x 4 Jacobian matrices of the fluxes as

_af _ g
A= 30 and B = 50 (A.2)
Thus
Ui+ AU, + BU, =0 (A.3)

For Euler flow, we impose boundary conditions only on the inflow boundaries:

U=4G onl-

where

I'~ = {Zel:(AB)-f <0, is the unit outward normal wrt (1}
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In the next several sections, we discuss the spatial discretization of the com-
pressible Euler equations. We note here that we are interested in steady-state

calculations.

A.2.1.1 Galerkin method

The Galerkin finite element method with weakly imposed boundary conditions,

for solving (A.3): Find U* € V* such that

B(Wh,UR) = L(W*) YWhe Vh (A.4)

where
B(Wh Uy = jﬂ WH(AU, + BU,)Q — [ WHUdr (A.5)
LW = - [ whGdr (A.6)

where

V" = space of piecewise polynomial functions

- A.2.1.2 Galerkin/Least squares method

To define a stabilized Galerkin method, we introduce the Galerkin/Least Squares

method (GLS), which can be written: Find U € V* such that

Bars(WhUP) = Lers(Wh) YWh e Vh (A7)
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where
Baps(WhURY = B(WHh UR) (A.8)
+ fﬁ (AW, + BW,)T -7 (AU, + BU)Q.  (A.9)
LGLS(Wh) = L(Wh) (A.10)

where 7 is a 4 x 4 stabilization parameter. The exact definition of the least squares

stabilization parameter, 7, will be discussed later.

Figure 1.1: Pressure contours for Euler flow using GLS stabilized discretizations.

Angle of attack 2, Mach number 0.63.
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A.2.1.3 Discontinuous Galerkin method

In the discontinnous Galerkin method, the solution is allowed to be discontin-
uous across element boundaries. Because jumps may occur in the solution across
element boundaries, element boundary terms are added to the standard Galerkin

finite element formulation. The discontinuous Galerkin method 1s written
Bpa(WH, Uy = L(Wh) YWh e VE (A.11)
where

Bmm%m):Bmmm+§;[WhAmnHm (A.12)
TeT

[U] = Uexterio'r - Uinterio'r (Alg)
Civen a directed edge, we can make a distinction between the left and right element

and in so doing, rewrite the discontinuous Galerkin method as the following edge-

based method

BDG(Wh:Uh) = B(Wthh)

+Z/WhAmwm(%—mw

e
+5° [ WH(A B) - rig)~(Up — Ug)dl
ecEYE

where 1y, is the unit outward normal with respect to the left element, and n'p is

the unit outward normal with respect to the right element (see Fig. 1.2).
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Figure 1.2: A directed edge with left and right elements L, A, outward normals
11}, Wp and nodal values Uz, Uyp, Uig, Uzp-

A.2.2 Implementation

Consider a change of variables U = U(Z) which symmetrizes A and B, so that

the equations are now:

ou au

AU(Z)) 52, + BUZ) 5,2, = 0 (A.14)
Let
A = o
A2y = AU@)A
B(z) = BOZ)A,
Then

A(Z2)Z,+ B(Z)Z, =0 (A.15)

A system of nonlinear equations is generated by multiplying with the weight

functions, Wh. Define R;(U) such that

R(U) = B(W;,U") —L(W,) i=1,....M
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To solve the system U, + R(U) = 0, we use an unconditionally stable implicit

discretization in time, that is, discretize the system with backward Euler:

U'n-i—l _ Un

n+ly —
T+ RUM) =0

Linearizing the residual term R(U™1) about Un yields

U’n-l—l _ Un

0 R+ SR - U =0

ou

Rearranging,

1 OR
[E + _6‘_6([] )} AU = —R(U")
where AU = Unt! — Un, The first term goes to zero as we approach steady state,
At — oo, and we recover standard Newton’s method. The construction of the

linear system requires assembling the global Jacobian matrix, [%%(U '”')] and the

global stiffness vector, R;(U"). The algorithm would be implemented as follows:

Algorithm A.2.1

For each element, do
Get the indices of the vertices which make up the element
Get the coordinates and the values of the current iterate at these verlices
Calculate the element vector, R;(U™)

Caleulate the element Jacobian matriz, [%(U”)]
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Assemble (accumulate) global RHS and Jacobian by scattering
the element vector and Jacobian matriz

end

This would be the general calling sequence for the Galerkin method. The
Galerkin/Least Squares and Discontinuous Galerkin methods would add an extra
call to Algorithm A.2.1, where the element vector and Jacobian are defined ap-
propriately (in the discontinuous Galerkin case, we add an edge-based term to the
standard CGalerkin method, so we would loop over edges instead of elements). The
definitions of of the Jacobians and stiffness vectors for each method will now be

discussed in detail.

A.2.3 Construction of the Galerkin element Jacobian matrix and stiff-

ness vector

Figure 1.3: Triangular element with inward normal vectors scaled by the length of

the corresponding side.
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For a triangular element with indices {1,2,3}, and inward normal vectors

{1}, 755,13}, scaled by the length of the side (see Fig. 1.3), we will use the fol-

lowing identity which holds for linear functions, f:

vi= 2 meaS(T) Z fa

where f; = f(z;).

Proof: Since Vf is constant for linear f, we have
]T VfdA =V /T dA = meas(T)V/.
By the Divergence theorem:

fTVfdA = ]BT Fadl.

(A.16)

(A.17)

Using the facts that the scaled normals sum to zero (12} + 73 -+ i3 = 0), and that

the line integral can be evaluated exactly for linear f gives

cdl = fotfo, foth . A+l
b = Ty T Ty e T T

3
2 fir;

i=1

o

Combining equations A.17 and A.19 yields the desired result.
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A.2.3.1 Element stiffness vector

Assume the bagis functions, W*, and the unknowns, U, are piecewise linear on

a triangular element and define K to be the 4 x 4 matrix defined by

K, =~[{AB)-% 1=1,2,3

1
2
for some mean valued vector field [A, B]. Then using identity A.16, we see that

the it* component of the 3 x 1 block element stiffness vector is given by

R,(U) = B(W,U)

— LWHM@+B%MA

— [A,B VU/W%A
1 3

:m_7ﬁzm wU; [ WidA

2 meas

- ZKU/WM

meas

==—ZKU

_','*’1
Here, we have used [, W,dA = W, fr dA = % meas(T), since the average of a basis
function is W; = 1/3. In matrix notation the complete 3 x 1 element vector is

)

written

K, K, K, || U
1

RU)=3| K1 Ky Ky || Uy

K, K, K; || Us
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A.2.3.2 Element Jacobian matrix

The element Jacobian matrix is a block 3 x 3 matrix where the ¢j** block is

ail, = Gn)

the 4 ¥ 4 matrix

8 (1
= KU,
aUJ ( [ I)
0Ky O
= + I
aUJ Y50, )

Note that g—g}% is a 4 x 4 x 4 matrix.

A.2.4 Construction of the least squares stabilization element Jacobian

matrix and stiffness vector

A.2.4.1 Element vector

The least squares stabilization method adds to the standard Galerkin method,
a block 3 x 1 term for each element, where the #*» block is of the form
RGLS; = f (AW, + BW,)T -7 - (AU, + BU,)dA
- Ke S KU, [ a4

F=1
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There have been many alternatives for defining the stabilization parameter. One

way to define the 4 x 4 least squares stabilization parameter, 7, is:

3

1/p
T = meas(T) [Z |I(11p] sy P= 112 (A2€})

=1

where |K;| is the componentwise absolute value of K;.

In matrix notation the complete 3 x 1 element vector is written

I<1 T I{I I{:{ T 1{2 I{l T 1{3 U 1

1
RU) =5 | KyrK, KoK, KprKy || U

K3 T I{l I{S T 1—{2 I{S T I{S U3

A.2.4.2 Element Jacobian matrix

The element Jacobian matrix is a block 3 x 3 matrix where the ¢j** block is

the 4 x 4 matrix

I

[BRGLS }
1]

ORGLS,
U

U,

- 2 (lkrru
T oo\ TR

= —|==7KU K (T —— (7 Ky——
Z[anT k k+I{tan kUk‘*‘IJanUk‘l'IJ 30,

A.2.5 Construction of the discontinuous Galerkin element Jacobian

matrix and stiffness vector
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A.2.5.1 Element vector

The discontinuous Galerkin method adds to the standard Galerkin method, a

block 4 x 1 term for each interior edge, where the t* block is of the form

RDGy, = [(Wi(A B) 1) (g~ Us)dl

= (AR i) (7) 20n = Ui

J=1

or
RDGg, = j (Wi(A B) - 1ig)~(Uy, - Ug)dl

— (A B)-rip) (Z) > (0s, = Uy
where h = ||e||5.

Define i}, to be the scaled outward normal with respect to the lelt element,

and 7y be the scaled outward normal with respect to the right element, and define

K; and Kg as
N U
K = MAB)-r) = 1A B) )
Kn = S((AB)-rin) = (A B) i) =~ (A B)-1i)*

In matrix notation the complete 4 x 1 element vector is written

K, -K, K, K| Uy

K, -K, K, Ki|| U
RDG(U) = (A.21)

Kn Kp —Kp —Kg || Un

Kn Kp —Kg —Kgp || Ug
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A.2.5.2 Element Jacobian matrix

The element Jacobian matrix for the discontinuous Galerkin method is a block

4 x 4 matrix where the 75t block is the 4 x 4 matrix

ORDG,]  (ORDGL\ _ 9 [ 2
20 - (M) - oy (e om o)

M

OK;, & 29
= S Uk = Un) + I{L; 507, Urs = Uss)

3 i=1

or
aRDGR . BRDGRi _ a 2
{ BU }ij - ( (9UJ ) - aUJ (I{R.;(ULJ‘ - URj))
BI{R 2 2 a
= 3, ;(ULJ' - Ug;) + I{R; "é”i};(ULj — Ugy)
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