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ABSTRACT

In this paper, control and identification methods for
vortex wakes are investigated. The particular problem stud-
ied concerns the stabilization of vortices behind a flat plate,
using backside suction as an actuator. The flow dynamics
are modeled with a discrete vortex method. Feedback con-
trol results for a linear PI controller are presented as well
as identification results for a class of input/output models
that can be used to design more sophisticated controllers.

1 INTRODUCTION

Active control of fluid flows has attracted wide interest
in recent years (Bushnell, 1992; Gad-el-Hak, 1991; Gun-
zburger, 1995). The control of flow past bluff bodies has
applications in drag reduction, lift enhancement, and noise
and vibration control. For example, Saffman (Saffman,
1997) has suggested that by controlling vortices behind a
slender body, the lift force can be increased without greatly
increasing the drag force. This paper concerns the develop-
ment of identification and control methods for vortex wakes,
particularly wakes generated by objects with sharp edges.

The model problem considered here is the stabilization
of vortices behind a flat plate with backside suction as an
actuator. In the case of constant free-stream velocity, vor-
tex shedding occurs and a vortex wake forms behind the
plate. The paper demonstrates the feasibility of using feed-
back control in this problem by applying a constant-gain
linear feedback to trap the vortices and inhibit shedding
when there is no disturbance to the flow field. Most real
flow-control applications involve time-varying free-stream
velocities and unmodeled disturbances, and these will re-
quire more sophisticated controllers. Hence, the paper also
investigates the identification of input/output models that
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can be used to design such controllers. The class of models
identified here are especially appropriate for adaptive con-
trol, which was used in (Anderson, 1993; Chang, 1994) to
reduce oscillations in vortex wakes.

The flow dynamics are modeled using a vortex blob
method. In this method the evolution of the vorticity in
the wake is approximated by evolving a collection of discrete
vortices. The vortex shedding phenomenon (the principal
viscous effect) is modeled by employing a dynamic Kutta
condition (Cortelezzi, 1993). As discussed in a number of
previous papers (Cortelezzi, 1993; Cortelezzi, 1996; Sarp-
kaya, 1975; Sarpkaya, 1979) vortex methods provide a de-
scription of the dynamics as a model with far fewer dimen-
sions than direct numerical simulation. This reduced di-
mensionality makes vortex methods particularly attractive
as simulations to supply approximate dynamics for the task
of developing identification and control procedures. How-
ever, in order to make the vortex model suitable for identifi-
cation and control, it was necessary to modify the standard
discrete vortex method. Modifications that we employed
include an adaptive time-stepping scheme, vortex merging,
and a procedure for reducing the noise in velocity measure-
ments near the plate.

The results of this paper illustrate that with appropri-
ate modifications, discrete-vortex models can be quite useful
for control design and simulation. In particular, the agree-
ment found in this paper between the discrete-vortex model
and the identified input/output model with respect to the
minimum phase and nonminimum phase characteristics of
the flow field indicates that the identified input/output
models obtained from the discrete-vortex model capture the
characteristics of the flow that are important in control sys-
tem design.



2 DISCRETE VORTEX METHOD

The problem we consider concerns the wake generated
by flow about a flat plate. In our calculations, the plate
has length 4a, its midpoint is at (0,0), and the plate is
perpendicular to the free stream velocity Us(t). For this
paper, we use a = 1. A velocity sink (suction actuator) is
located at the center of the back side of the plate (i.e., at
(0%,0)).

To facilitate the calculation of the velocities, we use
conformal mapping (Batchelor, 1967). The velocities in our
problem are first computed in the mapped plane (¢ plane)
and then transformed back to the physical plane (z plane).
A circle in the mapped plane with center at (0,0) and radius
a is associated with the plate in the physical domain by the
conformal transformation
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The relationship between physical and mapped planes is
shown in Figure 1.
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Figure 1. The mapping between physical (z-plane) and mapped
plane ((-plane) for the flow past a flat plate.

A stream function ¥ has the same value for the corre-
sponding points in both planes. Therefore, velocities in the
physical and mapped planes can be written as

z—plane: w(z) = Z‘fl—\py ¢(—plane: v(¢) = chi—\? (2)
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Since the mapping is singular at the plate tips (% =00),
the velocity field in the physical domain will be infinite un-
less the corresponding velocity in the mapped plane van-
ishes. In general, the Kutta condition is the requirement

that the velocity field be nonsingular. In potential flow, the
Kutta condition is satisfied by choosing an appropriate cir-
culation. In the discrete vortex simulation used here, the
circulation is fixed, and the Kutta condition is satisfied by
choosing the strengths of newly introduced vortices so that
the velocity in the mapped plane vanishes at the images
of the plate tips. This approach has been used in previ-
ous vortex simulations (Chein, 1988; Sarpkaya, 1975; Sarp-
kaya, 1979). We follow most closely the implementation of
Cortelezzi (Cortelezzi, 1997), with some modifications for
initial vortex placement (Chen, 1997).

As the flow evolves, vortex sheets emanate from the tips
of the plate. The vortex sheets are modeled by a collection
of discrete vortices, each vortex having a prescribed circula-
tion T;(¢) and location ¢;(t). The evolution of the sheet in
regions away from the tips is treated as an inviscid evolution
and so the differential equation describing the motion of the
vortex centers (derived from Euler’s equations) is given by
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Here v,((;,t) is the sum of the potential flow velocities in-

duced by the sink and the prescribed velocity Uy (t). To
avoid the problems caused by large velocities occurring
when two vortices are in close proximity, the formula (4)
is slightly modified; we use the velocity field associated
with a vortex blob approximation (Chorin, 1973; Chorin
and Bernard, 1973).

In the region near the plate tips, viscous effects are ap-
proximated by introducing vortex elements at each time
step to simulate the separation of the viscous boundary
layer into the flow field. At the beginning of each inte-
gration step, a new vortex is placed near each tip, at a
location depending on the average velocity near the tip.
The strengths of these new vortices are prescribed so that
the Kutta condition is satisfied. Figure 2 shows streamlines
for the simulation of the flow past a flat plate. That the
streamlines are tangent to the plate at the tips is a result
of the Kutta condition.

One feature of this vortex model is that a pair of dis-
crete vortices is introduced at each time step. Thus, a large
number of discrete vortices are generated when simulating
several vortex shedding cycles (e.g., a simulation that is
required to assess the open-loop behavior of the system).
Since the work to compute one velocity field evaluation is
O(N?) (N=the number of vortices), the computational time
increases greatly. To reduce this computational time we im-
plemented a variable time step integrator for the differen-
tial equations and a vortex merging procedure (Cortelezzi,
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Figure 2. Instantaneous streamlines for the flow past a flat plate.

1993) to reduce the number of vortices in the calculation.
These two enhancements reduced the computational time
to acceptable levels. Specifically, the vortex simulations for
the control and identification problems in this paper used
between 300 and 700 discrete vortices (with two states per
discrete vortex). A flowchart depicting the evolution of the
vortex dynamics within one control time step is given in
Figure 3. Here, t; is the time at the beginning of the kt*
control time step, A is the length of the sample-and-hold
step for control (tx41 =tx +A), and Agrk is the integration
step, which is a variable (Agrg < A). (See (Chen, 1997) for
details)

|States and Control Variable at Time tkl
|

| Determine R-K step Arg, t — t+ Arg |

|Move Vortices for Arx |

| Vortex Merging and Cancellation |

| Criteria for Generating New Vortices |

| Balance Kutta Condition |

=ty +A

States at Time tg 1 (txr1 =t +A) |

Figure 3. Flow chart for discrete vortex scheme with variable step

size.

3 MEASUREMENTS

Our identification and control work required an output
measurement from the vortex simulation. In order to com-
pare our results with those of Cortelezzi (Cortelezzi, 1993;
Cortelezzi, 1996), we used the center of circulation and the
total circulation. The position of the center of circulation
in the mapped plane is defined by

C(k)_LNZ/ZT_C_ k=1:top (5)
e _ng) — e k=2:bottom /°

The center of circulation in the physical plane, zﬁk), can be

obtained by conformal mapping. The total circulation F&k)
is defined by

N/2
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where I'; is the strength of the it" discrete vortex.

For feedback control and system identification, we took
the system outputs to be velocity measurements at several
points in the flow field downstream of the plate. For ve-
locity measurement points near the plate, a characteristic
feature of our vortex method is that the velocity signal is
very noisy. A typical velocity signal is indicated by the
dashed line in Figure 4. Several standard spatial and time
domain filtering techniques were explored, but in general
they proved unsatisfactory. We found that a satisfactory
solution was to use the velocity induced by a pair of vor-
tices located at the centers of circulation (essentially using
the velocity induced by a pair of vortices that are amalga-
mations of all the vortices). Tn terms of the total circulation
I'. and the center of circulation (. the complex conjugate
of this velocity is given by
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The solid line in Figure 4 shows the value of this velocity
measurement, which we call the modified velocity measure-
ment. As Figure 4 shows, the modified velocity measure-
ment is much less noisy than the unfiltered velocity mea-
surement, and hence a better system output for use in the
PT controller in Section 5.



Velocity Profile at (0.0000+i*1.2053)

Vertical Velocity

5
Time

Figure 4. Comparison between unfiltered velocity measurement
(dashed line) and the modified velocity measurement (solid line) on

the downstream wall.

4 FLOW DESCRIPTION AND CONTROL PROBLEM

The uncontrolled flow is shown in Figure 5(a) and is
characterized by the formation of vortex street. The vortex
shedding causes unsteady drag forces to be exerted upon
the plate. In an effort to reduce these unsteady forces, the
control problem becomes one of trying to trap the vortices
behind the plate and thus inhibit the vortex shedding pro-
cess. Suction on the centerline of the downstream side of
the plate is used as an actuator.

The possibility that the vortices can be trapped and
vortex shedding inhibited is demonstrated in Figure 5(b),
where we show the results of applying an open-loop constant
control. In general, the amount of suction necessary to trap
the vortices when there is non-constant free stream veloc-
ity and/or unmodelled disturbances is not known, therefore
closed-loop control strategies capable of determining the ap-
propriate suction are desired.
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Figure 5. Instantaneous streamlines for flow past a flat plate.

The free-stream velocity used in our study is shown in

Figure 6. This velocity consists of an initial disturbance of
finite duration followed by a constant value. The initial per-
turbation accelerates the formation of large vortical struc-
tures behind the plate and enhances the process of vortex
shedding and reformation.

Free Stream Velocity

5
Time

Figure 6. Free Stream Velocity.

By using an idealized point vortex model of this flow
problem, Cortelezzi (Cortelezzi, 1997) developed a nonlin-
ear controller which performed very well in the case of
constant and sinusoidal free stream velocity. This con-
troller, with suitable modifications, was applied successfully
to a discrete vortex simulation similar to the one used here
(Cortelezzi, 1997; Chen, 1997). However, in an effort to
avoid the use of controllers designed with a complete (an-
alytic) knowledge of the system dynamics, as well as con-
trollers that require non-physical input measurements, we
began the investigation of linear feedback controllers based
on identified input-output models.

5 LINEAR PI CONTROLLER

The starting point for our control investigations is the
implementation of a linear PI controller to stabilize the vor-
tices behind the plate in the case when the free stream ve-
locity has the profile given in Figure 6.

For PI Control, the measured output is v, the modified
velocity at a point on the downstream wall. (This velocity
is vertical.) The desired output is a constant vg. We take
€ = vqg — v as the input to the controller.

Sm = 7KP€m 7KIZ {w%h} ’ (8)
i=1

where m denotes the time step, Sy, is the control suction
for the m!* control interval, €; = vg —v; with v; the output
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at the *” time step, and h is the length of the time step.
Also, Kp is the proportional gain and K is the integral
gain. To reduce the computation effort for each time step,
the following recursive form is used:

h h
Sm = Sm-1— (Kp +KI§)€m —(—Kp +KI§>€m—1- 9)

In our study, h is chosen to be 0.01, and Kp and K are
two constants that must be determined. In order to com-
pare our control results with Cortelezzi’s nonlinear con-
troller (Cortelezzi, 1997), the linear PT controller was acti-
vated when the rate of circulation production first changed
sign.

The measured output from the system consists of a
modified velocity measurement (as described in Section 3)
located at z = (07,1.9237). (Since the width of the plate
is 4, the coordinates of the top tip are z =(0,2).) In an
open-loop test with suction S = —1.4, one finds that the
vortices are stabilized and the average modified velocity at
the measurement point is 4.5.

Using the modified velocity measurement vy = 4.5 as a
target output and the free stream velocity profile of Fig-
ure 6, we found the linear PI controller quite capable of
determining an appropriate suction value to stabilize the
vortices. (In this case Kp = —0.2 and K; = —10.0.) Fig-
ure 7 shows the trajectory of the center of circulation for
the top vortices, along with the time histories of the hor-
izontal coordinate X _top of the center of circulation, the
suction strength, and the total circulation. The time aver-
age velocity measurement from ¢ =8 to ¢t = 10 is shown in
Table 1.

zél) = (X _top,Y _top) F&l)

Open-Loop (0.57,1.64) 20.11

Closed-T.oop (0.57,1.65) 20.19
S (v)

Open-Loop —1.40(constant) 4.50
Closed-Loop —1.42 4.50

Table 1. Time averages (from t = 8 to t = 10) of the results shown in
(1) (1)

Figure 7: Z¢’ = center of circulation (Top), I'¢’’ = total circulation

(Top), S = suction strength, ¥ = velocity measurement.

We also applied the linear PI controller with the mea-
surement being either the center of circulation or the total
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Figure 7. The simulation result of the linear PI controller with the
modified velocity measurement on the downstream wall as measure-

ment.

circulation. In both cases, we found results similar to those
with the modified velocity measurements: the controller was
able to determine the appropriate value of suction to achieve
the target output measurement and stabilize the large vor-
tices. (See (Chen, 1997) for details.) These and other ex-
periments indicate that a linear PI controller performs sat-
isfactorily when the free-stream velocity is perturbed by a
disturbance of limited duration.

In the case of a sinusoidal free stream velocity, the lin-
ear PI controller was able to trap vortices behind the plate,
but the measured output, as well as the center of circulation
and total circulation, contained significant oscillations. This
result is not unexpected because the linear PI controller, un-
like the nonlinear controller proposed by Cortelezzi, carries
no information about the dynamics of the flow. To reduce
the amplitude of such oscillations, a more sophisticated con-
troller will be needed. The first step towards developing
such controllers is the identification of input-output models
of the system. This is addressed in the remaining sections
of the paper.

6 SYSTEM IDENTIFICATION AND FREQUENCY RE-
SPONSE
Vertical velocity measurements (unmodified) at points
on the downstream side of the plate form the basis for our
system identification. The locations of the measurement

points are chosen in the mapped plane in the range of r =
(1,2,3,4) and 6 = I — (&)m, (k=1,2,...,16). The point
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numberings and corresponding positions in the plate plane
are shown in Figure 8.

Measurement Point Numbers

or r=1 r=2 r=3 r=4

-1 0 1 2 3 4 5

Figure 8. The position and numbering of the measurement points in
Z-plane. (The dashed line shows the locus of the intersection points

discussed in Section 7.1.)

As shown in Figure 9(a) and 9(b), the vertical veloc-
ity measurement, denoted by v, has contributions from the
free stream velocity, the suction, and the vortex dynamics.
Thus, in the vertical velocity measurement, both the free
stream velocity and the suction not only affect the mea-
surement through movement and strength variation of the
vortices, but also contribute to the measurement directly as
shown in Figure 9(a). In our study we found it useful to
remove these direct feed through terms and use the remain-
ing velocity as our measurement, or system output. Thus,
we decompose the vertical velocity as

v=KiUs + K25 +vy10 (10)

where KU, and K3S are the contributions to the vertical
velocity component from potential flow past the plate with
horizontal free-stream U, in the far field and suction S at
the mid point on the back side of the plate. The DC gains
K, and Ky, which depend upon the location of the mea-
surement point, can be obtained from potential-flow theory.
The remaining term v, in (10) represents the portion of
the vertical velocity due to the vortex dynamics.

In Figure 9(b) and throughout this paper, the notation
(+) means the time average of a quantity. Also, v,;(S)
denotes the output of the vortex simulation corresponding
to a suction of strength S.

The full dynamics of the flow are too nonlinear to be
represented by a single linear input/output model, so we
chose to identify a linear input/output model for perturba-
tions from a nominal steady-state flow. The nominal flow

> K1
Uso
> Vortex Votz ¥ v
- Dynamics _>C“>_>
S
- K2
(a)
u:SfSO y:vvtw(5>7<vvtw(SO)>

> G >

(b)
Figure 9. The relationship between input « = S — S(, and output
Y= thac(‘s) - <thw(50>>-

was produced by a constant nominal suction Sg = —1.5.
We identified the transfer function G in Figure 9(b), which
is the mapping from the input v =5 — Sy to the output
Y = Uyt (S) — (Uyiz(S0)). In other words, G is the transfer
function from perturbations in the suction S to perturba-
tions in the velocity measurement v,;,. To produce the
input/output data for identification, we excited the vortex
simulation by taking the input sequence v as a white-noise
sequence with mean 0 and variance 0.2.

The identified discrete-time input/output model has
the form of the ARX (auto-regressive with exogenous in-
put) model

y(t) +Zaiy(t—i) — Zbiu(tﬂ'), (11)

where the coefficients a; and b; are determined by a least-
squares fit to the data. We used the MATLAB ARX func-
tion to identify the coefficients in the ARX model of each
order n from 3 to 30.

The next task was to determine the order n for which
the ARX model best represents the input/output properties
of the system being identified. Typically, one incrementally
increases the order of the model, and hopes that the Bode
plots show convergence after a particular order. Such con-
vergence did not occur for our system. We believe that this
is due to the inherent non-linearity of the plant.

We then used the following systematic approach to de-
termine the optimal ARX order. The idea is to run a se-
ries of discrete vortex simulations with single-frequency si-
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nusoidal inputs and choose the ARX order for which the
frequency response of the model most closely matches the
frequency response of the simulation. By using a series of 33
input frequencies f;, we obtain a series of sinusoidal outputs.
For each input frequency, the ratio of output amplitude to
input amplitude for the vortex simulation is A;, and the
relative phase between input and output is ¢;. These am-
plitudes and phases are shown by the asterisks in Figure 11,
for measurement point 10 (r = 3).

To determine the optimal ARX model order n, we select
the order of the ARX model whose frequency response clos-
est in the Ly sense to the frequency response of the vortex
simulation. To do this, we minimize the fit-to-data criterion

T =" [A(f)el0UD) — A ? (12)

i=1

where N; = 33 for the results presented here. Figure 10
shows the fit-to-data criterion J with different model orders
at points 6 and 10 (r =3). The model order n that mini-
mizes J at each measurement point with » = 3 is shown in
Table 2. At all measurement points, the fit-to-data crite-
rion J is similar to the plots in Figure 10(b); in particular,
there always is a minimum value at some order n < 30.

Point Number | 1 [ 2 3 4 5 6 718
Optimal Order | 6 | 4 | 5 | 5 | 3 | 3| 5| 4

Point Number | 9 [ 10 [ 11 [ 12| 13 | 14 | 15| 16
Optimal Order | 5| 5 | 5 | 5| 5|9 | 7] 6

Table 2. The optimal model orders at measurement points down-
stream of the plate (7‘ = 3)

The result of the system identification using the optimal
order (n =15) at point 10 is shown in Figure 11. Amplitude
and phase responses corresponding to single-frequency in-
puts are shown by asterisks. The amplitude matches very
well, and the phase matches very well at low frequency. At
frequencies around half the Nyquist frequency, the phase
shows significant errors. However, because the amplitude is
very small in this frequency range, these phase errors do not
represent a significant difference between the frequency re-
sponse of the vortex simulation and the frequency response
of the ARX model.

We tested our identification procedure without remov-
ing the mean value of the I/0 signals and were not able to

Fit-to-data criterion (3)

s 10 20 25 30 5 10 20 25 30

15 15
System Order System Order

(a) Point Number 6 (b) Point Number 10

Figure 10. Fit-to-data criterion J for model orders n =3, ...,30
at points 6 and 10.

get credible identification results. Thus, as expected, lin-
earization about a nominal operating condition is crucial
for identification of systems governed by nonlinear dynam-
ics.

Point No=10; n=5

0.4 T T

Magnitude

0 0.5 1 15 2 25 3 35 4 4.5 5
Frequency(Hz)

phase

-100 I I I I T
0 0.5 1 15 2 25 3 35 4 4.5 5

Frequency(Hz)

Figure 11. Bode plots for the vortex simulation (*) and the identified
ARX model of order 5 (solid lines); Point Number 10.

7 TIME-DOMAIN RESPONSE

In this section, we evaluate the identified ARX model
by comparing its DC gain and step response to those of
the discrete-vortex model. The DC gain and step response
of the discrete vortex simulation are readily obtained, and
are two of the most important characteristics of the time-
domain response of any control system. The order of the
ARX model used here was the optimal order selected as
discussed in the preceding section.



7.1 COMPARISON OF DC GAINS

7.1.1 DC Gain of the Discrete Vortex Model A series
of vortex simulations were performed with U, = 1.0 and
constant suctions S = {—1.0,—1.1,—1.2,...,—2.0} chosen
as inputs. The mean modified vertical velocities, (vye;), at
different measurement points in the physical plane (Figure 8
and r =3 and r = 4) are shown in Figure 12. The results for
constant suction equal to —1.5 are shown in dashed lines.

One notices that even though the differences in the
inputs are uniform (in our case, AS = 0.1), the gaps be-
tween the curves are not uniform. This result demonstrates
that the dynamics of the vortex simulation is nonlinear.
The non-linearity can be inferred from the behavior of the
trapped vortical structures as suction is applied. With suc-
tion, these vortical structures do not move rigidly; the pres-
ence of the plate causes them to deform. This deformation
introduces non-linearity in the measured velocity.

An additional interesting feature of the DC gain curves
is the presence of a particular point at which all of the curves
intersect. This point (which we refer to as the intersection
point) occurs between points in 6 and 7 in Figure 12(a),
between points 5 and 6 in Figure 12(b). Analysis of the
corresponding plots for different values of r reveals a definite
trend for the location of the intersection points. The locus
of these intersection points is shown by the dotted line in
Figure 8. Currently, an explanation of this feature alludes
us; however, the change in character of the step response
near these points (as will be discussed in section 7.2) has
motivated current investigation.

7.1.2 DC Gain of the ARX Model In Figure 13,
Curve A shows the DC gain of the ARX model of optimal
order (table 2) identified at each of the 16 measurement
points (r =3, Figure 8). These ARX models approximate
the relationship between a perturbation from the nominal
constant suction Sp = —1.5 and the resulting perturbation
in the measured output. Hence, the DC gain of each identi-
fied ARX model is the value predicted by that ARX model
for the ratio

<vvtw (S>> — <vvtw<50)>

S S,

; (13)

where (v,:,(S)) is the mean value of the velocity measure-
ment from the vortex simulation when the suction S is con-
stant.

Figure 13 compares the DC gain of the identified ARX
model at each measurement point to the corresponding val-
ues of the ratio in (13) for S — Sy = 4+0.5 (Curve B) and
for S —Sp = —0.5 (Curve C). Curve B, for example, is the
difference between the curves in Figure 10(c) for suctions of

Mean Vertical Velocity

L - L L L L L L L L L L L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Point Number

(a) r=3

Mean Vertical Velocity
\

/4
/)
\ p /
N\ Suction=2.0
N

uction=1.0

L L L A
7 8 9 10 11 12 13 14 15 16
Point Number

(b)y r=4
Figure 12. Mean velocity measurement on the downstream side of
the plate.

-1.0 and -1.5, scaled by 1/(+0.5). Since the identified ARX
model is linear, its prediction of the ratio in (13) is symmet-
ric with respect to S — Sy; however, the actual ratio, which
is computed from the nonlinear vortex simulation, is not
symmetric in S — Sp, as evidenced by the fact that Curves
B and C are different. It should be expected that the least-
squares algorithm will produce some average of Curves B
and C by identifying ARX models with DC gains that fall
between Curves B and C. This is the case everywhere ex-
cept at points 6 and 7, where Curve A is very near one of
the other curves. With the limitations inherent in fitting a
linear model to a nonlinear system, the results in Figure 13
are the best that can be expected.

7.2 STEP RESPONSE

Here we examine step responses for measurement points
3, 6, and 10 (r = 3). Figures 14(a), 14(b), and 14(c) show
step responses of the vortex simulation at the measure-
ment points indicated, while Figures 14(d), 14(e), and 14(f)
show the corresponding step responses of the identified
ARX models of optimal orders. The step input is a sud-
den change in suction, from the initial constant suction
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DC Gains

Figure 13. The relationships between the DC gains of the vortex
simulation and the identified ARX model (r = 3). Curve A: DC
gains of ARX model; Curve B: ratio in (13) from vortex simulation
with Sop = —1.0, S = —1.5; Curve C: ratio in (13) from vortex
simulation with Sp = —1.5, § = —2.0.

So = —1.5 to the new constant suction S = —1.0; i.e., the
step is S — Sy = +0.5. The corresponding perturbations in
the measurement v,;, from the vortex simulations are the
time histories of the difference

Vota(S)(t) = vora(So)(£), > 0. (14)

This is the output plotted in Figures 14(a), 14(b), and 14(c).
The time when the suction is changed from Sy to S is taken
as t =0, and vy, (So)(¢) in (14) is the velocity measurement
with constant suction Sp = —1.5 for all ¢.

In Figures 14(b), the initial responses move to negative
values before recovering to positive steady-state mean val-
ues. This behavior is characteristic of non-minimum phase
systems. See (Franklin, 1994; Nise, 1992). On the con-
trary, in Figures 14(a) and 14(c), the step responses move
in one direction only, toward the steady-state values. This
is characteristic of minimum phase systems.

We ran a series of simulations with the same condi-
tions at all measurement points, (r =3). The signs of the
asymptotic values of the step responses are all consistent
with what is shown in Figure 12. From points 1 to 6, when
a step input is applied, the steady-state vertical velocity
increases. From points 7 to 16, the steady-state vertical
velocity decreases. The intersection point between points
6 and 7 separates these two regions. Figure 14(b) suggests
that point 6 lies in a transition region.

The same step input (magnitude 0.5) was applied to
the identified ARX models to obtain the results in Fig-
ure 14(d), 14(e), and 14(f). These step responses agree
with those for the vortex simulation with respect to both
the signs of the asymptotic values and the minimum-

phase/nonminimum-phase properties. Also, for measure-
ment points 3 and 10, as well as for most of the other points,
the mean steady-state values of the step responses are con-
sistent with the results shown in Figure 13 for DC gains.

125 130 135 140 145 150 155 160 165 170 125 130 135 140 145 150 155 160 165 170
Time. Time

(a) Flow simulation
(Point number 3)

(d) Tdentified model
(Point number 3)

(e) Identified model
(Point number 6)

(b) Flow simulation
(Point number 6)

Output

125 130 135 140 145 150 155 160 165 170 125 130 135 140 145 150 155 160 165 170
Time Time

(f) Identified model
(Point number 10)

(¢) Flow simulation
(Point number 10)

Figure 14. Comparison between the step responses of the vortex sim-
ulation and the identified ARX models (7" = 3).

8 CONCLUSIONS

A discrete vortex model was implemented to simulate
two-dimensional flow past a flat plate with a suction point
on the center line of the downstream wall. Conformal map-
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ping was used to transform this problem to the conventional
problem of flow around a unit circle. A “dynamic” Kutta
condition determined the circulations of the vortices shed
from the plate tips.

A recursive linear PI control algorithm was applied to
the case of a free-stream velocity with an initial perturba-
tion of finite duration. This PI controller was quite capable
of determining an appropriate suction value to stabilize the
two large vortical structures behind the plate. The PI con-
troller results for a sinusoidal free-stream velocity were not
as satisfactory. To lay the foundation for more advanced
controller design, we then focused on the problem of sys-
tem identification.

Through the use of a variable step discrete vortex
model, we are able to obtain sufficient data for system anal-
ysis and identification. We identified ARX model’s of orders
3 through 30 to describe the behavior of the vortex system
about a nominal state (constant suction). The ARX model
actually used to represent the system was selected by choos-
ing that model whose frequency response best matched the
frequency response of the discrete vortex system at a pre-
defined set of frequencies.

We compared the DC gains and step responses of the
ARX model and the discrete vortex simulation. The DC
gains of the ARX model approximated the DC gains of the
vortex simulation well. Typically, the model provided DC
gains that were bracketed by the DC gains of the system.
Additionally, there was very good agreement with respect to
the step response. The ARX models were able to capture
the change in the system from minimum phase behavior
to non-minimum phase behavior as the sample point was
moved.

It is well known that non-minimum phase systems are
more difficult to control robustly than are minimum phase
systems. Also, it is common that whether a control system
is minimum phase or non-minimum phase depends on actu-
ator and sensor locations. Thus, it should be expected that
the input/output mappings for flow-control problems can
be either minimum phase or non-minimum phase, depend-
ing on were in the flow field the measurements are taken.
The identified models, then, have two important roles in
flow control: first, to guide the placement of sensors and/or
actuators; second, to serve as the models used for controller
design.

The identification results reported here give us confi-
dence that ARX models can be used to represent the be-
havior of the discrete vortex system about a nominal state.
Current work is focused on the use of these models to de-
sign controllers that are capable of stabilizing vortices in
the presence of a wide range of free-stream velocity distur-
bances.
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