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Abstract

Methods for generating adaptive grids are developed in this paper. In-
cluded is the static deformation method which generates a final grid by
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deforming an initial grid using artificial time. Supersonic flows through
two wedges are calculated by using the deformation method, A time ac-
curate deformation method is also developed as a significant advancement
of this method. The deformation process takes place in real time as the
physical variables evolve according to the host partial differential equa-
tion. Level set functions can be used to form the monitor function. These
deformation methods are based on a deformation scheme that originated
in differential geometry, we refer to this as the traditional deformation
method.

A new deformation method for generating adaptive moving grids is
formulated based on physical quantities. Level set functions are used to
construct the adaptive grids, They are solutions of the standard level set
evolution equation with the Cartesian coordinates as initial values. The
intersection points of the level sets of the evolving functions form a new
grid at each time. The velocity vector in the evolution equation is chosen
according to a monitor function., A uniform grid is then deformed to a
moving grid with desired cell volume distribution at each time.

The above methods achieve precise control over the Jacobian determi-
nant of the grid mapping. The new method has all the advantages of the
level set approach.

1 Introduction

A key problem in numerical simulation of time dependent partial differential
equations is grid generation and grid adaptation. The problem this paper deals
with is how to greatly enhance accuracy and efficiency by using adaptive moving
grids.

The tasks of simulating transient problems on three dimensional domains
become enormously difficult when tens of millions of nodes are needed. When a
fixed grid is used the grid points are distributed in the physical domain prior to
the calculation of the solution. A drawback occurs when the solution to the PDE
exhibits large variations due to, for example, shock waves, moving fronts, and
boundary layers. Because of its static feature the grid is unable to efficiently and
accurately resolve such variations. This is especially so in transient problems
where the solution may not only show large variations in some regions, but may
also move rapidly with time, Thus the computed solution may fail to resolve the
fine structures of the solution. For instance, to correctly simulate the dendritic
growth of crystal line modeled by the Stefan problems, one must use fine grids
near the interface between the solid phase and the liquid phase. Figure 8 of [24]
" is used here to show the importance of grid sizes. As can be seen in Figure 1,
Using a state-of-the-art level set method, the 100x 100, 200x200, and 300x300
fixed uniform grids on the unit square give rise to unsatisfactory results of the
interface. Tt takes the 400x400 fixed grid to produce a sharp result. A 3D
simlation would need $4 million nodes. This would be too costly, even for this
method.

We can improve the accuracy and efficiency by using adaptive grids. The
idea is to generate the grids according to the salient features of the solution,







so that the nodes will be concentrated in regions where the solution changes
rapidly in order to improve accuracy, and fewer grid points are used in regions
where negligible changes in the solution occur.

There are two types of grids: structured and unstructured. One could also
use a hybrid grid. for instance, a structured grid could be used near the bound-
ary for resolving the boundary layers and unstructured grid elsewhere for han-
dling complex topology.

There are two strategies for grid adaptation:

1. Local refinement: Nodes are inserted where and when they are needed. It
is flexible and easy to conform to the boundary. But the solver and data
structure have to be modified after insertion and/or deletion of nodes. The
computational overhead is usually considerably higher and the accuracy
is unsatisfactory in some applications.

2. Moving grid: The total number of nodes and the connectivity between
them are fixed. The nodes are redistributed where and when they are
needed.

For general grid generation methods we refer to the books by Thompson et.al.
[2], Zegeling [4], Knupp and Steinberg [5], Carey [6].

At present, adaptive grid methods are mainly used with finite volume and
finite element schemes. This is because these schemes allow some flexibility
on grids, and in particular, can be used on non-othogonal grids. Deviation
from orthogonality affects the performance of these schemes as well. 1t is well
known that the increase in skewness of a grid may decrease accuracy. There
are applications in sciences and engineering where finite difference methods are
commonly used. The orthogonality property of the grid is often required for
these methods. Recently, S. Steinberg et al. developed a method to calculate
derivatives on arbitrary grids with a criteria for which points are neighbors [32,
33]. The traditional deformation method described in section 1 of this paper
accurately determines the node velocity and thus the time-dependent differential
equations can be transformed by the nodal mapping into Cartesian coordinates
on a logical domain. The transformed equation will then be simulated on a
fixed orthogonal grid. This approach can be used in combination with various
numerical schemes and with structured or unstructured grids. It is a moving grid
method which generates grids that move in real time, adapting to the features
of an unsteady solution. It is particularly suitable for use with structured grids,
but it could be used with unstructured grids as well.

Suppose that we want to simulate a scalar or vector field u(x, t) satisfying

wy (%, 1) = L{u) (1)

here L is a differential operator defined on a physical domain @ = D;in R®, n =1,2,3.
A common idea is to construct a transformation ¢ : Dy x [0,7] — Dy which
moves a fixed number of grid points on 2 to adapt to the numerical solution
as it is being computed on the logical domain D;. To be qualified as a trans-
formation, ¢ must be one to one and onto. Variational methods (cf. [1], [2])






and elliptic PDE methods (cf. [2]) define this transformation as the solution of
a system of PDEs which is created to control various aspects of the grid such
as orthogonality (“skewness”), smoothness, and cell size. The resulting system
of PDEs for grid generation is often nonlinear and requires intensive compu-
tation. Significant contributions were made to dynamically adapt the grid by
controlling the cell size through the Jacobian determinant of the transformation
in [1, 2, 3, 7). The moving finite element method was developed in {8] and is
useful for certain unsteady problems. Recently, moving mesh methods based on
Moving Mcsh Partial Differential Equations [11] were developed with remark-
able capability to track rapid spatial and temporal transitions for some model
problems. Hybrid techniques that use both grid motion and local refinement
showed their effectiveness for 2D problems ([9}).

Whereas current moving grid methods have associated stregths and weak-
nesses, they do not provide mathematical assurance that the “grid transforma-
tion ¢” is indeed a transformation. The methods have difficulties in controlling
the grid movements and in preventing singularities.

In this paper we will review the traditional form of the deformation method
which is based on a result from differential geometry. Then we will formulate
a new deformation method which is based on the level set approach and a
standard formula from fluid dynamics. Both methods move the nodes with
a proper velocity field so that the nodal mapping have the desired Jacobian
determinant and thus precisely control the cell size distribution according to a
positive monitor function. In both cases the velocity vector field is constructed
by solving a Poisson equation according to the monitor function. The main
difference between the two methods is that the former uses a system of ODEs
to move the nodes directly by the vector field while the latter uses a system of
PDEs to get the level set functions whose level sets generate the moving grid.
The ODEs are, of course, the characteristic equations for the level set based
PDEs.

2 The Traditional Deformation Method

The traditional deformation method is based on the deformation scheme of
Jurgen Moser and B. Dacorogna [12], [13] in the study of volume elements and
has recently been applied to numerical methodology {14]. The method provides
direct control over the cell size of the adaptive grid and the node velocities are
directly determined. The location of nodes can also be easily computed. The
method inherently defines a transformation which is necessarily injective, thus
ensuring that the transformed gridlines do not cross even in higher dimensions.
The static version of the deformation method was used with a finite volume
solver in flow calculation problems [18] (see Example 1). A one spatial dimension
version of the deformation method was used with a diseontinuous Galerkin finite
element method in numerically solving a convection-diffusion problem [16].
Recall that the Jacobian determinant of a mapping ¢(¢,t) from Dy to Dy
nR* n =123, is J(¢) = det V¢ = |dA’|/ {dA],where dA’is the image of a






volume (area, in 2D} element dA. The deformation method constructs ¢ such
that J(#) = f(#,1), and thus, it assures precise control over the cell size relative
to the fixed initial grid in any dimensions. Suppose that the solution fo
(1)has been computed at time step ¢ = #;_y, and a preliminary computation
has been done at time level ¢ = ¢;. Assume that we are provided with some
positive error estimator §(£,%) at the time steps t;_1 and ¢;.Define a monitor

function,
f(Ent) = 01/6(51t)7 (2)

where C; is a positive scaling parameter so that at each time step we have

fn(f—é?ﬁw)m:o. (3)

Note that f is small in regions where large error occurs and becomes larger in
regions where the error is small. We then seek a transformation ¢ : Dy — Do =
2 such that

det VO£, 1) = f(#(6,1),8)  tra <t <, (4)
QS(E:tk—l) = ¢5k—1(€) 6 onlh

where £ is a grid node of an initial grid, ¢5—1(£) represents the coordinates of
the node at + = #,_1((3) is necessary for (4) to be true). We specify that
¢(&) € 8Qfor all £ € 8D, . Note that (4) ensures the size of the transformed
cells will be proportional to f,i.e. the grid will be appropriately “condensed” in
regions of high error and “stretched” in regions of small error. It is well known
that if the Jacobian determinant of a transformation ¢ is positive in D, then
¢ is one-to-one in all of Dy. This ensures that the grid will not fold onto itself.

Solving (4) would appear to be a difficult problem in itself, raising questions
as to the practicality of the approach. However recent advances {15, 16, 17,
21, 22] have resulted in a method which produces the solution easily. The
underlying numerical method is finite element in [16], finite volume in [18], and
finite difference in [22], respectively. The computation of ¢ essentially involves
two steps. The first step is to find a vector field v(£,t) satisfying

L
f&, 1)

<v,n>=0 £€d n=outward normal to D;.

a6 =5 (jeg): €ePntastsn %)

The vector field v can be found by solving for w in the scalar Poisson equation
{for a fixed 1)

a 1 Hw
Aw(&,t):—a (m); e 529,5631)1 (6)

then setting v = Vw. Note: The constraint for the Neumann boundary condi-

tion is
/ﬁ <__LW> =90
ot \ f(€,1) ’






which is satisfied since [ ﬁ =area(Dy) =constant by (3).
The second step is to solve for #(&,t) from the ODE system (referred to as
the deformation ODEs)

SHEN =nGEDD  ta<t<t,EED) )

B, tk-1) = r-1(8),

where the node velacity n(€,1) = f(€,1)v(£,). A mathematical foundation
of the method is provided by the following Theorem ([16], [21], {22]]); det
Vé(&,1) = f(#{€,t),1) foreach £inDy eacht > 0. The theorem is proved

by showing £ (J(¢)/F(,t)) = 0 and therefore J/f =1 if (J/f)’o =1.

According to this theorem, J(¢) = f > 0.Consequently, the mapping ¢ is
injective (non-folding). Also by choosing f to be continuous {or smooth), we can
make the Jacobian determinant change continuously {or smoothly), which is
crucial in obtaining high accuracy in the computation.

A shortcoming of the deformation method is the lack of direct control over
the orthogonality of the grid lines of the physical domains. The fact that the
vector field v used in the deformation equation is irrotational, i.e. v = Vw, and
thus curl v = 6, helps to prevent excessive skewness in the grid, This is why
the method works well with finite volume algorithms in flow calculations.

For finite difference algorithms, we will transform equation (1) by x = ¢(¢,¢)
and solve the transformed equation on a fixed orthogonal grid on the £&-domain
(the logical domain). This approach will enable us to have the benefits of the
adaptive grids as well as the advantages of using a fixed orthogonal grid. This
idea will be demonsirated by some model problems in [22].

We begin with an initial grid on the physical domain Dy, which corresponds
to an orthogonal grid on a square (or a cubic) domain D;. Then we deform the
initial grid on the physical domain in real time according to a monitor function
f{€,1). Various equidistribution principles can be used to construct the monitor
function. A posteriori error estimates (if available), residuals, and truncation
errors, etc. are redistributed evenly over the whole domain. In most cases, we
want to put refined grids in the regions where u changes rapidly. For instance,
if the flow patterns exhibit shock waves, we can take (for Euler flows)

f=Ci/(1+Ca|Vp), (8)

where p is the pressure, Cy is a constant for adaptation intensity , Ciis a
normalization parameter. For viscous flow, we can use the Mach number in
place of the pressure. In general, in addition to the gradient of the unknown
variable u, terms involving the value of u and the second derivatives of u (or the
curvature of its level sets) can also be included. For instance,

f=0C1/(1+alul + BIVul* + v [V*u/?). (9)






For interfaceresolution, we can, for instance, construct f by using the signed
distance function d as follows: Let fbe piecewise linear such that

{1 ifld >0
f—{ 0.2 ifd=0. (10)

Normalize f so that f;,(} — 1) = 0, which is required if (4) is to be satisfied.
The constants 0.1 and 0.2 in (10) can be changed according to the desired
intensity of adaptation at the interface. The signed distance function can easily
be computed as was done in [30].

2.1 Numerical Implementation

The moving grid method has been implemented for some model problems on 2D
and 3D domains. The Neumann boundary condition for the Poisson’s equation
is implemented by introducing fictitious points outside the domain. A succes-
sive overrelaxation method (SOR) is then used to solve the resulting system of
linear equations. The initial values were the results at the previous time step.
The vector field v is then obtained by using second-order central-difference ap-
proximations to solve for v = Vw. The coordinates of the new grid are then
computed by solving (7) using a fouth-order Runge-Kutta method.

Example 1: Steady transonic and supersonic Euler flows around an airfoil
r1sg).

Example 2: Calculation of 2} supersonic flow through wedges.

We implemented the deformation method for calculation of a supersonic flow
field through two wedges as the first step toward simulation of flows through
turbo machine blades. The geometry is shown in Figure 24, where a uniform
grid is put in the region between two wedges. A finite volume flow solver as
that in [19] is used on the uniform grid to simulate the flow field. In Figure 2b
the computed pressure contour map is plotted over the uniform grid. It exhibits
multiple directional shock pattern and the resolution is not satisfactory. This is
because the grid is uniform and is constructed before the flow caleulation starts.

Based on the computed datafor the Mach number M, a monitor function f
is constructed by the following formula:

fle,u) = FRNGALIVIES

where (73 is an intensity constant and C} is a normalization factor. The monitor
function indicates the magnitude of flow speed gradient: it is small when the
speed varies rapidly, indicating the need of refined grid. A new grid is then cal-
culated by using the deformation method which involves two steps: (1) Solving
a Poisson equation, and, (2) Moving each node of the uniform grid by two defor-
mation ordinary differential equations. The new grid is shown in Figure 2¢. The
grid is clustered around the shock lines. Indeed the deformation method guar-
antees that the Jacobian determinant J of the transformation which takes the






initial uniform grid to the new grid be equal to the weight function f:

J({L‘, y) = f(ﬂ:ncw,ynew)

for each node (z,y). Thus the cell size of the new grid is proportional to the
weight function f.Finally, the flow is recalculated on the new grid and the
resulting contour map is shown in Figure 2d. This shows a sharp resolution of
the shock pattern.

The above examples show that the deformation method is promising for
solving realistic problems.

Example 3: A uniform grid is deformed into a grid conecentrated around a
pair of circles and the grid moves properly as the circles merge into each other
(see Figure 3). Let dbe defined by

d=((z—a)*+(y~ 1)’ =) ((z ~ ) + (v — d)* = p*), (11)

here {(a,b}is the (moving) center of the first circle, (¢, d) is the (moving) center
of the second circle, rand g are varying radii of the circles. Note: The two
moving circles are the zero level set of d. But d is not the signed distance from
the two circles. We use an initialization procedure developed in [23] to modify d
so that it becomes the signed distance near the two circles. Then, the monitor
function is defined by

0.2—8d if —0.1<d<0;
F=4 02+8d #0<d<0.l; (12)
1 if |d} > 0.1.

In the example the circles initially intersect each other and then gradually merge
to one expanding circle.

Example 4: An initial uniform grid is deformed to a grid clustered around
the interfaceof ice and water during the solidification process modeled by the
Stefan equations (See Figure 4). The monitor function fis defined as in Example
3 with d that is proportional to the level set function ¢ calculated by a level
set method (cf. [24]).

3 A level Set Deformation Method

In this section, a new deformation method is formulated. The usual evolution
equation for level set functions (as in {25]) with the Cartesian coordinates as
initial values is sclved. The velocity vector in the evolution equation can be
chosen correctly according to a monitor function. The intersection points of the
level sets of the evolving solutions will fortn a new grid at each time. Numerical
examples will be provided in which a uniform grid is deformed to moving grids
with prescribed cell size distribution at each time.

We first set up the principle of redistribution in the one-dimensional case
before describe the method in multiple dimensions.






Suppose that we want to construct a grid of N+1 nodes on [0, 1] at each time
t according to a desired distribution given by a positive monitor function f(z, t):

zot) = 0 < 21(t) < 2,0) < .. < () < mpa(t) < ... <an(t) =1,

with the length #;41—2; = f(z},t)/N, where x} is the midpoint of the subinterval
[#, #i1.1]- We seek a transformation ¢ from [0, 1] to [0, 1], which sends z; o k; =
#(xz;), where points k; = i/N, i = 0,1,2, ..., N, form a uniform grid on [0, 1]. The
condition ;41 — 23 = f(z},t)/N is equivalent to

(1/N)/(miy1 — @) = 1/ f(=(,1)

whose left hand side tends to the Jacobian determinant 8¢/dx as N — co. At
_ the limit, we get the condition for ¢ that

d¢/0z = 1/ f(2,1) = g(=,t) (Denotingg = 1/f). (13)

In 1D, this equation can be solved by direct integration:

#(a) = /ﬂ "1/ (@, ) da,

where fis normalized to satisfy the condition ¢(1) = fol(l/f(m,t))dm =1
foreacht. The preimages of the evenly placed points k; = ¢/N under the trans-
formation # — ¢(z,t)are the level sets of ¢ and they form the new nodes.

This idea of using level set of a mapping to define grid nodes can be extended
to multi-dimensions. To begin, let us recall the basic concept of modeling a
moving front by level sets. Suppose that there is a moving front in a fluid
flow with a velocity field v =(2, y, 2:), where x =(&,y, z)is the position of a
(fluid) particle at time t. We introduce a smooth function ¢z, y, z,1) with the
property that the front is given by the zero level set of ¢, ie. ¢(z,9,2,t) =
(for every tat the front. Differentiate the identity with respect to ¢, we get
$1 + ¢sTt + Syt + ¢, = 0, which can be written as

de(x,y, 1)+ <V, v >=10. (14)

This is the evolution equation for the level set function ¢. In the calculations
of fluid flows, vis the actual velocity of the fluid. Other important geometric
parameters such as the curvature of the front, the normal vector to the front,
etc., can easily be determined by ¢. See [31] for a thorough overview.

Our purpose is to generate an adaptive grid according to a positive monitor
function f as in (13). In two dimensions, we construct two functions ¢ and ¢ by
(14) with a properly chosen v. Then the intersections of their level set curves
will be the new nodes. Thus, let ¢(z,y,t) and (2, y,1) be solutions to the

evolution PDE
¢t(rsyzt)+ < v‘ﬁg" >={ (15)
Yoz, p, )+ < Vb, v >= 0.






The initial conditions are ¢(z,,0) = =, ¥(x,y,0) = v, respectively. The bound-
ary conditions are

$(0,y,1) = 0,¢(1,y,1) =1, ¢(2,0,t) = ¢(z,1,0) = x;

vf)(!ﬂ, e;t) = 0,1[)(:13, lxt) =1, ¢(O’ yit) = ’l,b(l, y’t) =¥

The vector field vis chosen so that the Jacobian determinant J(¢, ) is equal
to the reciprocal of a positive monitor function f, namely

7(6,%) = D(é, )/ Dlw,9) = 1/ f(z,3,1). (16)

Note that this condition is the natural extension of the 1D condition (13).
In three dimensions, we solve for three functions ¢, ¢z, ¢s from the equa-
tions

(i)t < Vi, v>=0,i=1,23, _ (17)

with the same type of initial and boundary conditions as in 2D,

Let ¢ = (), ¢2, $3). A suitable vector field v can be determined so that the
Jacobian determinant of the mapping ¢ is equal to the reciprocal of a monitor
function f, namely

J($) = D(¢1, ¢2, ¢3)/D(x,y,2) = 1/ f(z,y,2,1). (18)

The intersections of their level sets form the nodes of the moving grid.

The key to the success of the proposed method is to determine the velocity
vector field v so that J = g at every {. Thus, the grid cell size can be precisely
controlled, resulting in a moving grid that is adaptive according to the monitor
function f. We propose that the velocity vector v be determined by the condition

gt + div (gv) = 0. (19)

This choice is based on the transport formula in fluid dynamics, which can be
found in any standard textbook on fluid dynamics. See for instance, [27], or
[28]).
Let Q; be the image of an initial region Qounder the flow of the velocity field
v =(z¢, %, ), where x =(z,y, z)is the position of a (fluid} particle at time ?.
Theorem: (Transport Formula) For any function h(x,1), we have

d ah

— dV = — 4 div{hv)) dV. 2

dt/nih v= [ G v (20)
Let J = (1,42, ¢3)/D(,y, z) be the Jacobian determinant of the trans-

formation (z,y,2) — (¢1,¢2, ¢3). Taking h = g(x,t) = 1/f in (18),we get,by a
change of variables, that

d _d 1 dg .. _
Efn!ng— 5 ﬂogJ dV_./n,(at + div{gv))dV =0, (21)

16






where (19) is used to get the last equation. In the change of variables, D(z,y,2)/D(¢1,92, d3)=
J~1is used. (21) implies that g/~ !=constant since {pis arbitrary. Choose (g7~ )t=0 =
1, then we get gJ ! == 1 for any ¢ > 0 as desired.
To solve for v from (19), we first observe that in one dimension condition
(19) becomes
Hgv)/ 0z = ~gu,

and we can solve for vby a direct integration and get

w(z,t) = —jomgt/g-

This suggests a simple method for determining the velocity vector field v in
multi-dimensions. Let f(z,¥,z,t) > 0 be the desired grid cell size distribution,
which is constructed according to the physical variables being simulated and is
normalized as in {3). Let g = 1/f. We first solve for a real valued function
(potential) w from the Poisson equation on the z,y, z, domain:

bw=—g. (22)
with the Neumann boundary condition. Then, we set
v=Vu/g. (23)

It follows that div(gv) = div(Vw) = Aw = —g, as desired. The method is
based on solving a scalar Poisson’s equation, and thus it works on general three
dimensional domains.

3.1 Numerical Implementation

In the examples below, the Poisson equation is solved by an SOR scheme as
before. The evolution equations are solved with a second order ENO scheme
(as in [29]). A bilinear interpolation is then performed fo get the nodes.
Example 5: (Figure 5) Moving grids on [0,1]
Let f = 1/g where g = 1+ 10¢(2® — @ + 1/6). By a direct integration, we
can verify that

1
/ gdz = [z +10t(23/3 — 2% /24 ©/6]2=) = 1, for every ¢.
o

Thus the normalization condition (3), is analytically satisfied. We want to
generate a moving grid which is a uniform grid on [0,1]at £ = 0. In 1Dthe
velocity field is a real valued function. Solving for v from condition {19)

div (gv) = (gv)e = — 41,
we get, by a direct integration,

v = 10(—2%/3 + 2 — 2/6)/g.

11






Next, solve for ¢ : [0, 1]x[0,T] — [0, 1] from the evolution equation (14.1}:
¢t(w,f)+ < ¢€UJU >= O:

with the initial and boundary conditions ¢(z,0) = =, ¢{0,8) =0, ¢(1,1) = 1.

Let 1/N be the spacing of a uniform grid on [0, 1]. The preimages of the
nodes of the uniform grid on [0,1} form the moving grid at selected time {.
In figure 5, fand ¢ are plotted along with the nodes of the moving grid with
N = 60. Note that the grid spacing near & = Qand & = 1is getting smaller and
it is getting larger near x = 0.5.In fact, this is the intended distribution since
d¢/dz = g = 1/ f, which means Az; = f/N.

Example 6: (Figure 6)

Example 3 of Section 2 is reproduced by the level set method. The vector
field v is constructed by the method described in formulas (22) and (23). Then
equations (14.2) are solved by a second order ENO scheme as in example 5.

Example 7:(Figure 7)

Example 4 of Section 2 is reproduced by the level set method.

4 Conclusion

The traditional deformation methods are reviewed and applied to flow field
calculations. A new deformation method for moving grid is formulated. The
standard evolution equation for level set functions is used to construct the grid
mapping. 1t is shown that a suitable velocity vector field can be constructed
from a positive menitor function by solving a scalar Poisson equation. The re-
sulting moving grid has the desired cell size distribution at each time. Numerical
examples are given to demonstrate the method.
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FIG. 8. Convergence study: growth histories for 4 grid resolutions. The grid sizes used are: 100 x 100 (top left), 200 X 200 (top right), 300 X
300 (bottom left), and 400 X 400 (bottomn right).

S. Chen, B. Merriman, S. Osher, P. Smereka, "A Simple Level Set Method for Solving Stefan
Problems", J. of Comp. Physics, 135, (1997), pp.8-29. '

Figure 1. Interface Calculation by a Level Set method on Different Uniform Grids [22].
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Grid plot for example 3 fort=2.75
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Figure 3c: Grid plot for example 3 fort =4.125
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Figure 3d: Grid plot for example 3 fort=35.5




Figure 4a: Grid plot for example 4 for t = 0.0

Figure 4b: Grid piot for example 4 for t = 0.005




Figure 4¢: Grid plot for example 4 for t = 0.01

Figure 4d: Grid plot for example 4 for t = 0.015



Figure 4e: Grid plot for example 4 for t = 0.02

Figure 4f: Grid plot for example 4 for t = 0.025




Figure 4g: Grid plot for example 4 for t=0.03

Figure 4h: Grid plot for example 4 fort = 0.035
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Figure 4i: Grid plot for example 4 for t = 0.04

Figure 4j: Grid plot for example 4 for t = (.05
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Figure 5b: Monitor function, level set function and grid plots for example 5 for t =0.1
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Figure Sc: Monitor function, level set function and grid plots for example 5 for t =0.2
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Figure 5d: Monitor function, level set function and grid plots for example 5 fort = 0.3
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Figure Se: Monitor function, level set function and grid plots for example 5 for t= 0.4
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Figure 5f: Monitor function, level set function and grid plots for example 5 for t = 0.5
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Figure Sg: Monitor function, level set function and grid plots for example 5 fort=0.6



-—— — monitor function
level set function
* grid

2.5

1.5

0.5

illl\!llllllillill!lill[illlll]
.
-

0 0.25 0.5 0.75 1

Figure 5h: Monitor function, level set function and grid plots for example 5 fort=0.8
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Figure 5i: Monitor function, level set function and grid plots for example 5 fort=1.0



Figure 6a: Grid plot for example 6 for t = 0.25
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Figure 6b: Grid plot for example 6 fort=0.5
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Figure 6¢: Grid plot for example 6 fort = 0.75
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Figure 7a: Grid plot for example 7 for t = 0.0

Figure 7b: Grid plot for example 7 for t = 0.005
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Figure 7c: Grid plot for exémple 7 fort=10.01

Figure 7d: Grid plot for example 7 for t=0.015



Figure 7e: Grid plot for example 7 for t = 0.02

Figure 7f: Grid plot for example 7 for t = 0.025



Figure 7g: Grid plot for example 7 for t = 0.03
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Figure 7h: Grid plot for example 7 for t = 0.035



Figure 7i: Grid plot for example 7 for 1= 0.04

Figure 7j: Grid plot for example 7 for t = 0.05



