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ABSTRACT. Inspired by the recent work of Daubechies and Lagarias
on a set of matrices with convergent infinite products, we establish a
new geometric approach to the classical problem of (weakly) ergodic
pon-homogeneous Markov chains, The existing key inequalities (related
to the Hajnal inequality) in the literature are unified in this geometric
picture, A more general inequality is established. Important quantities
introduced by various authors are easily interpreted. A quantitative
connection is established between the classical work of Hajnal and the

more recent one of Daubechies and Lagarias.

1. OVERVIEW

In this paper, we restrict ourselves to Markov chains on finite states.

Section 2 and 3 together serve as an introductory section, where the his-
torical background and recent development are briefly reviewed, and our
motivation and new results are introduced.

In Section 2, we review the literature of ergodic non-homogeneous Markov
chains [1, 2, 4, 5, 8, 10]. The basic meaning of ergodicity is explained.
Section 3 displays the efforts of several authors to characterize the conditions
for ergodicity. Hajnal’s inequality [5] is singled out for its significant role
in this course. Qur most general inequality is introduced. New concepts
such as X-Markov chains and LCP (left-convergent-products, Daubechies
and Lagarias [2]) are defined. We also claim that the projected jointed
spectral radius of Daubechies and Lagarias can be characterized in a new
way.

Section 4 shows the motivation of our geometric approach by working
out the simple example of Cantorian (non-homogeneous) Markov chains. Tt
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allows us to see the many advantages of treating transition (stochastic) ma-
trices as transforms of simplices. This exampie is inspited by the conmnection
we find among the examples that Daubechies and Lagarias discussed in [2].

Section 5 is the mainland. In our geometric approach, a stochastic matrix
is understood as a transform of simplices. The classical stochastic matri-
ces such as Markov matrices and scrambling matrices are easily understood
in this picture. Classical quantities that were used to characterize ergodic-
ity find simple geometric interpretations. Remarkably, our approach links
ergodicity to a much more familiar one in complete metric spaces. The es-
sential meaning of Hajnal’s inequality is understood with our most general
result, whose proof is reduced to a simple relation between a simplex and its
linearly contracted copy. We thereby generalize the results of Markov (see
Seneta [8]), Hajnal [5], Dobrusin [3], and Paz and Reichaw [6].

In the last section, we define a digital character 7(X) for a set of stochastic
matrices Y., which is called the Hejnal rate. It leads to a necessary and
sufficient condition for ergodicity. We also show that in the ergodic case,
the Hajnal rate is exactly the projected joint spectral radius introduced by
Daubechies and Lagarias in [2].

Most classical results were only about a finite set of stochastic matrices
([1, 2, 10]). The generalization to a compact set of stochastic matrices
continues the author’s work in [9].

2. PRELIMINARIES

Given n distinct states [1},(2},--+,|n), a homogeneous Markov chain is
characterized uniquely by its one-step transition matrix P = (pij)nxn. Here
pi; is the probability for a “particle” in state |7} to transit to |f) directly.

Since at each step, the particle must evolve to some new state,
patpiet - t+pm =1

Such a non-negative matrix whose row sums are always 1 is called a sto-
chastic mairiz. To put it in a familiar way, this paper is about products
of stochastic matrices and their convergence as the number of matrices in-
creases to infinity.

A (homogeneous) Markov chain P is said to be ergodic if (in Hajnal’s
language [5])

“The particle forgets its past.”
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It can be made rigorously as follows. Assume that initially no state is

r 11 H PRI i y o 2t I T Ak L] ¥l 4 S 3 NI M I T [
preierabie, 1.e. at fime siep { = U, ihe probabiity Of HOGINE L€ Parvicle in

any state |4) is 1/n. Suppose that during a certain experiment, the particle
is observed in some state |7} at some time step ¢ 3> 1. Then the ergodicity
condition means that almost nothing can be concluded about the initial
state of this particular particle, i.e.

. ) 1

Prob(Xp = |1} | Xe=15)) ~ =

for any state |i). Here event X, = |k) means the particle is found in state
|k) at time step s. Let pfj denote the probability for a particle initially in
state |i) to be in state |§) at time ¢, and p{ the probability for Xo = |i).
From Bayes’ formula

ptpf
Prob(Xo =i} | Xi = i) = =55
( [ | 2 > k=1 Pijpg,
we conclude that
Pip? = phd,s
for any 7 and k. Since it is assumed that pf = 1/n for all 4, we must have

,'Pﬁj = chj-
In the homogeneous case, the matrix (p?fj Jnxn 18 in fact PY. The ergodicity
condition therefore demands that as t increases, each column of P* tend to
be a constant one {though this constant may change from time to time).
Throughout the paper, J always denotes the column vector (1,1,---, l)T.

A p.d.f (probability density function) p is a nonnegative row vector (p1, pa, -+

with a unit sum. From above, a rigorous definition of ergodicity is

Definition 2.1 (Ergodicity. Hajnal [5]). A (homogeneous) Markov chain
whose transition matrix is P is said to be ergodic if for any € > 0, there
exists M, such that for any m > M, one can find a p.d.f. p,

1P™ - J-pl<e (1)

Since all matrix norms are equivalent, it is unnecessary to specify the type
of norm we are using.
In the homogeneous case, Condition (1) is equivalent to:

P® = lim P™ exists and rank(P%) =1 (2)

L=+ OO

+ Pn)
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That (2) implies (1) is trivial. From (1), for any n > 0 and m > M,
[P — P = (P ~ T p)+ (T p— P7)
<|PrP™ =J-p)ll+|13-p - P
<CP™ -J-p|| £ Ce.

(The constant C' depends merely on the norm we are using since the set of
stochastic matrices is bounded.) Therefore the sequence P™ does converge
to some P°°, which must have rank 1. This is the condition (2).

The picture changes as one considers the non-homogeneous case, A
Markov chain is said to be non-homogeneous if the one-step transition ma-
trix P(t) changes with time step ¢. In applications, such a model is usunally
more successful due to the many changing factors that control the transition
process. For a non-homogeneous Markov chain, the associated transition set
3 is defined to be

X ={P | at some time ¢, P(t) = P},

which is a set of stochastic matrices. In this paper, we shall consider fre-
quently the opposite direction: given a set of stochastic matrices X, we are
interested in all 2-Markov chains. A X-Markov chain is one whose transition
matrices are all taken from X.

Given a non-homogeneous Markov chain (P(1}, P(2),-- ), define

P = P(i+ 1)P(i+2) - P(4).
The Markov chain is said to be ergodic if for any given ¢ > 0, as 7 — oo,
each column of P¥ gets to be a constant column. (3)

_(Though the constant may change with j.) Accurate statement like (1) can
be put down similarly. However, unlike in the homogeneous case, generally

one should not expect that lim; ., P* exists.

Definition 2.2 (Sub-Markov chain). Given two Markov chains whose tran-
sition matrices are (P(1), P(2),---) and {Q{1),Q(2),---), respectively, we
say the latter is a sub-Markov chain of the former if there exists a sequence
0<mg<my <mq <+, suach that

Q(k‘):Pmk_l:mk: k:l,?,--'

Lemma 2.1. A Markov chain is ergodic if and only if one of its sub-Markov

chains is ergodic.
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Proof. It suffices to prove the direction from the right to the left. The other

one is trivial. Suppose thai the sub-Markov chain {G{1) = P™™,Q{2) =

Pmims L) s ergodic. We need show that the statement (3) is true. Sup-

pose
mp—y <1< mgp < mi-1 £ J <MK,

for some k£ and K. With i being fixed, as 7 — oo, so is K. Hence for any
€ > 0, there exists J, such that for any j > J, there is a p.d.f. p, such that

1" -3 -pll < e

Now that
pii o pimk . QRK | prrci
setting g = p - P™&% (which dei)ends on j), we have
[P~ g < [P (@ praci -3 q))|

T A

= i@ — 3 - p)pmc|

< G| QMK — 3 p|| < Che.
Here 7 and €5 only depend on the norm. This completes the proof. i

Several authors have studied the conditions for ergodicity and the asymp-
totic behavior of P¥/, which will be seen in details as we proceed.

3. HAINAL'S INEQUALITY AND THE JOINT SPECTRAL RADIUS

To a large extent, this paper has been inspired by the recent work of
Daubechies and Lagarias [2] on the convergence of infinite matrix prod-
ncts, where non-homogeneous Markov chains served as one typical example
for their general results. The geometric approach was discovered after our
studying the relation between non-homogeneous Markov chains and the sec-
ond class of their examples — the iterated function systems (see the next
section). In this section, we review the existing results and outline some of

our major contributions.

3.1. Hajnal’s inequality. A stochastic matrix P is called a Markov matriz
(Seneta {8]) if

P contains a positive column. (4)
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By definition, if a non-homogeneous Markov chain {P(¢) | t = 1,2,---}
t

. b3l i1 ~ 1 el h . . 1 1 N N L2153 T . -
15 ergoedic, then Ior e¢acit nxed t, as j pews large enougi, 7 iust be a

Markov matrix, since it is close to a rank one stochastic matrix. Based
on his memorylessness picture of ergodicity mentioned above, Hajnal [5]
introduced the powerful concept — scrambling matriz.

Definition 3.1 (Scrambling). Let P be the one-step transition matrix of
a given Markov chain. P is said to be a scrambling matriz il for any two
distinct states |i) and |j), there always exists a state |k), such that both
one-step transitions are possible: |¢) — |k}, and |j} — |k}); or equivalently,

pix and p;p are both positive.

In another word, for each pair of rows in P, there is a column such that
the intersections are both positive. For any two vectors

az(“ly"':“'ﬂ.)? b:(bh'"abn)!
we define a new vector -
aA b= (min{as, by), -, min{a,, b))
Denote the ¢-th row of P by p;, a p.d.f. To “measure” the scramblingness,
Hajnal [5] defined
MP) = ngin [|p: A pjilz-
Here,
1
lally = (laa]* + <+ + |an[?)<.
It is easy to see from the definition that
(i) P is scrambling if and only if A(P) > 0.
(i) A(P) = 1 if and only if P has rank 1. Especially, if A(P) = 1, Pis a
Markov matrix.

Following these notations, the key inequality in the theory of ergodic
Markov chains — Hajnal’s inequality [5] can be stated simply. Define the
Hajnal diameter of a stochastic matrix P as

diameo(P) = max||p; = pjfeo-

Classical Result 3.1 (Hajnal’s inequality). If P and @ are both stochastic

matrices, then

diameo (PQ) < (1 — M P))diameo(Q).
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To see its fundamental role in the literature, check some of the major clas-
sical results whose proofs were closely based on this inequality: Hajnal [5]
provided a necessary and sufficient condition for ergodicity; Wolfowitz [10]
connected ergodicity to the condition of SIA (see also Section 3); and fi-
nally, Anthonisse and Tijms [1] obtained the exponential convergence rate
for infinite products of certain stochastic matrices.

Note that Hajnal and other authors before us did not use the notations we
use here, nor adopt the point of view we have here that important gquantities
emerging unconsciously in the literature are in fact closely related geometric
objects such as norms and diameters. From this geometric standpoint, not
only that we can understand better Hajnal’s inequality and its generaliza-
tions by other authors (Dobrusin [3]; Paz and Reichaw [6]), but also we are

able to establish its most general form (Section 5).

Theorem 3.1 (Generalized Hajnal’s Inequality). Let ||-|| be @ vector norm
in R™. For any stochastic matriz P with row vectors py,- -+, Pn, define

diam(F) = max||p; — p;i-
Then for any two stochastic matrices P and @,
diam{ PQ) < (1 — A(P))diam().
3.2. SIA set.

Definition 3.2 (SIA). A stochastic matrix P is said to be a SIA matrix
(stochastic, irreducible and aperiodic; See Wolfowitz [10]) if Condition (2)
is satisfied. A set of stochastic matrices ¥ is called a STA set if any finite
product in ¥ is 2 STA matrix.

We have seen that a homogeneous Markov chain is ergodic if and only if
the associated one-step transition matrix is a SIA matrix. Wolfowitz [10]

generalized this result to the non-homogeneous case.

Classical Result 3.2. Suppose a finite set £ of stochastic matrices is a
SIA set. Then, any 3-Markov chain is ergodic.

Wolfowitz in fact showed that all ©-Markov chains are uniformly ergodic.
The major tool of his proof is again the Hajnal inequality.

3.3. The projected joint spectral radius. Recently, motivated by the
matrix aspect of the compactly supported wavelets, Daubechies and La-
garias [2] studied an interesting class of matrix sets, which we shall call
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LCP (left-convergent-product) sets to fit our context. Their work added a

new chapter to the theory of ergodic non-homogenevus Markov clains.

Definition 3.3 (LCP set). A set X of matrices (unnecessary to be stochas-
tic) is said to be an LCP set if for any infinite sequence (A1, A,--+) € %,

A = im A Apm-o1--- A exists.

T OO

(Pay attention to the direction of infiniteness.)

An LCP set is called a V-LCP (or vanishing LCP) set if the above limit
is always a zero matrix.

An LCP set is called a U-LCP (or uniform LCP) set if the above limit
converges uniformly for all sequences (see also Shen [9]).

A classical result of Daubechies-Lagarias [2] shows

Classical Result 3.3. If ¥ is a /' — LCP set, then

(i) The eigenvalue X = 1 is geometrically simple for any matriz in X (i.e.
no 1-Jordan block of size greater than 1).
(i) All matrices in X share ¢ common I-eigenspace Eq.
(iii) Let @ denote any (skew) projection along By (i.e. Q* = Q and the
kernel of Q is ezactly E,). Then

Q2QT = {QAQT | A€ X}

is a V-LOP set,

Besides, a finite set ¥ of stochastic matrices has the property that any -
Markov chain is ergodic if and only if it is a rank 1 U-LCP set.

The dimension of Eq is called the rank of the U-LCP set.

Suppose ¥ is a set of stochastic matrices. To analyze convergence, both
Hajnal [5] and Daubechies-Lagarias [2] introduced two characteristic quan-
tities: the Hajnal diemeter diame,(-) we defined earlier and the projected
joint spectral radius. The latter concept is a more general one than the
former. The Hajnal diameter, which may only be meaningful for stochastic
matrices, however, appears to be intuitive and more intrinsic for studying
Markov chains.

In the last section, we shall establish a quantitative relation between their

work.

Theorem 3.2 (Projected joint spectral radius v.s. Hajnal’s rate). Suppose
Y i5 a finite set of stochastic matrices so that all X-Markov chains are er-
godic. Let By be the common I-eigenspace of ¥ and ¢ any skew projection
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along Ey. Then
T
p(QEQT) = 7(3).

In the theorem, p is the classical joint spectral radius (Daubechies-Lagarias [2];
Rota-Strang [7]. Also see Section 6). w(X) is called the Hajnal rate and is
defined by

diam(Z,,) = sup diam(B)
BeX,,

() = lim sup diam (%, )/™.

T OO

Here X, = {434y + Ay | Ai € T}
As a result,

Corollary 3.1. Let ¥ be a finite set of stochastic matrices. Then all X-
Markov chains are ergodic if and only if 7(X) < 1.

This concludes the introduction part of the paper.

4. AN EXAMPLE: CANTORIAN MARKOV CHAINS

What has motivated our geometric approach is this simple example.
Define

Fy =

10
2 1] J b=
3 3

and ¥ = {P,, P,}. For any real number 2 € (0, 1], define a Markov chain,
which we call the Cantorian z-Markov chain. Let = 0.1ty --- be the
unique infinite dyadic expansion, i.e.

t i

Bibi e

The 2-Markov chain is one such that at each time step n, the one-step

=

transition matrix is P, . Define the associated Cantorian number
2 2y 23
Cp = ——— o= —— e,
= 3 + 9 + o7 +
Then ¢, obvicusly belongs to the ordinary Cantor set.

Proposition 4.1. Define
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Then
P,= lm PP, Py
Moreover, the convergence is uniform with respect to all x € (0,1].

This means that ¥ is a U-LCP. Hence any Cantorian z-Markov chain is
ergodic. We now interpret Proposition 4.1 in a geometric way, rather than

from a probabilistic approach.

= 24

w,= z/

Ficurk 1. Cantorian Markov chains

In the complex plane (or 2-D real linear space), any pair of distinct points
2p, 71 defines a line segment, denoted by [2921]. Both Py and Py can be seen

as a mapping of line segments {see Figure 1):

Py : {z071] — [wown], Py [20m] — [uowal,
with
wWo 20 20
= P S
(’“’1) i (zl) (%Zﬂ + %zl)
(5] 21 2z
Now that

1
llw1 — wol| = [Jur — wol| = §HZ1 ~ 2ol (5)

the two maps are both contracting! Iteration of Eq. (5) implies that if

(""ﬂ) = Py, - Py (ZD) ,  te{0,1},
™ 1

1
lvo — 1] < 5;”20 — 2] (6)

then
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If we apply the above analysis to the two special line segments [01] and [10],
then the z-Markov chain is easily seen to be ergodic.

On the other hand, given a line segment {z0z1], if we iteratively apply
P, P, -, the geometric picture clearly shows that we are essentially con-
structing one branch of the classical Cantor dust on [zp21]! Take 2 = 0 and

z3 = 1. Suppose

Then [vT*9"] is one of the 2™ segments at the m-th step of constructing the
classical Cantor dust on the unit interval. Hence o', v* — ¢y as m — oo if
¢ = 0.6 - --. Similarly, if z5 = 1 and z = 0, then ¢]* and v}{" converge to
1 — ey

This simple special example contains all the necessary geometric ingredi-
ents of studying ergodicity. First, the “contraction rate” -:13- plays a crucial
role in the convergence process. Secondly, the convergence is pretty much
linked to a familiar one in metric spaces. Let Q be a complete metric space.

Suppose
Ki>KyD---

is a chain of nonempty compact sets such that the diameters tend to zero.
Then there must exist a unique point v € Q, such that

] Em ={v}.

m=1

This geometric picture is developed for more general ergodic non-homogeneous
Markov chains in the next section. The number 33; shall be replaced by new
appropriate quantities (i.e. p(X) and A(Z) in the next section). At this
point, please notice the connection among the unique point v in this ab-
stract setting, the rank one of the U-LCP X, and the rank one condition of
ergodicity.

One major advantage of the geometric picture is that most analytical
quantities and relations find their simple explanations. Before us, those
quantities were introduced to the literature mostly from the probabilistic
intuition or analytical point of view. The geometric correspondence estab-
lished here unifies the theory of ergodic Markov chains.
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5. STOCHASTIC MATRICES AS TRANSFORMS OF SIMPLICES

5.1. Simplices in R™ For any ordered n vectors (vertices) vy,vg, -+, vy
in R”, the associated n-simplex is their convex hull, denoted by [vyvg - v,].
That is,

[vi---vy] = {Zﬂivi | a; > O,Zag =1},
i=1 i=1

From example, for n = 2, [v1vy] is a line segment; and for n = 3, [vivavy] is
a triangle. The simplex is called non-degenerate if the n vertices are linearly
independent. A non-degenerate n-simplex is » — 1-dimensional.

Let

ei:{os"'v{)al!oa"'a(}]a

for it = 1,.-+,n, be the canonical basis of R". The associated simplex
[€1 - e,] is called the canonical simplez.
For a given stochastic matrix P = (Pij)nxn, we define a transform of
simplices
[Vieva] = [vi - vh),
by requiring
VE = prvi 4 prava + -+ + PinVin.

It is obvious that

Proposition 5.1.

[v] - vil C [vi-- - val.
A special case is
[ef ---e3] =[p1--Pnl,

where p; is the ¢-th row vector of P. For simplicity, we denote this simplex
by [P].

Proposition 5.2. There exists a one to one correspondence between the
set of (n by n) stochastic matrices and the set of all (ordered) n-simplices

contained in the canonical simplez.

The concepts such as Markov matrices and scrambling matrices (Sec-
tion 3) from probability considerations have a “visualizable” geometric cor-

respondence.
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Proposition 5.3 (Markov matrices). A stochastic matriz P is a Markov

S SR SN SRR SN I S
GELTLE §f GG OTuy i Jor aiy i

a verter vy, such that

VB (Y Vi Vioa¥avig - va] = 0.

Here, by convention, s means having the element e dropped. (See Figure 2.)

Vi

P is a Markov matrix P Is not a Markov matrix

Ficurs 2. Markov matrices.

Similarly,

Proposition 5.4 (Scrambling matrices). A stochastic matriz P is scram-
bling if and only if for any non-degenerate n-simplex [vy---v,], any ¢ and
i, there exists k, such that

[vivT] ﬂ Vi Vie1Vavigr o vn] = D

(See Figure 3.}

5.2. Geometric approach to Markov matrices. We illustrate our geo-
metric approach by first proving the following classical result mostly due to
Markov.

Theorem 5.1. If ¥ is a finite set of Markov matrices, then any L-Markov
chain is ergodic.
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vy =V

P is scrambling P is not scrambling

Fi1GURE 3. Scrambling matrices.

Proof. (Referring to Figure 4.) Fix a non-degenerate simplex [vy - - v,]. For
any P € X, there exists k, such that

Wl vl n (Vi VE_19EVies - Va) = 0.
Define
px( ) = min pig,
and
w; = {1 — w (P)vi+ pu PYVi, t £ K.
Wi = V.
It is easy to see that

] ] € [ wal

Notice that the new w-simplex is simply a uniform linear contraction of
the original one with vy, as the fixed point, and the contraction rate 1—pu.(P).
Hence, under any linear norm,

diam([v{ -+ -vP]) < diam([wy - wa))
< (1= pu(P))diam({vy - - - vn])
< (1= pu)diam([vy -+ val),
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Wk= Vk

FiGURE 4. Proof of Theorem 5.1.

where,
pe = minp(P) > 0.

For any infinite sequence (P, Pz,---) € £, Let vfjl"'P’“ denote the i-th
vertex of the simplex obtained from [vy -+ -v,,] by successively applying the
transforms Py,---,P,. Then the above inequality implies

diam([v* v < (1= )" diam([ve - va)) = 0,

as m — o0o. On the other hand, the sequence of simplices

NCERRRTER 7 Akia | o)

is a non-increasing chain of compact sets (by Proposition 5.1). Therefore,

there exists a unique point, say v, such that
PP PPy
{v=[) vy bn),
m

Especially, if we take the canonical simplex, and denote v by p, then

e-i:’l'“pm P
lim P,---P = lim : =11 =J-p.
T r OO m—Co

eftPrl|p

Since the convergence is controlled by the factor 1 — p, < 1, the set L is a
U-LCP. Hence any ©-Markov chain is ergodic. This completes the proof. [
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Remark 5.1.

(i} The above contraction rate 1 — p, can be improved as follows. Define

(ii)

(i)

p(P)=[[p1 APz A APrlicos
Y= Py,
#(Z) = max p(P)

With p, being replaced by g, the above proof still works. Therefore,
diam([vF - -vE]) < (1 - p(2)diam([vs - ~va]),

for any P € ¥ and simplex [vy---v,]. It is not difficult to see that
this intrinsic number 1 — (%) gives the tight converging rate in certain
cases.

If we take I; norm in R™ and apply the above analysis to the canonical
simplex, then

diam([P - Pi]) < J[(2 ~ (o)) dinm(fes - -e,)

i=1

m
=2 [J(1 = u(P),
=1

since under Iy norm, the diameter of the canonical simplex is 2. This
inequality is called the “Markov Theorem” (see Seneta [8]). Hence the
Markov Theorem is a special case of ours.

The combination of the above analysis and Lemma 2.1 leads to a result
mostl:y due to Markov.

Classical Result 5.1 (Seneta {8]). A non-homogeneous Markov chain

whose transition matrices are P(1), P(2),--- is ergodic (See Section 2)
if and only if there exists sequence of index 0 < mp < my < -, such
that

#(ng:ml) +#(Pm1:m2)_|_ cee = OO,

Example — The Sierpinskian Markov Chains.

Take any three 3 by 3 stochastic matrices

a * % * d % £ % g
Pr=1b * *|, * e *|, * * hl,
c * * * f * * & 1
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such that
1
min(a, b, -, h,4) > 7"

In addition, suppose all matrices are non-singular. Define % = { Py, P2, P3}.
We call any S-Markov chain a Sierpiriskian Markov chain. From the above
theorem, any Sierpifiskian Markov chain is ergodic. This example generalizes
the Cantorian Markov chain. The corresponding geometric picture is very
close to the construction of the classical Sierpiniski gasket (see Yamaguti, ot

al. [11]).

5.3. Geometric approach to scrambling matrices. Since the diameter
of a simplex is in fact a quantity determined by the pairs of its vertices, it is
therefore plausible from the geometric point of view, to consider a “pairwise”
version of Markov matrices — scrambling matrices (see Section 3).

For scrambling matrices, the quantity p(P) defined above is too “coarse.”
The better one is the following A(P), first introduced by Hajnal {5].

Theorem 5.2 (Generalized Hajnal’s inequality). For a stochastic matriz P,
define
A(P) = min [p: A il
Then, under any norm of R™,
diam([v] -+ -vE]) < (1 = A(P))diam([v; - - - va])-
Proof. (Referring to Figure 5.) For any given pair of i # j, suppose
P: A P;= (61362: te :671.)

From the given simplex [vy---vy], construct

wi=(1=Y_ &)+ 8, (7)

I£k 12k

for k =1,2,---,n. Then it is easy to see

vf,vf? € [wi---wnl
Hence,
Hv.fj — Vf” < diam{[wy - - - wy]).

If we show that

diam([wy -~ w,]) = (L= Y _ & )diam([vy - v,]), (8)
k=1
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then the proof is complete since ¢ and j are arbitrary and

MPY < & =piApslh
k=1

Therefore, it suffices to show that (8) is true. This is the following lemma.
O

F1GURE 5. Proof of Theorem 5.2 (i = 2,7 = 3).

Lemma 5.1. Suppose wy,--- ,w, are constructed from a given set of vec-
tors Vi, , vy, by Eq. (T) for some §;; > 0 and 3 ;_, 6 < 1. Then (8) is
true.

Proof. Tt is simply because
wi—w;=(1—=68 — = 8)vi—v;),
for any ¢ and j. O

Remark 5.2. The proof of Theorem 5.2 and this last equation make two
points very clear. First, the generalized Hajnal inequality is tight in some
special cases (for example, Vf = wg, for k = 1,---,n). Secondly, the
quantity A(P) defined by Hajnal is better to be understood from the last
equation. It is essentially a concept belonging to linear spaces, “orthogonal”
to the norm we use. Historically, A(P) was frequently mixed with the special

norm defining diam({P) (See Seneta [8], for example).
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Corollary 5.1. For any stochastic matriz P and linear norm in R",
diam([P]) < (1 - A(P)) diam(fes - -e)).
Proof. Apply the theorem to the canonical simplex. a
If we take the L, norm
(@, 8, -+, @)oo = max{ial, [b],---,|dl},
then the classical Hajnal inequality is obtained.

Corollary 5.2. Let R = (ri;) = PQ = (pi;)(q;) be a product of stochastic
matrices. Then

max max {ry — rix| < (1— AMP)) maxmax|gix — gkl
k 1,3 k 1,7

If, instead, we now take the L norm
|§(ﬂ:b= e :d)”l = Ia’l + |bl At Idi)
then the diameter of the canonical simplex becomes 2. This leads to the
generalized Hajnal inequality by Dobrusin [3] and Paz-Reichaw {6]:
Corollary 5.3. Suppose P,Q,---, R are all stochastic matrices. Then

Sdiam([PQ - R]) < (1= A(B))(1- X@)) (1 = \(P)),
or equivalently,
1= MPQ---R) < (1= ABR)(1 - A(@))-- (1 X(P)).

Therefore, Theorem 5.2 is the most general form of the Hajnal inequality.
The role of the number A(P) becomes very clear in it. For the first time,
A(P) is separated from the special norm one uses to define the diameter.

To show more applications of Theorem 5.2, we generalize some classical

results.

Proposition 5.5 {Being scramblingness means ergodicity). Let X be a com-
pact set of scrambling stochastic matrices. Then any X-Markov chain is

ergodic.

Proof. For any P € X, A(P) > 0 since P is scrambling. Obviously A(P)
is a continnous function of stochastic matrices (as a compact subset in the

matrix space). Since ¥ is compact, we conclude that

A(E) = Ig:%% A(P) > 0.
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Hence,
diam([ Py -+ Pr]) < (1 — ME))"diam([e; - - -en]),

for any P;,---, Py € ¥. This implies that any 2-Markov chain is ergodic

(in fact, uniformly ergodic in the obvious sense).

O

Proposition 5.6 (Being SIA means ergodicity). Let ¥ be a compact SIA
set (see Section 3). Then any %-Markov chain is ergodic.

Proof. Wolfowitz [10] showed that there exists a finite M such that
Ya={P--Pu | P €T},

is a scrambling set. It is easy to see that s is compact because of the
compactness assumption on Y. Therefore any ¥ar-Markov chain is ergodic
by the preceding proposition. This implies that any Y-Markov chain has an
ergodic sub-Markov chain. The proof is complete thanking to Lemma 2.1.

O

Example — 3-State Markov chains.

We say a stochastic matrix P is fuzzy if there exists no deterministic
transition between any two states. That is, the following is impossible: for

some i and 7,
pij = Prob(ji) — |7)) = 1.

Proposition 5.7. Let ¥ be a compact set of 3 by 3 fuzzy stochastic matri-

ces. Then any Y-Markov chain is ergodic.

Proof. Tt is easy to show that a fuzzy 3 by 3 stochastic matrix must be
scrambling. O

Remark 5.3. In studying the convergence of infinite products of matrices,
it is always beneficial working on a compact set of matrices. For general
results outside the scope of stochastic matrices, see the recent work by the
author {9]. Here is one example showing that the compactness condition in

the above discussion is essential. For n = 1,2, .-, define

1—2

Fi=3

P, = :(1—-%)134—13-‘1'—'".
n n
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Then all P,’s are scrambling. Let ¥ be the collection of all F,. Notice that

it is not compact since the unique clusier “point” f3 does not belong to it.

Using the product formula for any two 3 by 3 stochastic matrices of the form

al3 +b63-J7 and cl5 +dJ - J7:

1—
3

one can easily verify that a ¥-Markov chain defined by (P, P2, Py,---) is

(als + 63 - ITY(cIs + dT - 37) = acls + ——3 . 37,

not ergodic.

6. THE HAINAL RATE 7(X) AND JOINT SPECTRAL RADIUS
Given a set of stochastic matrices X, define
Sy ={P1---Pn | B € T}
for all m =1,2,--. Under any given norm of R", define

diam(¥p,) = qux%) diam([@]).
€2m

Then we define the Hajnal rate 7(X) to be
7(2) = lim sup diam(X)/™,
M—r00

Suppose that L is compact and any Y-Markov chain is ergodic. Then ¥
must be a STA set. Wolfowitz’s lemma (see also the proof of Proposition 5.6)
asserts that there exists M, such that any matrix in Xjs is scrambling. Set

Ao = Q%EngM AQ).
Then Ag > 0 since Xps is a compact scrambling set.

For any integer m, there exist unique & and r < M such that m = kM +r.

Then for any ¢ = Py -+ Py, € Y,

diam([Q1) < (1= APy -~ Par)) - (1 = A(Peyaasa - Praa))diam([Peng4 -+

< {1 — AgYrdiam([e; - - -e,]),
from which, it is easily deduced that
T(E) < (1-A)¥ < 1.

Conversely, for any set of stochastic matrices I, if #(X) < 1, then it is

obviously ergodic. Therefore, we obtain

Theorem 6.1. Lel & be a compact sel of stochastic matrices. Then all
Y-Markoc chains are ergodic if and only if its Hajnal rate 7(X) < 1.
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An immediate application is the generalization of Daubechies-Lagarias’
resuli {2} to a compaci sei.

Proposition 6.1. Let ¥ be a compact set of stochastic mairices. Then all
Y-Markov chains are ergodic if and only if ¥ is a U-LCP of rank 1 (see
Section 3).

Proof. The sufficiency is trivial. Now suppose all E-Markov chains are er-
godic. Then w(X) < 1. Take any d € (r(X),1). Then there exists M, such
that foral m > M, and Q,, = Py -+ - P € 2y,

diam{[ P, --- P{]) < d™.
Let p be the first row of ¢),,,. Then
|1Qm — 3 - pll < Cod™,
where the constant Cy only depends on the matrix norm we use. Hence, for
any k > 0,
”Pm+k‘ b —Pm"'Pln = ”Pm%k"'Pm+1(Qm —J 'p)—— (Qm -J p)ﬂ
< Cill@m — T2l + [1@m — I - p|
S C2dm7

where, all C; only depends on the matrix norm. This means that ¥ is a
U-LCP. That it has rank 1 is obvious. O

On the other hand, if ¥ is a rank 1 U-LCP, it has a common 1-eigenspace
E1(¥) (see Section 3). Let 'V be any linear complement of E;(%) in R”,
Ef{(Z)YoV=R"

Denote by @ the (skew) projection onto V along Eq(¥), then Daubechies-
Lagarias showed that

po(E) = p(QEQT) < 1.
The definition of joint spectral radius p(e} of a set of matrices is similar
to that of w(e), whose first introduction was by Rota and Strang [7]. It
was Daubechies and Lagarias who found their significance in characterizing
convergence of mairix products. For a set A of matrices (of the same size),
it is defined by

|All = sup [|All
AcA

p(A) = lim sup | A ||
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A few comments are in order.

(i) Both = and p are independent of the special (vector or matrix) norm we
use, since all norms are equivalent in finite dimensional Banach space.
(ii) It seems to the author that the Hajnal rate m(X) is “more” intrinsic
than the projected joint spectral radius po(X) = p(QEQT), since the
latter involves a choice of V. However, the joint spectral radius is a

more general concept.

Theorem 6.2. Suppose ¥ is a compact set of stochastic matrices such that
any X-Markov chain is ergodic. Then

m(Z) = po(¥).

Proof. First, we show 7(2) < po(X). In the case of stochastic matrices, the
common l-eigenspace Ey(X) is spaned by J. Let V be any complement of
E(Z) in R™ Take a basis vi, -+, v, so that vi = J, and the remaining

n — 1 vectors span V. Define a matrix
A= (V19V2= T 7vn)-

Then for any P € X,

_ 1 ap
ATIPA = s

where P = QPQT and @ is the projection onto V along E{(X). Take any
d: po(2) < d < 1. There exists M, so that for any m > M,

|]P1”'Pm||$dm: Pl,"‘,PmEE-

Assume

1 ap,.
AN P P)A= [ SR
0 PP,

e ~ ~

Then Py ---P, = P -+ Py, and

1
0 0 0

A7 (P P)A - || - Laper I < 0 sy |1 S €7,
: 0 PPy

0
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Here C (and all the following C;’s) only depends on the norm we use and

the choice of A. Therefore,
P Bn—A| |- (1,ap..p A7 < Cd™,

nPI"’Pm'“J'q” gcldma

where q = (1,ap,..p, )4 . It says that all row vectors of Py--- P, lie
inside the Cyd™--neighborhood of q. Hence,

diam([ P - - - Pa]) < Cad™.

This implies that 7(X) < d. Since d > po(X) is arbitrary, we complet the
proof of the first part.

Now we show po(Z) < m(X). This is done by almost converting the above
steps. Take any d : #(¥) < d < 1. Then there exists M, so that for all
m>M,

diam([Py - - - P]) < d™.
Especially, by taking p to be the first row of P -+ Py,
|Pi-Pp—J-p|| < Cd™.
Let A be defined as above. Then
AP, - PpA— AT - pAl| < C1d,

or,

This implies that
[P Poll = 1P+ Bl < Cad™.

Therefore, pp{X) < d. The proof is complete since d > () is arbitary.
|
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