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ON SOME QUANTUM MECHANICAL AND MATHEMATICAL ASPECTS

OF FOURIER TRANSFORMS OF FRACTIONAL ORDERS (FIFO)

JIANHONG SHEN

ApsTrACT, Following the efforts of several authors, we continue to develop the theory and
applications of Fourier transforms of fractional orders (FTFO}. Quantum mechanics consid-
erations reveal the common root, advantages and disadvantages of both the classical Fourier
transform and FTFQ’s. Most operational analysis of FTFO in existence is summarized into
a beauntifal formula which associates an FTFO to a simple rotation in the phase space, The
application of F'TFQ in reducing the orders of differential equations is studied from a wider
context. We introduce for the first time the singular perturbation method to “zoom into”
the process of reduction of orders, and discover the phenomenon of resonance. Namias’ inte-
gral representation of FTFO is decomposed into the product of scaling operators, pure phase
factors, and the ordinary Fourier transform. The nonlinear phase factor allows the applica-
tion of the stationary phase method. Classical results such as the Paley-Wiener theorem and
Heisenberg uncertainty principle are generalized to FTT0O’s. We also propose a fast numerical

implementation scheme for FTFO based on the powerful Fast Fourter Transform.

To Hung Cheng, a master of asymptotics.

1. Imtroduction

The concept of Fourier transforms of fractional orders (FTFQ) was first introduced by
physicist Namias in 1980. His starting point was the eigenvalues of the Fourier transform,
e"Z n=0,1,---. The associated eigenvectors are the well-known Hermite functions (i.e. the
product of .enzi?2 with the normalized Hermite polynomials.} Fourier transform is diagonalized
by this complete set of eigen-functions. The intuition of the physicist led him to consider
new transforms which commute with Fourier transform, but are not too wild. He chose a
new transform to have the eigenvalues ™%, n = 0,1,--+. It was denoted by F,, and called a
Fourier transform with the fractional order a. FTFO embeds the classical Fourier transform
in a one-parameter (i.e. ) family of unitary operators.

By utilizing the basic properties of the Hermite polynomials (mostly those of orthogonal

polynomials), such as the three-term recursion relation, and the reproducing kernel formula,
1
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Namias was able to generalize many results in the classical Fourier transform to FTFO. The

successful applications of FTFQ in certain types of evolutionary or stationary Schrédinger

'
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equations in quantwin mechanics clearly showed the po { this tool. Though

1 power of this fo hough some
of his derivations were in a formal level, Namias set up the right framework for further studies
of the topic.

His work was supplemented by Mc¢Bride and Kerr [4] in 1987, who constructed the related
necessary mathematical foundation. It was, however, a pity that some of the quantum me-
chanical intuitions were lost in the latter work. The physics trace leading to some important
mathematical results was erased and hence it was more difficult to understand only the results
themselves.

It was quite recently that Dattoli, Torre and Mazzacurati [3] re-emphasized the right angle
to view FTFO. Namias noticed this approach earlier as one could see from the examples he
demonstrated. Dattoli, et al. treated the one-parameter family of unitary operators F, as the
time evolution of a free harmonic oscillator, and o was understood as the “time” parameter.

The quantum mechanics point of view also allowed them to borrow the two different but
equivalent pictures of Schrédinger and Heisenberg: the evolution of states and the evolution
of observables (or operators). The authors yet did not seem to explore them deep enough
endowed with this new degree of freedom.

The work of Dattoli et al. successfully smoothed away the historical difference between
Fourier transform and FTFO. It convincingly showed that the family of FTFO was as natural
as the classical Fourier transform, being viewed from the underlying physics.

FTFO has also stimulated interesting speculations in quantum optics (see the references in
Dattoli et al. [3]).

In spite of all the developments and achievements mentioned above, there are still many
theoretical or practical questions about FTFO that should be properly asked and answered.
In order to develop FTFQ into a mature theory and a tool potentially as powerful as the
classical Fourier transform, we have to study FTFO in a much deeper level and wider context,
both in mathematics and physics. It is this goal that our paper is aimed at. Together, with

the efforts of all the authors mentioned above, we shall push this interesting topic to a proper

position in mathematics and physics that it deserves.
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The paper is organized as follows.

Section 2 introduces the FTFO family as a time evolution operator in quantum mechanics,
foitowing the approach o li, et al. The periodictiy o
the Hamiltonian of a harmonic oscillator is an integral observable.

In Section 3, the correspondence of the classical mechanics and quantum mechanics enables
us to establish explicitly the rotational interpretation of F, in the phase plane. The periodic
parameter ¢ is shown to be exactly the angle of rotation. FTFO is also connected to the
two most important operators in the quantum theory of harmonic oscillators — the raising and
lowering operators g4 and g. .

Section 4 and 5 jointly discuss the mathematical theory behind the well-practised technique
(Namias [6} and McBride and Kerr {4]) of reduction of orders for certain classes of differential
equations by FTFO.

In Section 4, the philosophical difference between the classical Fourier transform and general
FTFO is explained through the concept of coupling of position and momentum. The coupling
property of FTFQ interprets its role in the reduction of orders for differential equations. A
general result on reduction of orders is established for some types of high order differential
equations.

In Section 5, through the demonstration of a typical example, which can be easily gen-
eralized, we “recover” the lost order reduced by FTFO. Our tool is the theory of singular
perturbation for differential equations. The reduction of orders by FTFO is connected to the
physical phenomenon of resonance in a formal level,

Section 6 discusses the integral representation of FTFO and some important issues that have
been left out in the literature. The quadratic phase transform residing inside an FTI'O allows
the application of the stationary phase method for certain range of parameters. The Paley-
Wiener theorem and the uncertainty principle are generalized to FTFO’. We also discuss
briefly the issue of fast numerical implementation of FTFO’s in the end.

The conclusion and author’s opinions on some future research topics are presented in Sec-

tion 7.
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2. Quantization, Periodicity and FTFO

It has been a familiar fact in classical Fourier analysis that discretizing uniformly a function
of position is equivalent to periodizing its Fourier transform in the momentum space. In other
words, the Fourier transform of a uniform discrete signal is a periodic function. While it is
clear in the context of position and momentum, the fact has received less attention in the
duality of fime and energy.

In quantum mechanics, there are two equivalent points of view of the evolutionary world,
namely, the Schrodinger picture in which a state evolves according to the celebrated Schrodinger
equation, and the Heisenberg picture in which not the state, but the concerned observable (a

Hermitian operator) evolves. The ring linking these two pictiures is the time evolution operator
Uf — eii"H,

where H is the Hamiltonian of the system, and the Planck’s constant /i has been taken to
be 1 for our convenience. The time evolution operator is unitary since the Hamiltonian is an
Hermitian operator.

The time evolution operator Uy can be understood as the Fourier transform of energy (in the
sense of duality). It is therefore expected that the discretization—periodization correspondence
mentioned in the beginning should find its parallelism here, If fact, in the time-energy context,
it is better to be described as the quantization—periodization connection. Quantization is the

physics’ way of discretization.

Definition 2.1 (Integral Observables). Let A be an observable in a quantum system. A is
said to be integral if there exist constant ¢g and oy such that for any observed value (eigen-
values) ¢ of A,

- Gn
a7

is an integer.

The Hamiltonian of a harmonic oscillator and the z-component angular momentum J, are

the two well-known integral observables.
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Let o be the real scalar variable dual to an integral observable A. Then the “Fourier

transform”

Ay = eioz(.A—-aQ)

is a one-parameter of unitary operators. A, is in fact periodic with respect to the parameter
«. Therefore, with a proper sealing, A, is a homeomorphism from S* to the group of unitary
operators.

I'TFO is directly related to the Hamiltonian of the harmonic oscillator

1 d

12
Ho=-9a T3

which has been de-dimensionalized. The energy spectra of an harmounic oscillator system are

all positive half integers
13
{ 9 *2‘3 <
Hence Hp is an integral observable. Define a new Hamiltonian

1
H:HO“’E:

so that the spectra are shifted downward to become all non-negative integers. The FTFO

associated to parameter « was defined as
eia'H
Fo = .

Proposition 2.1. F, is 2w-periodic with respect to a, and

[

Fo= Zeim iny(n|,

n=0

where the “Ket” |n) denotes the n-th normalized (in L*(R)) Hermite function.

The last formula was the initial definition of FTFO by Namias [6]. And the evolutionary
point of view was first discussed by Dattoli et al. [3].
It is easy to see that the ordinary Fourier transform (noticing that here we take ¥ instead

of &)

Ff(2) = % [_ " e dy
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corresponds to o = I, since
F |n}y =" |n), n=20,1,--.

The wide applicability of the ordinary Fourier transform in science and many engineering

fields raises two natural questions:

Question 1. Why is « == /2 so special and lucky in history? Or, what is the real advantage
for a being 7/2? And if FTFQ’s are truly necessary for one reason or another,
what profits can they make?

Question 2. Can we generalize most results in the classical Fourier analysis to FTIFO?

The second question has attracted more attention than the first one. Most of the work in
existence has been focused on it. Our paper is devoted to answering both of them, and aimed
at broadening and deepening the current literature on FTFO’s.

Since 7y = FoF,_r/z, modulating 7, F 2 F3 {all the Fourier transforms of integral orders),

we shall assume that o € [0,7/2] in the coming discussions.

3. Coupling, Lowering and Raising

Define

D= i and p= —i.D.
dx

Then p is the momentum operator.

Define
q el
¥4

to be the vector operator corresponding to a phase point in classical mechanics.

In addition, denote by R,, the rotation matrix of the phase plane
cosa  sina
—sin @ oS«

Then the results in Dattoli et al. [3], McBride et al. [4] and Namias [6] can be organized in

a neat way.
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Proposition 3.1. For any parameter o,
FaaFl = Roa. (1)

This gives, in the Heisenberg picture, the “time” evolution of the phase operator q in a
quantum system described by . Because of the guantization of energy, the “time” parameter
o becomes periodic and is better understood as an angle of rotation, as is crystally clear from
the preceding proposition. That probably explains why no one in the above three mentioned
papers ever used the symbol ¢ for .

Before us, people studied the individual effect of  and D. This is misleading. It is the
physics that leads to considering the right objects: the momentum p (instead of D) and the
phase point operator q.

For ordinary Fourier transform, the angle o = %. Hence z and p are decoupled: =z is

transformed to p, while p to —z. For a general F'I'FQO, it does not hold any more. z and p

become coupled. We are therefore led to the concept of eigenphases.

Definition 3.1 (Eigenphase}. A nonzero phase point operator g = az 4 bp for some complex

scalars ¢ and b is called the eigenphase of F,, if
FagFl =g, (2)
for some complex scalar A.
Theorem 3.1. Define
g = +ip=x+D and g+ =z —ip==z— D.
Then up to a multiplicative scalar, these are the only two eigenphases for any F,.
Proof. From the preceding proposition, ¢ = ax + bp is an eigenphase if and only if (a,b) is

a left eigenvector of the rotation matrix R,. And the A in (2) is exactly the corresponding

eigenvalue of R,. The two eigenpairs for R, are: (1, —%) for A = €, and (1,7) for A = e,

Hence the theorem follows, L]
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In other words, we have
Fag—f;:e_iag—a (3)
Fags Fl=egy. (4)

But only one is independent since g_ t= g+ -

Taking derivative with respect to o and evaluating at @ = 0, we obtain

[H, g+ ] = g+ (5)

[H, 9-1=—g-. (6)

These are the two familiar bracket relations in quantum mechanics. In fact, from them, the
harmonic oscillator eigen-problem can be solved completely and symbolically. g4y and g_
are like the eigenvectors of H in the bracket algebra. Physicists call g4 and g. the raising

and lowering operators, since they shift the eigenstates by

g- |n) =¢c; |n— 1), (7
g+ In) = In+1), (8)
for some real constants ¢, and ¢}, n = 0,1,---. Here we assume |- 1) = 0.

Relation (1) (or equivalently, Eq. (5) and (6)), is the physics that determines the transforms
of  and d/dz under FTFO mathematically. Most of the operational calculus carried out

in [3, 4, 6] can be derived from it.

4. Reduction of Orders by FITFO

Why has the ordinary Fourier transform been so powerful a tool in analysis? It is mostly
because that when o = 7/2, ¢ and p (or D) are completely decoupled. Therefore, a differential

operator
L=D"+4a D" ' +a D" ...
with constant coefficients becomes under Fourier transform

F LFY = (—ia)* + ag(—ix)" 1 4 ag(—iz)" "2 4+ -+ - .
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This reduces the order of the differential equation to 0. A linear high order differential operator

like L simply becomes a multiplier in the Fourier domain.

TF e s -+t et d i i e o i duvin st snn S wrrn navan b Fhha o Am P m nr o Anianadan
J.J.UWUVUJ., LILED Y 1[10455 IOCUUEICD & WIDAU VYA LAET 11 WT J:JPL.)I LilG Uldlllal‘y FT tU il UPGL QltUL
like
2 2
Iy = D“ 4+ 2%,
or

Ly=D? —iz2D + 2%,
in which the coefficients are {polynomial) functions of z. They are transformed to
—FI Fl=2?+D'=L; and —FL Fl=a4+D*—iaD—i=1L,—i.

The order of the differential operators remains unchanged. Even worse, the form of the op-
erators does not change either essemntially, Therefore the ordinary FT fails to yield simple
representations for differential operators with non-constant coefficients such as Ly and Lj.

Why? Because z and D are decoupled under the Fourier transform, and they do not
communicate and coordinate to each other to have one order reduced.

In contrast, FTFO can be expected to avercome this difficulty because of its coupling of «
and D. |

We shall proceed with a typical example, whose formal form first appeared in Namias’
original work, and was made rigorous in the paper of McBride and Kerr [4]. Then a general
result will be established in the end.

Example 1. Find one special solution to
Ugz{z) + ?u(z) = 0.

The exact solutions to this equation can be explicitly expressed by Bessel functions J,, (see
Bender and Orszag [1], for example).
Notice that if we know one special solution, then the classical method of reduction of orders

will find another linearly independent one.
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The associated differential operator is L; defined above, or in terms of the momentum

operator p,
Ly = 2% - p*.
Therefore, L, is transformed by F, to
Iy = (wcosa + psin @)? — (—zsin a + p cos @)’
= — cos{2a)p? + cos(2a)z?® + 2 sin(2a)zp — isin(2a).

If we choose @ = 7/4, then in the FTFO domain, the original second order equation becomes

a first order one:
2ed,{z) + i{z) = 0.

And the solution is

C
Vial

The inverse transform eventually gives one special solution to the egunation:

i(z) =

2
T
U = Cr\/ |$| J—I/‘i(?)?

where J, is the Bessel function. This agrees to the classical results. O
By applying FTFO again, can we reduce one-order further? The answer is no. This is
because F,0Fz = Fayp and generally it is impossible to eliminate two terms by one parameter.
From now on, we assume that L is a differential operator in the non-commutative ring

Clz, D]; that is, a differential operator with polynomial coefficients.

Definition 4.1 (D-dominant and the Leading Term). Suppose
L=ILo+Li+-
is a differential operator of n-th order with

LO = agD” + a,le”_I + &2$2Dn_2 4., ag #— 0,

Ly = bpD™ 4+ bye D™ 4 bpa® D0
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An operator L allowing such a decomposition is said to be D-dominant, and L is called the

leading term of L.

Do not confuse the structure of a leading term with Cauchy type of operators in which each
monomial is like z* D',
The leading symbol of a D-dominant operator L of order n is the following homogeneous

polynomial in 2 and p, with complex coefficients
((z,p) = api™™ + a1d" Tap" ! 4 api" e ?ph 2 4.

provided that the leading term of L is given above. Notice that here # and p are considered
as scalar variables, rather than observables (i.e. operators). This switching should cause no

confusion in the appropriate context.

Theorem 4.1 (Reduction of Orders). Let ((z,p) be the leading symbol of a D-dominant dif-
ferential operator L. If ({x,p) contains one zero in the real projective line RP!, then, there

exists an angle o whose associated FTFO F, reduces one order of L.

Proof. It is easy to see that Ly determines the order of 7= faL}i completely, since L is
D-dominant. On the other hand, just as shown in the example, the coefficient attached to D™
in Lo is exactly (—4)*((sina, cos a). Since {(z,p) contains one zero in RP!, one can find some
a, such that {(sina, cosa) = 0. The FTFO associated to this o therefore reduces one order of

L. O

We apply this general theorem to another example.

Example 2. Reduce one order of the following equation
Upmr T 4m2um + 3zt = 0.
First we compute the leading symbol
((z,p) = (ip)* + 42 (ip)’ + 3a* = p* + 3 — 42™p".

By setting ((z,p) = 0, we obtain in fact four angles whose associated I'TTQ’s can all reduce
one order of the equation:

T

¥y g = :I:% and 3.4 = :kﬁ
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We shall see in the coming section, that these angles do reveal some important information

about the solution space of the differential equation.

5. Reduction of Orders — Singular Perturbation Theory

One important question is not answered (and even asked) in the previous section. That is
“how is exactly one order of the equation lost under some FTFQ’s?”

Let us go back to Example 1 and deeper into it. We shall study the behavior of the equation
under F, when « is near the critical angle #/4. Our major tool is the singuler perturbation
theory for differential equations. The analysis presented here for this typical example applies
also to more general equations whose orders can be reduced by certain FTFO’s. We explore
this new direction in details in our another coming paper.

Set o« = 7 /4 — ¢/2. Then
cos{20) = sine, sin{2a) = cose.

Define 4¢ = F,u. Assume that € < 1. Then to the first order of €, 1., +2%u = 0 is transformed

to
(s, + 224%) ~ i(zhs + @) = 0. (9)

This is a singular perturbation problem with respect to €. The so called “slowly-varying”

solution (the leading term) (see Bender and Orszag [1]) is obtained by setting
—i(24l + 4°) = 0,

which is the equation we were very happy with in the preceding section. It yields an approxi-
mate solution whose e-neighborhood contains an exact solution to {(9), asymptoticaily.

However, this time, we are more interested in the other “lost” linearly independent solution.
It is possible to obtain it now since ¢ is non-zero, at least in the asymptotic sense. Hence we
must apply the singular perturbation technique to distill this solution.

The homogeneity of the equation allows us to assume that the other solution 4 is of order
0O(1). To asymptotically simplify Eq. {9), we make a change of variables z = 6y, and i(y) =
ué{z). Then

g‘}ayy + b2y — i( 2yl + @) = 0.
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The balance of dominant terms implies § = /¢ (assuming ¢ > 0) and the equation for the

scaled “rapidly-varying” solution is
Thyy — #{2yty + ) = 0.

This equation falls well within the applicable scope of the ordinary Fourier transform. One

special solution which allows ordinary Fourier transform is

. 1 i 2 2
a(y) = Clyl? exp(Z-)0_1 (%),

Since

(=y*/4)"
M T(n+v+1)

PORIODS
n=0

@(y) is continnous at y = 0 and 4(0) is nonzero. The asymptotic formula (see Bender and
Orszag [1], for instance)} of J,,(y) for large y implies that near y = oo, the leading magnitude
of a(y) is O(]y|_%). Especially, our assumption that 4 is of order O(1) is valid.

Therefore the singular solution {leading term) to (9) is

e P Y iz? z2

i(z) = ﬂ(*\/‘—‘;) = Clﬁh’ eXP(ge“)J_i(“Q“g)-
Strictly speaking, this formula holds only for z’s such that 2 < O(1/+/€) since we have dropped
the term ex?d in the rapidly-varying approximation. This term is not negligible compared with

the 4@ term when {z| > 1/+/€.

We thus find another (approximate) solution to the equation in Example 1, independent to

the one already derived there
u(2) = iy gt = Fonpapesail® = Fopadt.

The last step is due to that fact that F, depends on « analytically for 0 < a < 7 (see Namias’
integral representation in the next section).

This solution is lost at & = 7/4 (or € = 0). We call it the resonance phenomenon. It can
be explained more vividly as follows, First modify the above 4%(z) by multiplying it with an

appropriate normalization constant

so that 4(z) — é(z) as € — 07 (since the equation is homogeneous).
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Corresponding to this new 4°(x), the inverse FTFO

ut(x) o FLa5

Y

shall converge to w*(z) = F_,/46 in the asymptotic sense, or
Friat™(z) = 6(z).

From Namias’ integral representation in the coming section, we have
* . m?
u* (&) = cexp i)

for some constant ¢. This is indeed an approximate solution to the original equation for z > 1

since

uh, +atu® = iut.
For large z, the term iu* is negligibly small compared to the other two terms on the left hand
side. (Notice that in the theory of asymptotic analysis, the leading term of the solution for
large @ has a factor of 1/+/]z| (see Bender and Orszag [1]). Our approximate solution u*
has been obtained from the singular perturbation in the FTFO domain and this factor has
been lost. However, the phase factors are identical. For resonance, as in physics, the phase
information is the most important.)

We say that this approximate solution u*(x) to
Uge{®) + 2%u(z) = 0

is resonant with Fr;4. What is happening here can be explained in a more general picture.
There exists one direction in the 2-dimensional (or d-dimensional, if the equation is of order d)
solution space of the original equation, whose (asymptotic) phase factor is exactly the conjugate
of the quadratic phase factor (see the integral representation of FTFO in the next section) in
Fo. This direction (or one order) is lost when one applies F,, because its image under 7,

blows up in the ordinary sense (like a § function).
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6. The Integral Representation of FTFO

In this section, we shall discuss the integral representation of FTFO and its properties. The
nonlinear (quadratic) phase factor in an FTFO allows the application of the stationary phase
method. We also generalize the classical Paley-Wiener theorem and Heisenberg uncertainty
principle to FTFQ’s. The numerical issue is discussed briefly in the end.

Define two unitary operators in L%(R):
2
gaof(z) = exp(wiﬁg——)f(:c) and syf(z):= Wf(ﬁm)

go 15 a pure phase transform and sy is an ordinary scaling operator. We assume that both e
and A are positive.

Define
Glan = §a © 83,
and
Tor=Gl,,0FoGan=57"0gaoFogaos,

where F is the ordinary Fourier transform. Then the two-parameter family of transforms 75 5

are all unitary transforms in L?(R) and their integral representation is given by

Proposition 6.1 (Integral Representation of T, »).

[oe] 2
Lay LY
/ dy f(y)exp (—zﬁﬂ A).

hale ¢}

1 .az’
Ta,)\f(m) - \/mexp (_%%)

The connection of Ty,  and F, is described by Namias’ integral representation formula.

Theorem 6.1 (Namias’ Theorem). For a € (0, 5],

“ls7
iz (X
Faz=e 2(5-2) 'Tcosa,sina-

Proof. Namias® proof followed immediately from Mehler’s formula {Morse and Feschbach [5])

on Hermite polynomials:

$2+y2 fee] i 1 227‘?}6{&—621:&(3:2“{"3;2)
o0 (S 3 6 )l () = g enp (22T,

=0

where |n){z) is the n-th normalized Hermite function. O



16 JIANHONG SHEN

From the expression of T, », Fy is unitarily similar to cg, o F o g, for some constant ¢. The

quadratic phase factor g, allows F, to have a larger definition domain than the ordinary Fourier

That is, it allows the function being transformed to blow up at co at some mild rate, under
the care of the quadratic oscillation cancellation.
A general statement concerning Dom(F,) shall involve the smoothness and growing order

at co. Here we establish one relatively simpler result, which is usually enough for applications.
Proposition 6.2. Suppose that « € (0,%). Then, for all =1 <y <1, Fylz|” is well-defined.

Proof. The proof is only sketched since it involves only the standard analysis. Since e # 7,
we essentially need show that the integral
too -
/ lml'ye—zT—i-mm dx
—0

is well-defined. The singularity only lies at :koo. Hence, by a suitable shifting, it suffices to

+oo g2
/ 27e™T dx
A

for some A > 0. By a change of variables from 2 to y = z?/2, the latter integral becomes

0 -
e / gt e dy,
B

justify the integral

for some positive constants ¢, b, and B. The last integral is well-defined by Abel’s Theorem on

summations. O

Besides this expansion of the transform domain, due to the nonlinear phase factor, general

FTFQ’ also allow asymptotic analysis, for example, the technique of stationary phase.

Theorem 6.2 (Stationary Phase). Suppose that a,A > 0 and A = af/X > 1, and that f(z)
satisfies the regqularity conditions for the stationary phase approzimation. Then we have the

asymptotic (with respect to A) leading term equivalence

F o Gorf(e) = oo (i~ 1)) veved ()
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Proof.
FolGapflz) = — /w dy VA (v y) exp (—i@ + iym)
’ VT Jowo 2
1 /°° Au? zu
= du f(u}exp (—z—mm + zm——)
vV 2?\"\/X —C0 ( ) 2 \/)A\
‘wg 1 oo A '\/X 2
= exp (zw) _/ du f(u)exp | —im{n— —=)
2a /) /oA J—co 2 @
~ ((f -0 b ?ff_f ﬂx
~exp {5~ 7 ==\ 4 -
(- 3) 7 (52)
TP "% T 1 AvVh AV
The step at “~” is realized by the stationary phase approximation. il

Apply this theorem to F, with a small positive angle . Since ¢ = cosa ~ 1 and A =

sinev =~ o, we have
Corollary 6.1 {Stationary Phase). For small o, the leading term of Ff(z) is
e
Fuf(z) = exp (i5(52 1)) £(2).

Especially, as @ -+ 0, this asymptotic leading term also confirms that Fp is the identity
transform.

The integral representation and the structure of T, ) make it possible to generalize many
results in the classical Fourier analysis to FTFO. Some work has been done in [3, 4, 6]. Here
we shall address on certain important aspects of FTFO that have been missed in the limited

literature. Qur first result generalizes the classical Paley-Wiener theorem in Fourier analysis.

Theorem 6.3 (Paley—Wiener Theorem for FTFO). Fiz an angle o € (0, 5], For any function
f(x), let f(z) denote its F, transform.
(i) Suppose that f(z) is a compactly supported C™ function. Then f(z) is an entire function
in the complex plane; and there exist real numbers a < b, such that for any positive integer
n,
em*Imz/sineif Im 2 > 0

F(2)] < Cal1 + |2])* exp(Rez Imz cot ) (10}
eTbImz/dne if Im 7 < 0.
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Here C,, is a positive constont only depending on n.
(ii) Conversely, any entire function satisfying the bounds of Eg. (10) for some real numbers
L

Fancean o b avann FIOC foson ndnman nandh narserom g | A1
(4 i [ 2 [4 g,

G << 15 iy SUpPoTe N 4,

Proof. The proof follows readily from the classical Paley—Wiener theorem and Namias’ integral

representation theorem. O

Ancther important aspect of FTFO is its associated uncertainty principle. Recall first the
uncertainty principle in classical Fourier analysis. Let ¢(z) € L%(R) be a “wave” function, i.e.,

|4llz2 = 1, and ¢(y) its Fourier transform. Then
Var(g)Var(d) > 7,
where
va(f)i= [~ (@~ 2PIfe)f de,

00

T = / 2| f(z))? d.
—00

This celebrated Heisenberg uncertainty principle is conventionaly explained as “you cannot

expect that both ¢ and qb have very small supports.” Its influence in harmonic analysis can

be clearly seen in wavelet theory nowadays, in which a wavelet, in certain sense, realizes the

optimal simultaneous localization.

Let us fix an o € [0,7/2]. Still denote by @(y) the F, transform of a wave function ¢(z).
Then

Theorem 6.4 (Uncertainty Principle for FTFO). For any a € [0,7/2],

Var(¢)Var(¢) > sin: o

Proof. As in the classical Fourier analysis, the simplest proof is to utilize the properties of the
transform, instead of applying the integral formula directly.
Define two operators A = z and B = 2 cos @ — psin o, where p = —id/dz is the momentum

operator. By Proposition 3.1, it is easy to check that

FuBF =y.
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Therefore

vardu) = [ (v = 9Pdw) do
= ((y = D), (v~ D)),
= (B-D)é(=), (B - Blé(a)),

= Vary(B).
The key step above relies on the unitary property of FTFO. Hence
Var($)Var(@) = Varg{A)Vary(B).

That is, the uncertainty of FTFQ is essentially one between the two “observables” A and B.

Since
[A,B]= AB — BA = —isin e,

The standard quantum computation gives (see Strichartz [9] or Das and Mellissinos [2])

sin® o

Varg(A)Varg(B) > R

This completes the proof. [J

The uncertainty reaches the maximum when o = #/2, or in the case of classical Fourier
transform.

The third issue, from the more practical point of view, is the computational aspect. By
Theorem 6.1 and the structure of T}, ), fast computation for F, is possible based on the
popular fast numerical transformer—FFT. The only additional pre-processings are (1) a uniform
scaling sy, and (2) a multiplication by a quadratic phase factor. Similar comments hold for
the post-processings. Fortunately, both the pre- and post-processings are easily to be fast
implemented because they do not require matrix-vector multiplications. Therefore, such an
implementation of F, via FFT is essentially as fast as FFT itself. This is definitely good news

for any computational applications of FTFO.
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7. Conclusions

Following the efforts of several authors, this paper addresses some important issues on
Fourier transforms of fractional orders. Both the physics (mostly classical and quanium me-
chanics) and mathematics (reduction of order, singular perturbations, stationary phase, and
so on) of the nature of FTFO are discussed. Most results presented here are new and await
further research efforts.

Before ending this paper, the author would like to mention two topics that he thinks may
have potential importance for future research. (1) The possible application of FTFO in signal
processing. The author, based on his experience and knowledge in signal processing, believes
that the pure quadratic phase transform has intrinsic meaning in signal processing. It may be
very useful for processing certain types of signals. See, for example, Shen and Strang [7, 8]
for the role of pure phase transforms. (2) The futher applications of FTFO in differential
equations. This is an important direction. Qur paper has carried out only two aspects, i.e.,
the general rule of reduction of orders and the singular perturbation theory. There must
exist other interesting aspects or more general theories, that have escaped the sightfield of the

authors of [3, 4, 6], as well as that of this paper.

Acknowledgment

The author wishes to thank Professor Gilbert Strang and Gian-Carlo Rota for their generous
help and constant support on the research. The author is also pleased to acknowledge the help
on gquantum mechanics from Professor Eric D'Hoker in the physics department of UCLA.
The asymptotic methods of stationary phase and singular perturbation have been inspired by
Professor Joseph Keller, who was teaching a seminar course on asymptotic methods in wave

propagations at UCLA during the time when the author was working on this paper.

REFERENCES

[1] C. M. Bender and S. A. Orszag. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill,
Inc., 1978.
i2] A. Das and A. C. Mellissinos. Quantum Mechanics — A Modern Introduction. Gordon and Breach Science

Publishers, Switzerland, 1986.



FOURIER TRANSFORMS OF FRACTIONAL ORDERS 21

[3] G. Dattoli, A. Torre, and G. Mazzacurati. An alternative point of view to the theory of fractional Foutier
transform. IMA J. Appl. Math., 60:215-224, 1998,

[4] A. C. McBride and F. H. Kexr. On Namias’s fractional Fourier transforms. IMA J. Appl. Math., 39:159-175,
1987,

{51 P. M. Morse and H. Feschbach. Methods of Theoretical Physics. McGraw-Hill, London, 1953.

{6} V. Namias. The fractional order Fourier transform and its appHcation to quantum mechanics. J. Inst. Maths.
Applics., 25:241-265, 1980,

7} J. Shen and G. Strang. Asymptotic analysis of Daubechies polynomials. Proc. Amer. Math, Soc., 124:3819—
3833, 1996.

{8] J.Shen and G. Strang. Asymptotics of Daubechies filters, scaling functions and wavelets. Appl. Comp. Harm.
Anal., 5(3):312-331, 1998.

[9] R. Strichartz. A guide to distribution theory and Fourter transform. CRC Press, Florida, 1993.

CAM PRrOFESSOR, COMPUTATIONAL AND APPLIED MATHEMATICS, 7354 MaTH. ScmNcE BumbmNg, UCLA,

Los ANGELES, CA 90095, USA. EmMAL: jhshen@math.ucla.edu.



