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A kinetic theory is formulated for the velocity of a step
edge in epitaxial growth. The formulation involves kinetic,
mean field equations for the density of kinks and “edge-
adatoms” along the step edge. Equilibrium and kinetic steady
states, corresponding to zeroc and nonzero deposition flux, re-
spectively, are derived for a periodic sequence of step edges.
The theoretical results are compared to results from kinetic
Monte Carlo (KMC) simulations of a simple solid-on-solid
(SOS) model, and excellent agreement is obtained. This
theory provides a starting point for modeling the growth of
two dimensional islands in molecular beam epitaxy (MBE)
through motion of their boundaries, as an alternative to KMC
simnlations. :

L INTRODUCTION

Modeling epitaxial growth is extremely challenging due
to the wide range of length and time scales represented
by problems of practical interest. In spite of the dramatic
increase in available computational power and improved
numerical algorithms over the last decade, the only viable
approach remains construction of a hierarchy of mod-
els, each of which is valid over a much narrower range.
For example, ab initio methods are capable of describing
atomistic processes in great detail, but are completely in-
appropriate for describing growth on macroscopic length
and time scales. Similarly, kinetic atomistic models for
epitaxial growth (such as simple solid-on-solid models)
have had success describing growth processes on length
scales of several thousand Angstroms, but stiil fall short
of being able to describe growth on the scales of interest
for device applications. As understanding of the rele-
vant physics on each scale improves, the burden begins
to fall more heavily on bridging these length and time
scales, i.e. developing methodologies for transferring in-
formation from models at smaller scales to parameters in
models that describe larger scales.

In this paper, we lay a foundation for one approach
to connecting the atomistic and continuum scales in epi-
taxial growth. Specifically, we develop a theory for the
velocity of a step edge whose direct inputs are kinetic
rates from atomistic processes. We expect this theory to
be applicable not only for determining the macroscopic
velocity of a step edge, but also the velocity of the bound-
ary of a two dimensional island in layer-by-layer MBE

growth. This velocity could then be used in either a sim-
ulation of step dynamics or, alternatively, in an “island
dynamics” simulation of epitaxial growth such as that
described in [3] and therefore provide a bridge between
microscopic and macroscopic length and time scales.

The velocity of a step edge in crystal growth was deter-
mined in the classic paper of Burton, Cabrera and Frank
(BCF) [2] for a system with small supersaturation. Mod-
ifications of the BCF theory to include deviations from
equilibrium have been proposed earlier in [6-8], but these
all rely fundamentally on the system being close to equi-
librium. For thin film growth by MBE, the supersat-
uration is typically quite large since there is almost no
desorption. Hence the growth is controlled by kinetic,
rather than equilibrium, considerations, and an appro-
priate continnum medel should reflect this.

The main purpoese of this paper is to describe a macro-
scopic theory for epitaxial growth and, in particular, de-
termine the velocity of a step edge based strictly on ki-
netics with no near-equilibrium assumptions. The the-
ory reduces to that of {2] when the system is in equilib-
rium. This theory is formulated in terms of the density of
kinks and “edge-adatoms” on the step edge, as illustrated
in Fig. 1. Edge-adatoms are defined to be those atoms
which are bound to a step edge, but still have mobility
along the step. The density of kinks and edge-adatoms
is determined using a mean-field theory for their inter-
actions. Our analysis starts from the kinetic exchange
rates (phrased in terms of “diffusion coefficients” and “co-
ordination numbers”) for atoms on the surface. These
parameters specify details of the dynamics of epitaxial
growth at a microscopic level, and are used here as the
microscopic information that is needed for the macro-
scopic model.

In some cases these rates can be obtained from ex-
perimental data, although their determination is often
indirect and generally requires application of a theory
whose basic assumptions may not always be valid. For
example, the diffusion coefficient of adatoms on a surface
can be determined indirectly by measuring the density
of islands in submonolayer deposition experiments and
applying basic nucleation theory [9,1]. This assumes, of
course, that basic nucleation theory is valid for the ma-
terial system and parameter ranges of interest, which is
not always the case. These kinetic rates can also, in prin-
ciple, be directly determined from ab initio computations
[10]. This is a promising approach and although such cal-
culations are computationally demanding, this method is



more likely to produce reliable numbers since no indrect
interpretation of experimental data is required.

Although our approach kinetic, mean field approach
to epitaxial growth seems quite natural, we know of only
one reference in which something similar is proposed. In
[13], Voronkov derived a related theory for the velocity of
a step on a crystal surface that is far from equilibrium.
Rather than starting from microscopic exchange rates,
his analysis depends on the “effective supersaturation”
at the step, which is difficult to obtain directly. His re-
sults include a formula for step edge velocity in terms of
effective supersaturation, but he does not provide a full
model for the evolution of the epitaxial surface, as we
formulate below. In addition, he assumed that the at-
tachment to the step is directly from the vapor above the
epitaxial surface, whereas we have included the adatom
density on the terraces adjacent to the step.

This paper is organized as follows. The epitaxial
growth model is derived in Sections II and ITI. The for-
mer section contains only equations derived from macro-
scopic arguments, while all of the relations that depend
on the kinetic mean field approximation are reserved for
the latter section. The model is phrased in terms of a
general set of diffusion coefficients and coordination num-
bezs. Detailed balance implies certain relations among
the diffusion coefficients, as described in Section IV. In
Section V, we determine specific parameters which cor-
respond to those in an atomistic solid-on-solid (SOS)
model. Equilibrium solutions are derived in Section VI
and kinetic steady state solutions are derived in Section
VII. KMC results presented in these sections confirm the
validity of this theory for the SOS model. Since the equi-
librium solutions are consistent with those of BCF, the
predicted differences between equilibrium and the kinetic
steady state solutions shows the significance of the kinetic
effects; this is discussed in Section VIII, along with the
application of this theory to a continuum description of
epitaxial growth.

II. MODEL OF THE STEP EDGE:
MACROSCOPIC EQUATIONS

In epitaxial growth, adatoms are deposited on a terrace
and diffuse until they attach to a step edge or collide with
another adatom. The adatom diffusion equation is

Op—DrVip=—rlptr F- M (IL.1)
in which p is the adatom density, Dr is the adatom diffu-
sion coefficient on a terrace, F'is the deposition flux rate,
M is the loss due to nucleation, and 7~ is the desorption
rate, which will be omitted in the subsequent discussion.

We define {3 to be the net flux of adatoms to the step
edge from the upper terrace, and f. the net flux from the

lower terrace. In terms of fi, the boundary conditions
for the diffusion equation are

(11.2)
(IL3)

vpy + Drm - Vpy = —fy
vp_ +Dprn - Vp_ = f_

in which py and p_ are the limiting values of p at the
edge from the upper terrace and the lower terrace, respec-
tively,  is the normal pointing into the lower terrace,
and v is the normal velocity of the boundary in the direc-
tion 12 . The term vpy on the left is due to the motion of
the boundary and would not be present if the boundary
were not moving. Although this term is typically quite
small in epitaxial growth, without it mass is not exactly
conserved.

Edge-adatoms diffuse along a step edge until they at-
tach to a kink site, at which point we consider them to
be part of the step. The diffusion equation for the edge-
adatom density ¢ is

Oip— Dp8lp=fo+f-—fo

in which Dg is the edge diffusion coefficient, s is the arc-
length variable along the edge and fy is the net flux of
edge-adatoms to kinks. In Eqn. (I1.4), the flux terms fi
serve as sources of edge-adatoms as described in the next
section.

As a step edge moves by atoms attaching to a kink,
the kink moves along the edge. Since the step edges are
one dimensional, there are two kinds of kinks (cf. Fig. 1):
those that move to the left, which we call left-facing kinks
with density k¢, and those that move to the right, which
we call right-facing kinks with density k.. We denote
the total density of kinks as & = k. + k. For simplicity
we agssume the atomistic hopping rates (i.e., the diffu-
sion coefficients described below) are the same for left-
and right-facing kinks. In particular this implies that the
macroscopic speed is the same for left- and right-facing
kinks, so that the velocities are —w and w for lefi- and
right-facing kinks, respectively. The resulting convective
flux of kinks with respect to arc length s is w(k, — k).
In addition, as described in the next section, there are
two processes for the net gain or loss of kink pairs; the
net gain in kink pairs due to “nucleation/breakup” is
denoted by g and the net loss in kink pairs due fo “cre-
ation/annihilation” is denoted by k. Note that g and A
include both gain and loss terms. In the kinetic steady
state that is of most interest for MBE growth, there is a
net gain from nucleation/breakup and a net loss from cre-
ation/annihilation, which is the reason for taking g > 0
to correspond to net gain and & > 0 to correspond to net
loss. Therefore the kink density k evolves according to
the convective equation

Ok + 8, (w(k, — k) = 2{g — h)

Additional relations between the kink densities k, k,
and &, are implied by the geometry of the step edge. Con-
sider a crystal with lattice constant g, and a step edge

(11.4)

(IL5)



that is nearly parallel to one of the primitive (i.e. lowest
index) crystallographic directions. Let eg be the corre-
sponding crystallographic axis, and n the unit normal
to the macroscopically curved step edge. Let § denote
the angle between eg and . Along the step edge, the
densities of right and left-facing kinks satisfy

kr+ k=4
ke — ke = —a~ttand

(1L6)
(IL7)

The flux fy of edge-adatoms to kinks can be deter-
mined by macroscopic considerations, as follows: Denote
the step edge as I', separating the upper terrace {2} from
the lower terrace £2_. Neglect deposition flux F and
desorption for the moment, since they are spatially dis-
tributed and do not affect the form of fy. As mentioned
above, we do not consider edge-adatoms to be part of the
step edge. Conservation of mass then says that any loss
of adatoms on the terraces must be due to either growth
of the step edge or accumulation of edge-adatoms; i.e.,

A A3
——— dA =aqa vds + — ds
di n+un_p r di r{p

On the other hand, the only way for adatoms to leave
the terraces is through the fluxes fi, so that

(11.8)

d

= 1.9
dt Ja,ua_ (1.9)

paa=— [ (f + 1.)ds

In addition, the rate of change of arclength of a moving
curve is equal to the product of the normal velocity »
and the curvature x, from which it follows that

d
a—iﬂwds—‘/rgot—i-gonvds

Combining these, we obtain
d d
—-a“Z/vds: _— pdA+--f ds
r dt Ja,un_ a Jr¥
== [+ 1235 + [ (ot prn)as
= /(—fg + pKv)ds
r

(11.10)

(iL.11)

By properly restricting the integral to a short segment of
the boundary T, this identity implies that the integrands
—a~%v and — fy + kv in the first and last integrals must
be the same, which shows that the flux rate for edge-
adatoms to kinks is

Jo=v(pr+a"?) (1I1.12)

Finally, as derived in [6], the normal velocity v for a
step edge must satisfy

v = awk cosf (I1.13)

since the velocity of the edge is due to the growth of the
upper terrace by motion of the kinks.

To swmmarize, the adatom density satisfies the diffu-
sion equation (IL.1) with boundary conditions (I1.2) and
(I1.3). The equations for edge-adatom density ¢ and kink
density k are (11.4) and (I1.5). Constitutive laws for these
equations include the macroscopic conditions (I1.6) and
(Y1.7) for k. and ky, as well as (11.12) for f5. The veloeity
v for the step edge is determined by the Eq. (11.13). All
of these equations are macroscopic. Additional constitu-
tive equations for M, fi, w, g and A will be determined

m the next section.

111, MODEL OF THE STEP EDGE: MEAN FIELD
INTERACTION TERMS

In the previous section, macroscopic analysis was used
to derive eguations for the adatom, edge-adatom and
kink densities, Here we formulate expressions for M,
f+, w, g and A in terms of diffusion coefficients and geo-
metric constants, which we will refer to as “coordination
numbers.”

Consider an interaction process P involving transitions
from state A to state B. Let cp be the “coordina-
tion number” which counts the number of paths through
which this transition can occur. Although transition
from A to B through different paths may occur at dif-
ferent rates (and even involve several different atomistic
processes), we may form a single effective rate ayp for
all transitions from A and B. Hence, it is convenient to
replace the transition rate by an effective “diffusion co-
efficient,” which is defined as Dyg = a?o4p in which a
is the lattice constant. Although its diffusion coeflicient
Dp 4 may differ from D g, the coordination numbers for
the process and its inverse must be the same; hence the
notation ¢p.

We will use the term diffusion coefficients (D45 ) rather
than transition rates (o4 g) in the remainder of this paper
since the most significant transitions involve the motion
of atoms along terraces and step edges which result in
diffusion of adatoms and edge-adatoms. The term tran-
sition rates might be more natural for some of the other
processes, but can also be misleading since some of them
may involve several atomistic processes each with their
own rate. So in order to emphasize the generality of our
model and achieve notational uniformity, we use effective
diffusion coeflicients, defined as above to have the correct
units of (length)?/time.

If the probability for occurrence of a state A is denoted
as p(A), then the total rate for transitions from 4 to B
is cp(Dapa~2)p(A). Most of the significant processes
involve interactions between two or more adatoms, edge-
adatoms or kinks, so that p(A) should be a two (or more)
particle probability density function. The mean field as-
sumption is that this density can be approximated by a



product of single particle density functions. This approx-
imation should be valid if the particle densities are small
and there is some mixing in the system. This is the main
assumption in our model and its accuracy will be tested
by comparison of results from our theory to those from
kinetic Monte Carlo simulations.

First consider the rate of island nucleation. Assuming
that the critical cluster size for adatoms on a terrace is
one (i.e. clusters of size two or larger are stable islands),
then the loss term M due to island nucleation is

M = 2¢p Dra?p? (11.1)

The coordination number cgr measures the number of
ways that two adatoms can hop together to form a clus-
ter at a given location as shown in Fig. 2. For the general
model formulated here, this figure (as well as Figs. 3, 4
and 5} is only a caricature of the processes, but for the
cubic SOS model developed later, this figure correctly de-
scribes these processes. The corresponding inverse pro-
cess, the breakup of small clusters, is ignored. Note that
the term p® is justified through the mean field approxi-
mation.

Next consider the fluxes fi, which result from ex-
change of atoms between the terraces and an edge. They
are written in terms of diffusion coefficients and coordi-
nation numbers as

(1L.2)
(111.3)

f+ = cs4(Dfgapy — Dipp)a™
f-=¢j-(Dygap- — Dgrp)a™?

In these equations, D}'E is the diffusion coefficient for
the transition from the upper terrace (T') to an edge (E),
and DET is the diffusion coefficient for the inverse tran-
sition from edge to terrace. The coordination number
for transitions between the edge and the upper terrace is
¢s4+. Transitions to and from the lower terrace have diffu-
sion coefficients Dy and Dy, and coordination number
ef—.

The kink velocity w is determined by three processes:
transitions between an edge (E) and a kink (K), tran-
sitions between the upper terrace (I'*) and a kink (K),
and transitions between the lower terrace (=) and a
kink (K'). The rates for these three process are denoted
by wi, we and w;, respectively, formulas for which are
derived next. The three processes are illustrated in the
upper, middle and lower diagrams of Fig. 3.

First consider transitions between edge-adatoms and
a given kink. The attachment rate is ¢y Dprpa=! in
which ay is the probability for an edge-adatom to be at
a particular site adjacent to the kink, the coordination
number ¢y counts the number of relevant adjacent sites,
and Dgg a~? is the transition rate to go from an adjacent
site to the kink. The detachment rate is ¢y, Dxpa=2.
Note that since this calculation is performed with refer-
ence to a given kink, as is appropriate for a calculation
of velocity, there is no factor of k.

The attachment rate for adatoms from the upper ter-
race to a given kink is cy2DF 5 py in which a2py is the

probability for an adatom to be at a particular site on
the upper terrace adjacent to the kink, the coordination
number ey5 counts the number of relevant adjacent sites,
and Dif . e~ is the transition rate to go from an adjacent
site to the kink. The detachment rate is cy2DEpa?.
Similarly the attachment and detachment rates for an
adatom from the lower terrace to the kink are cwsDygp_

and ¢,5 D7 a2

We combine these three processes to get the kink ve-
locity w, which is ¢ times the net rate of attachment and
detachment. The result is

roonactivaly
y TESPeCLIVELY.

w = wi + wy + w3 (111.4)
in which
w1 = cw1(Dexe ~ Drga™?)
w; = cur(Dgaps — Dfpa™)
w3 = cya(Dygap- — Dgpa™t) (111.5)

Next, consider the gain and loss of kinks. This occurs
in two ways: In the first process, which we call nucle-
ation/breakup, a left-right kink pair (facing away from
each other and consisting of two atoms) can nucleate
by two atoms coming together along the edge, and it
can breakup by an atom moving away. The net gain of
kinks due to nucleation/breakup is denoted 2g, in which
g is the net rate of gain of kink pairs. In the second
process, which we call creation/annihilation, a right-left
kink pair (facing toward each other and separated by
a single atomic vacancy along the edge) can form due
to detachment of a single atom from a straight edge,
and the kink pair can be destroyed by an atom filling
in the vacant spot. The net loss of kink pairs due to
creation/annihilation is denoted 2k, in which h is the
net rate of loss of kink pairs. The signs are chosen so
that g and A are positive in epitaxial growth. These pro-
cesses involve transitions between the adatoms on the
upper and lower terraces (Tt and T), edge-adatoms
(E), atoms at a kink (K) and atoms in the bulk (B) by
which we mean those that are in a straight step edge.

First consider g: Nucleation of a kink pair oceurs by
an atom moving next to an existing edge-adatom. The
moving atom can be either an edge-adatom, or an adatom
from the upper or lower terrace. The net gain rates for
these processes are denoted g1, g2, and gs, respectively.
They are illustrated in the upper, middle and lower dia-
grams in Fig. 4, respectively.

The nucleation rate due to collision of two edge-
adatoms is ¢;1 Dpx p?a™! in which ¢ is the density of
edge-adatoms, ayp is the probability of an edge-adatom
in a site adjacent to the first edge-adatom, cg1 is the
number of such sites and a~2Dgg is the hopping rate.
Breakup of a kink pair, resulting in two edge-adatoms,
occurs at rate ¢gy D phrkea™?, in which ak, ks is the den-
sity of kink pairs, ¢g1 counts the number of ways that they
can breakup into two edge adatoms, and e~ 2Dgp is the
hopping rate for this transition.



We combine these expressions with similar expressions
for nucleation and breakup involving an edge-adatorn and
an adatom to obtain

g=g1+92+9s (IIL6)
in which
01 = e (Dexe® — Drpkokda™!
g2 = co(Dfgcapyp — Dfpkrke)a™
g3 = cga( Dy pap_p — Dgrkeke)a™t. (T11.7)

Finally, consider /i which is the net rate of annihila-
tion of kink pairs due to two processes: The first process
is the annihilation of a kink pair which face each other
and are separated by a single site. The kink pair is an-
nihilated and the step edge is completed by an adatom
moving into the gap between the kinks. The second, in-
verse process is creation of a kink pair by removal of a
single atom from a straight edge. The atom that fills
in the gap or is removed from the straight edge can be
either an edge-adatom, or an adatom from the upper or
lower terrace. These three processes are denoted by A1,
ha and hg, respectively, and they are illustrated in the
upper, middle and lower diagrams in Fig. 5, respectively.

Suppose that the atom that moves is an edge-adatom.
Then the annihilation rate is cy1 Depwk ke, in which
ak.k, is the density of kink pairs facing toward each other
and separated by a single site, a¢ is the probability of an
edge adatom in a given site adjacent to the kink pair,
¢y counts the number of such sites and Dgpa~2 is the
hopping rate for the edge-adatom. The rate of creation
of kink pairs is ¢4y Dpgae™ in which ¢~ is the density
of sites from which an atom can detach (this neglects the
presence of edge-adatoms and kinks, which is a higher
order correction), ¢py counts the number of ways that an
atom can detach to form an edge-adatom, and Dppa™?
is the hopping rate from the bulk to the edge.

We combine these expressions with the corresponding
expressions for attachment and detachment of adatoms
to obtain

h=hy+hy4hy (HIS)
in which
hi = eni(Dpppk ke — Dpga™?)
hy = +Ch2(D}-Bap+krkg — DETG_E‘)
ha = +cna(Dygap-krke — Dgpa=?) (I11.9)

To summarize, we have derived in this section expres-
sions for the kink velocity w, the fluxes f,. and f_, and
the creation and loss terms M, g and h.

IV. EQUILIBRIUM AND DETAILED BALANCE

Before finishing the derivation of the epitaxial growth
model, we need to consider the consistency conditions
required for detailed balance. Here we derive the equilib-
rium values of adatom, edge-adatom and kink densities
and then obtain the consistency conditions on the diffu-

. sion coefficients.

At equilibrium, detailed balance implies that £y, f-
and each of the three terms in g, h and w must vanigh.
In addition, p is constant in equilibrium, so that p; = p_
and assaming that the step edge is parallel to a funda-
mental crystal direction implies that k. = &k, = k/2.
The equations g, = g2 = g3 = 0 and w; = 0 imply
wy = wy = 0. Of the remaining nine equations, three
provide equations for p, ¢ and k, and six are consistency
conditions for the diffusion coefficients.

From the wy, g1 and fi equations, we obtain the fol-
lowing equations for p, v and % in equilibrium:

p= (DET/D%E)(DKE/DEK)U'z (IV.1)
= (a/4)k? (1Iv.2)
k= 2Dkg/Dgg) (1V.3)

The equations for ga, 1, Ao then imply
(DF g / Do) DEp/ D p)(Dxp/Dex) = 1 (IV.4)
{Pes/Dee)(Dxe/Dex) =1 (IV.5)
(D g/ DE: ) Dy / DEp ) Dre/DEk)? = 1 (IV.6)

The remaining equations for f_, g3 and hy then imply

(Dgr/Dyi) = (Db /DE) (v.7)
(Dgr/Dyg) = (Dfr/Dig) (Iv.8)
(Dpr/D7p) = (DEp/Dip) (1v.9)

This concludes the derivation of the mean field kinetic
model for epitaxial growth. Equations (II.1) through
(IL7), (IL.12), (IL.13) and (IIL.1) through (IIL.9) define
the model in general form. Equations (IV.4) through
(IV.9) are detailed balance conditions that restrict the
possible values of the diffusion coefficients. In deriving
these consistency conditions, we have also derived the
equilibrium solutions, Egs. (IV.1) through (IV.3) for this
model. '

V. THE CUBIC SOLID-ON-SOLID MODEL

In the previous sections, we formulated a general model
for epitaxial growth, involving diffusion coefficients and
coordination numbers. Now we determine these param-
eters for an atomistic cubic solid-on-solid (8OS) model
and use them in our continuum model which we will now
refer to as the continuum SOS model. We then make
specific predictions for the behavior of this model. The
cubic SOS model we use is nearly identical to the model



described in [4,12]. While not intended to describe any
specific material system, this model nevertheless contains
all the basic mechanisms present in epitaxial growth of
many real materials. This model has two paramecters, By
and Epy, which describe the energy barrier for adatom
hopping on a terrace and the additional barrier for hop-
ping with a single nearest neighbor. The total barrier F,
for hopping is then given by By = Es +nEy, where n is
the total number of in-plane nearest neighbors [4,12].
The dynamics of this model involve the following four
diffusion coeflicients (which, for this simple model, are
hopping rates multiplied by a®): Dy is the diffusion co-
efficient for an adatom on a terrace, Dg is the diffusion
coeficient for an edge-adatom along an edge, Dy is the
diffusion coeflicient for an atom from a kink, and Dp is
the diffusion coefficient for an atom from a straight edge.
These are given by
Dy = a?pe~Bs/ksT
Dg = DTe_EN/kBT
Dg = Dre~Bn/*sT — 2 1y

Dp = Dpe~3En{ksT _ D%/D%-

(v.1)

in which v is an attempt frequency, typically of order
1013 sec™?, T is temperature, and kg is the Boltzmann
factor.

In terms of these diffusion coefficients, the diffusion
coeflicients for individual transitions are

+ + +
Drg = Dy = Dpg = Dr
DEr. = Dpx = Dpp = D

D?s:.’T =Dggp =Dy = Dg (v.2)

D%y = Dpgp = Dpx = Dp

All hops are assumed to be to a nearest neighbor site
with one exception: at a kink, an atomn can hop between
the kink and its diagonal neighbor along the edge. Diag-
onal hops were included because they allow atoms to hop
around corners and across kinks, resulting in compact is-
lands in kinetic Monte Carlo simulations of this model.
Step edge asymmetry, with different hopping rates from
the upper and lower terraces to the edge, could easily be
included but is omitted here for simplicity.

Next we determine the coordination numbers for this
model. First consider nucleation in which one adatom
hops to a neighboring site of another adatom. To avoid
duplication in counting, pick a site for the atom that does
not hop and count the ways in which an atom to hop to it.
As illustrated in Fig. 2, there are two possible routes from
each of the four diagonal sites and one possible route from
each of the four sites that are next nearest neighbors in
the horizontal or vertical directions. Therefore ¢y = 12.

Next consider the kink velocity w. To be specific, con-
sider a right-facing kink. As shown in Fig. 3, there are
two sites from which an edge-adatom can hop to the kink,
one to the right of the kink and one directly attached to
the kink (the latter joins the kink by a diagonal hop),

so that ¢p1 = 2. From the lower terrace, there is only
a single position, diagonally opposite the corner of the
kink, from which an adatorm can hop to the kink, so that
cws = 1. Finally, from the upper terrace, an adatom can
hop to the kink either from the left (on top of the end of
the kink) or from below (opposite the site to the right of
the kink, so that ¢y,s = 2. Together these show that

w = 2Dgp + Dra{2p, + p.) —b5Dga™?! (V.3)

Next consider the nucleation and breakup of kink pairs,
which are described by the term g and illustrated in
Fig. 4. For a given edge-adatom, there are two ways
(from the right or from the left) in which a second edge-
adatom can hop to it, so that c;; = 2. From the lower
terrace, there are also two ways (from the right or left) in
which an adatom can hop to it, so that g3 = 2. Finally,
from the upper terrace, there are four ways {one from
each of the sites to the right or left and two ways from
directly on top of the edge-adatom), so that ¢;p = 4. Tt
then follows that

9=2p(e " Drp +aDyr(2py + p_)) — 8a" Dy ko ke
(V.4)

Similarly, as shown in Fig. 5, ca1 = 2, cps = 3 and
ena = 1 so that

h = (2Dpp+ aDr(3py + p-)Yhrke — 6Dpga™> . (V.5)

Vi. THERMODYNAMIC EQUILIBRIUM

Using the specific diffusion coefficients and coordina-
tion numbers for the continuum SOS model from the
previous section, we now formulate predictions from the
model in two particular regimes: equilibrium and kinetic
steady states. The analytic results from the model are
directly compared to the resulis of KMC simulations to
provide validation for the model and, in particular, the
mean field approximation.

Equilibrium values for the adatom, edge-adatom and
kink densities were derived in Section IV. Here we spe-
cialize those results to the continuum SOS model de-
scribed in the previous Section. The detailed balance
results (IV.1) through (IV.3) together with the speci-
fication of the diffusion coefficients (V.2), result in the
following formulae:

p=(Dg/Dr)a"p (VL.1)
@ = (a/4)k? (VL2)
k= 2(Dg/Dg)"?a"? (VL3)

The detailed balance requirements (IV.4) and (IV.7)-
(1V.9) follow directly from (V.2) for the diffusion coefli-
clents. The two remaining conditions (IV.5) amd (IV.6)



are then equivalent to the detailed balance requirement
that
D} = DgDp (VL4)
which is a direct consequence of Eqns. (V.1).
The three equations (V1.1)-(VL.3) are consistent with
the equilibrium density values derived in Appendix A of

[2], except that [2] includes the effects of kinks of size
larger than one, resulting in

k = 2v/Dg /Dg(1+ /Dx/Dg) ta™?

This is the same as k in Eq. (VL3) in the limit of small
values of Dy /Dg.

For partial validation of this step edge model, we have
performed computations for the motion of a periodic se-
ries of step edges, using standard kinetic Monte Carlo
techniques to simulate the atomistic (SOS) model. Com-
putations were performed for a range of values of diffusion
coefficients (Dyp, Dg) (or equivalently, binding energies
Eg and Ey) and terrace widths L. Since the kink density
is significantly larger than the adatom and edge-adatom
densities, we use it to compare with the prediction of
Eq. (VL3) or Eq. (VL5).

Figure 6 shows a comparison of the simulation results
and the prediction of Eqn. (VL.5) for the equilibrium kink
denmty with F' = 0, Dy = 10!? and the ratio DE/DT
varying between 10 5 and 10%%. The agreement is excel-
lent, with the differences between theory and simulation
weil within one standard deviation of the simulation re-
sults. Agreement with the leading order formula (V1.3) is
also good, but not quite as close as that for (VI.5). These
results demonstrate the accuracy of the growth model
in the equilibrium regime. In particular, they confirm
that our model is consistent with BCF theory for equi-
libria with small kink densities. This is also a first test
of the validity of the mean field approximations used in
the model,

(VL5)

VIL KINETIC STEADY STATE FOR STEP FLOW

Finally consider a kinetic steady state consisting of a
periodic sequence of steps, separated by distance L and
moving at velocity v along one fundamental crystallo-
graphic direction. For nonzero deposition flux F, we find
a kinetic steady state, in which p = p(z — vt), ¢ and k
are constants, and # = 0,

In steady state (and neglecting desorption and nucle-
ation), the flux to the boundaries must equal the total
deposition flux, which implies

v=ad*(fy +f.)=d’LF

The remaining steady state equations are

(VIL1)

0=fy+f-—fo
O=g-—h (VIL2)

Here we neglect the slowest processes Dy and Dg and
assume that ak << 1. For the model formulated in Sec-
tion V, one can show that p,. = p_. Then the adatom,
edge-adatom and kink densities, are

p=(Dg/Dr)aty (VIL3)

= (16a/3)1c2 (VIL4)

k= ( T edge) a” (VIL5)
In the equation for &, Pedge is the edge Peclet number,
defined as

Fedge = (¢*LF)/Dg (VILG)

which is the ratio of the total flux f = LF to an edge from
deposition and the diffusive flux a=3Dp along the edge.
The exponent 5 in (VILS) is related to the critical size
for formation of a left-right kink pair, If the critical size
were j (i.e. if  + 1 edge-adatoms were required to form

-a stable kink pair) then the exponent would be j/(j +2).

Figure 7 shows a comparison of the theoretical and
computational results for kink density k for F = 1. In
this figure, the value of Dy is 10!2, while Dg varies be-
tween 10* and 107. The figure shows excellent agreement
between the predictions of the present theory and the
results of the kinetic Monte Carlo simulation, with dif-
ferences that are less than one standard deviation of the
KMC results. Validation of the present theory shows the
validity of the mean field approximation, which was the
main step in its derivation.

Equation (VIL5) is our main result, showing the dif-
ference between the kinetic steady state kink density and
the equilibrium kink density (V1.3). In deriving this re-
sult, we have ignored detachment from kinks (Dg) and
from straight edges (Dp) since these are insignificant in a
typical MBE growth. In equilibrium, on the other hand,
detailed balance requires that each process and its in—
verse process must balance. As the deposition flux F is
decreased, the growth is slower so that Dg and Dp can
become significant. Equation (VIL5) remains valid until
F is so small that the value of Eq. (VIL.5) becomes as
small as that of Eq. {VI.3). This shows the connection
between the equilibrium and kinetic steady state results
and that the present theory is capable of describing the
transition between them.

VIII. CONCLUSIONS

The theory developed above determines the velocity
of a step edge in epitaxial growth, as well as the den-
sity of edge-adatoms and kinks along the edge with no



near-equilibrium assumptions. The difference between
the kink density in equilibrium versus kinetic steady state
shows the significance of the kinetic considerations. As
shown above, a virtue of the present theory is that it is
valid in both the equilibrium limit and the kinetic steady
state regime. Therefore it can be used to describe epitax-
ial growth for systems that are near as well as far from
equilibrium. Thus it should prove to be a powerful model
for investigating a wide range of epitaxial phenomnena.

The model developed above is also quite general, since
the macroscopic mechanisms should apply to almost any
kind of epitaxial growth. Details of the specific kinetic
mechanisms at the atomistic scale are inserted into the
macroscopic model through the diffusion coefficients D
and coordination numbers c.

As described above, this theory involves the angle ¢
with one of the principal crystallographic axes ey, and
therefore is restricted to boundaries that are nearly per-
pendicular to the fundamental crystallographic direc-
tions. Extension-to an arbitrary boundary curve is ef-
fected by defining @ to be the angle with the closest crys-
tal direction. This is probably not valid for angles near
7/4, i.e. at the corners of a growing island. On the other
hand, we expect that the details of the dynamics at cor-
ners are not too significant; as in a kinetic Wulff shape
[11], the corners grow so fast that their motion is limited
(i.e. determined) only by the dynamics away from cor-
ners. For this reason, we believe that this theory should
be applicable to the motion of island boundaries during
layer-by-layer MBE growth, where kinetic considerations
are known to be important, We believe that this model
is an important first step in bridging the atomistic and
continuum length scales in epitaxial growth and will ul-
timately allow for simulations of continuem models that
include realistic kinetic effects.
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Figure Captions

FIG. 1. Schematic drawing of an epitaxial surface, showing
a step edge, adatoms, kinks and edge-adatoms.

FIG. 2. Illustration of the nucleation process, For a fixed
adatom (center), this shows the ¢pr = 12 ways that a second
adatom can attach to nucleate a new island.

FIG. 3. Illustration of the kink velocity w. This shows the
number of ways that an adatom can hop to a fixed kink site:
cwt = 2 for an edge adatom (top); cwz = 2 for an adatom
from the upper terrace (middle); cys = 1 for an adatom from
the lower terrace (bottom).

FIG. 4. lllustration of the rate g for nucleation/breakup
of kink pairs. This shows the number of ways that an atom
can hop to a fixed edge adatom: ¢4 = 2 for an edge-adatom
(top); €42 = 4 for an adatom from the upper terrace {middie);
gz = 2 for an adatom from the lower terrace (bottom).

FIG. 5. Hlustration of the rate & for creation/annihilation
of kink pairs, This shows the number of ways that an adatom
can fill in an empty site between two kinks: cpy = 2 for an
edge-adatom (top); caz = 3 for an adatom from the wpper
terrace (middle); cha = 1 for an adatom from the lower terrace
{(botiom).



FI1G, 6. Kink density k vs. time ¢ for equilibrium with
F =0 as determined from KMC computations {, with error
bars) and BCF theory (solid line).

FIG. 7. Kink density %, normalized by L1/%, vs. edge diffu-
sion coefficient D for kinetic steady state, for various values
of terrace width L. Parameter values are flux F' = 1 and
adatom diffusion Dr = 10*%, Results are shown from the ki-
netic theory (solid line) and KMC computations with I = 25
(squares), L = 50 (o), and L = 100 {A).
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