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‘We introduce a model for epitaxial phenomena based on the motion of island boundaries, which is
described by the level set method. Our model treats the growing film as a continuum in the lateral
direction, but retains atomistic discreteness in the growth direction. An example of such an “island
dynamics” model using the level set method is presented and compared with the corresponding rate
equation description. Extensions of our methodology to more general settings are then discussed.

PACS: 02.30.J1, 68.35.Fx, 81.10.Aj, 02.40.Ey

Modeling epitaxial growth presents an enormous chal-
lenge to theoretical physicists and materials scientists.
The range of length and time scales represented by prob-
lems of practical interest (e.g., the growth of device lay-
ers) spans many orders of magnitude [1], ie., atom-
istic processes can significantly affect quantities such
as surface morphology even at the largest length and
time scales [2]. A complete model for epitaxial growth
would seamlessly combine the submonolayer and multi-
layer regimes on lateral scales of several microns or more,
be appropriate for a variety of homoepitaxial and het-
eroepitaxial systems, and be capable of describing differ-
ent growth techniques.

None of the models for epitaxial growth currently in
use can accomplish this objective. The most common
approaches fall into one of two categories: analytic-based
methods, i.e. homogeneous rate equations and continuum
equations of motion, and kinetic Monte Carlo (KMC)
simulations. Homogeneous rate equations are straight-
forward to formulate [3], but do not readily yield informa-
tion on surface morphology. Moreover, the number of pa-
rameters required grows quickly once rate equations are
extended to the coalescence or multilayer growth regimes
[4]. Even in the precoalescence regime, the physical inter-
pretation and computation of these parameters in terms
of atomistic processes are often unclear at best, unattain-
able at worst.

Continnum equations of motion that take the form of
partial differential equations [5] for the surface height
profile do yield information on morphology at large
length scales. As they are typically formulated [5,6],
however, continuum equations are appropriate ouly in a
regime where the surface is already assumed to be macro-
scopically rough. Continuum methods are therefore un-
suitable for describing atomic scale roughness. The pri-
mary advantage of these and rate equation methods is the
vast methodology available for, e.g., identifying asymp-
totic regimes (scaling) [7] and performing stability anal-
yses [8].

KMC simulations [9] offer an alternative to analytic
approaches. They allow easy implementation of a wide

range of atomistic kinetic processes, which can in princi-
ple be identified and their rates determined from first
principles calculations [10]. However, simulations are
usually based on the length and time scales of single
atoms and adatom hopping rates, so modeling systems of
practical interest is not always feasible. In addition, due
to the stochastic nature of simulations, the advantages
of analytic approaches mentioned above are not readily
obtained.

Yet, despite the practical limitations of analytic and
simulational methods, they have been used with great
effect, to provide a comprehensive conceptual and compu-
tational framework for describing homoepitaxial growth
[11], especially hy molecular-beam epitaxy. Problems
arise, however, when attempts are made to extend these
techniques to heteroepitaxial systems, where the effects
of lattice mismatch must be incorporated, or to other
growth methods, sach as vapor-phase epitaxy (VPE),
which requires coupling the atomistic kinetics on the
substrate to the hydrodynamic delivery of new material.
Some aspects of these issues have been addressed for par-
ticular systems, but no general methodology has emerged
to provide a unifying framework in the spirit of the ana-
lytic or simulational work described above,

In this paper, we introduce a new model and closely-
related numerical technique that addresses these issues.
In our model, growth is described by the creation and
subsequent motion of island boundaries; hence, we refer
to this model as “island dynamics.” The model is discrete
in the growth direction, but continuous in the lateral di-
rections and therefore, in principle, can describe growth
on arbitrarily large lateral length scales. Moreover, since
the lateral directions are treated continuously, continuum
equations representing any field variable can be coupled
to the growth by solving the appropriate boundary-value
problem for the field and using local values of this field
to determine the local velocity of the island boundaries.
For example, the strain fields that occur in the presence
of lattice mismatch or the hydrodynamic fields in a VPE
reactor can be accommodated by this method.

Although island dynamics is a natural way of describ-
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FIG. 1. Schematic evolution of one-dimensional island
morphologies {left} and the corresponding level set function,
o (right): (a) two spatially separated islands, {(b) the same
istands at a later time, but before coalescence, (c) the islands
after coalescence, and (d) the nucleation of a new island on
top of the coalesced islands.

ing many aspects of epitaxial growth, its implementation
requires tracking a large number of individual interfaces
that coalesce or are created by nucleation. Recent ad-
vances in applied mathematics, in particular, the devel-
opment of the level set method for simulating the mo-
tion of free boundaries [12,13], now make numerical im-
plementation of such a model practical. We first will
give a brief introduction to the level set method and
then present results of a basic island dynamics model
to demonstrate its viability.

The central idea behind the level set method [12] is that
any boundary curve I', such as a step or the boundary of
an island, can be represented as the set ¢ = 0, called the
level set, of a smooth function ¢ [Fig. 1(a)]. For a given
boundary velocity v, the equation for ¢ is then

¢
Bt

in which v has been extended in an arbitrary way from
the boundary T'(t). Since Vg = n|Vp|, then v Vi =
v|Ve|, where v = 5 - v is the normal component of v
and 1 points along the direction of V. Growth is natu-
rally described by the smooth evolution of ¢ as illustrated
schematically in Figs. 1(a,b). The boundary curve I'(t)
generally has several digjoint pieces that may evolve so
as to merge [Fig. 1(c)] or split [13,14].

We have extended this method to multilayer growth
where the (zero thickness) boundaries [y(t) of the is-
lands are defined as the set of spatial points x for which
wp(x,t) = k for k = 0,1,2,... [Fig. 1{d)]. Overhangs
and undercuts, generally considered irrelevant in mod-
eling epitaxial phenomena, are prevented by using one
single-valued function ¢ for all layers. The evolution of
the level set function ¢ is obtained by numerically solving
Eqn. {1} with high-order accuracy (typically third order)
using essentially nonoscillatory (ENO) methods [15].

An important feature of the level set method is that ¢
remains smooth throughout coalescence. This is crucial

+v-Vo=0 , (1)

for applications to epitaxial growth because hundreds or
even thousands of island boundaries may merge in the
course of a typical simulation. While other methods for
tracking boundaries {e.g. [16]) require additional input
for accommodating the topological changes that occur
during coalescence, the evolution of boundaries with the
level set method is a direct consequence of a particular
choice for the boundary velocity v.

To illustrate the application of the level set method
to epitaxial growth, we consider a basic island dynam-
ics model. This model assumes that the adatom density
p = p(t) is spatially uniform and that the incident flux
F' is constani in space and time. If we also assume that
adatoms attach irreversibly to the islands, then the ve-
locity of the istand boundary has magnitude

v=Dpa |, (2)

where D is the adatom diffusion constant and a is the
lattice constant. The adatom density increases due to
the flux and decreases due to both nucleation of new
istands and attachment of adatoms to island boundaries.
The equation for the evolution of the adatom density is
thus given by

dp dN  w
E;mp—nodtmazLZ/ds 3 (3)

where ng is the number of adatoms in a new island, N
is the density of islands, L is the system size and the
integral is over all the island boundaries. The form of
the last term, which accounts for the decrease of adatom
density due to attachment to island boundaries, is easily
understood by observing that the integral over all island
boundaries with a spatially constant v is just the total
area of adatoms swept up by these boundaries in time dt,
The factor of a? then converts this area into the number
of adatoms lost and the factor of L? converts this, in
turn, into the corresponding density,

Equations (2) and (3) are closed by specifying the nu-
cleation rate. For the case of irreversible attachment,
ng = 2 and the nucleation rate is

N,

New islands are nucleated at the times ¢, when NIL?
crosses the integer value n. At these times a “peak”
is inserted into ¢ [cf. Fig. 1(d)]. This peak is one unit
high and spans several points on the numerical grid to
ensure the smoothness of . Since there is no spatial
dependence in the adatom density and, hence, in the nu-
cleation rate, we choose the location x,, of new islands to
be random. This is equivalent to adding a scurce term
Yo 8t —1,)8{x — x,) to the right-hand side of Eq. (1).
While this nucleation scheme is appropriate here, the
temporal and spatial dependence of nucleation can be
chosen to inchude any desired physics, such as the spatial
variation of the adatom density.




R d
Q. gg?
GIO]
)O ODC
o ° o
o O o
. E% &5
0 O

F1G. 2. Island boundaries in the first {solid), second
{dashed), and third (dash-dotted) layers for the model of
epitaxial growth described in the text. The coverages in
monolayers (ML) are 0.1 (upper left), 0.5 (upper right), 1.0
(tower left) and 1.3 (lower right). Data were obtained for
D/F = 10%, L/a = 180, and a numerical grid of linear size
2586,

The above model describes the growth of islands at
a rate proportional to their perimeter, which is appro-
priate for the period immediately preceeding the aggre-
gation regime [17]. While no fixed island growth rates
are correct for all regimes [17,18], our choice is suitable
for demonstrating the feasibility of applying the level set
method to a particular island dynamics model. Figure 2
shows islands at four different coverages obtained by in-
tegrating Eqns. (1), {3), and {(4). Since the model is both
isotropic and spatially uniform, the islands are circular,
but this is not an intrinsic limitation of our method. The
velocity for the istand boundaries can reflect any under-
lying crystal symmetry [19].

This simple island dynamics model is best understood
in the context of rate equations that take into account the
evolution of a finite number of islands in a finite system of
size L, but with continuous island sizes. Consider Eq. (3)
in the slightly altered form

dp dnN v
@ =T T L (5)

where we make explicit the sum over the perimeter of
every island in the system whose radius i1s r;. With evo-
lation equations for each »; given by

dry
E—v ) (6)

this set of equations, together with Egs. (2) and (4),
is then formally identical to the island dynamics model
prior to coalescence, provided that all +; = 0 initially
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FIG. 3. Comparisor of the scaled island size distributions
for the island dynamics simulation and real space rate equa-
tions, where n; is the density of islands of size s and say is the
average island size. Data shown were obtained for D/ F = 10°
and a coverage & = 0.2 ML.

and that the kth nucleation event adds a new island to
the system with initial radius rp = a+/ng/7. Because the
system size enters explicitly into these coupled equations,
we refer to them as “real space” rate equations [20].

To provide a quantitative comparison between the is-
land dynamics model and real space rate equations, we
examine the scaled island size distributions [21] produced
by the two models. Figure 3 shows the results of the
island dynamics simulation and integration of the real
space rate equations. All data has been obtained with
L/a = 718; the island dynamics simulations were per-
formed on a numerical grid of linear size 1024. These
values were chosen to resolve dimers in a numerically sta-
ble way. This system size is large enough that finite size
effects are neglible. To facilitate comparison with the real
space rate equations, seeding is chosen to exclude coales-
cence. The excellent agreement in Fig. 3 confirms that
the island dynamics simulation, in which island bound-
aries are moved by the level set function, produces quan-
titatively correct results for this simple model. In partic-
ular, it confirms the accuracy of the numerical evolution
of the level set function.

We now turn to the interpretation of the data. The
island size distributions exhibit two distinct characteris-
tics: arather sharp cutoff which moves to the left as D/F
increases (not shown} and a long tail for smaller istands.
This can be understood as follows. The island dynamics
model evolves a discrete number of islands of finite size.
A large number of islands is nucleated near the onget of
growth which then grow to approximately the same size.
This results in a peak near the largest island size fol-
lowed by a sharp cutoff. Subsequently, the adatom den-
sity reaches a steady state and then, according to Eq. (4),
new islands are nucleated at a constant rate. This leads
to the long tail for small istands. As D/F increases, the
relative number of islands nucleated at early times in-
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FIG. 4. Island density obtained from island dynamics sim-
ulations as a function of D/F at a coverage § = 0.05 ML. The
dashed line is a guide to the eye and the solid line has slope
~1/2.

creases at the expense of the smaller islands, leading to
a shift of the peak position toward s/s,, = 1. As a ve-
sult, the island density decreases and we obtain scaling
behavior consistent with N ~ (D/F)~1/2 (Fig. 4). This
agrees with the standard rate equation analysis for this
model [22] and KMC simulations for the pre-aggregation
regime [17].

The approach we have described here has applicabil-
ity far beyond the basic model we have used. The most
obvious extension of our model is to solve a diffusion
equation for the adatom density and use the density gra-
dient at island edges to determine the growth velocity of
island boundaries. This is currently being pursued and
results will be published elsewhere. Just as in the case
of adatom diffusion, values of a local strain field can be
used to determine the growth velocity of island bound-
aries during heteroepitaxial growth. It is also possible to
construct an island dynamics model for VPE, in which a
hydrodynamics simulation for an entire reactor is used to
provide local values of density and chemical composition
at the surface of a wafer. Such a calculation was done in
a similar, but simpler, framework in Ref. [14]. In conclu-
sion, we believe that the availability of robust level set
methods represents an opportunity to attack problems in
epitaxial growth within a new framework.
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