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Abstract

Interfaces have a variety of boundary conditions {or jump conditions)
that need to be enforced. In [3], the Ghost Fluid Method (GFM) was
developed to capture the boundary conditions at a contact disconti-
nuity in the inviscid Euler equations. This method was extended to
treat more general discontinuities such as shocks, detonations, and de-
flagrations in {2] and compressible viscous flows in [4]. In this paper,
a similar boundary condition capturing approach is used to develop
a new numerical method for the variable coefficient Poisson equation
in the presence of interfaces where both the variable coefficients and
the solution itself may be discontinuous. This new method is robust
and easy to implement even in three spatial dimensions. Furthermore,
the coefficient matrix of the associated linear system is the standard
symmetric matrix for the variable coefficient Poisson equation in the
absence of interfaces allowing for straightforward application of stan-
dard “black box” solvers.
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1 Imtroduction

The “immersed boundary” method [20] uses a é-function formulation to
smear out the solution of the variable coefficient Poisson equation on a thin
finite band about the interface. See [21] for details. In [23], the “immersed
boundary” method was combined with the level set method resulting in a
first order numerical algorithm that is simple to implement even in multiple
spatial dimensions. However, the numerical smearing at the interface has an
adverse effect on the solution forcing continuity at the interface regardless
of the appropriate interface boundary conditions. That is, the numerical
solution is continuous at the interface even if the actual boundary conditions
imply that the solution should be discontinuous.

The “immersed interface” method [10] is a second order numerical method
designed to preserve the jump conditions at the interface in contrast to the
numerical smearing introduced by the dé-function formulation of the “im-
mersed boundary” method. The “immersed interface” method incorporates
the interface boundary conditions into the finite difference stencil in a non-
trivial way that preserves jumps in both the function and its derivatives.
However, this algorithm is fairly complex and has only been extended to
three spatial dimensions for the simple case of a stationary interface [12],
ie. the method has not vet been extended to treat three dimensional mov-
ing interfaces. Furthermore, the corresponding linear system that needs to
be solved is not symmetric, dramatically reducing the namber of standard
fast linear solvers that can be utilized with this method, although it should
be noted that one fast solution technique was used in conjunction with this
method in [11]. In contrast, the d-function formulation of the “immersed
boundary” method has a corresponding linear system whose mafrix is sym-
metric allowing a wide range of standard fast linear solvers to be utilized.

Another notable technique, presented in [7], is a second order accurate
numerical method that preserves jumps at the interface with a resolution
comparable to that of the “immersed interface” method. A clever premise
underlying this method is the ability to smoothly extend the solution outside
the physical domain into a fictitious domain and to use these extended values
in the numerical method. While this method suffers from a non-symmetric
linear system and the usual difficulties that this introduces, the authors
did show that the method was compatible with both multigrid and adaptive
mesh techniques. However, [7] addressed only Dirichlet boundary conditions
and did not extend the method to treat interface jump conditions.

It should be noted that the idea of using extended values and fictitious



domains is not new, e.g. [15], [14] and [17] used similar ideas to solve the
Laplace equation on irregular domains with the help of integral equations.
That is, a system of integral equations is solved, and then the results are
used in the discretization of the Laplacian. In [18], a fast version of this
algorithm was presented which depends in part on the on fast algorithms
for computing the integrals [16]. The interested reader is also referred to [5]
for more details on fast methods for the integral equations.

In {3], the Ghost Fluid Method (GFM) was developed to properly treat
the boundary conditions in [19], removing the spurious oscillations shown in
[9]. The GFM was originally designed to treat contact discontinuities in the
inviscid Euler equations, but it was generalized to treat shocks, detonations,
and deflagrations in [2] and compressible viscous flows in [4]. The generalized
GFM captures the appropriate Rankine-Hugoniot jump conditions at an
interface without explicitly enforcing these jump conditions. Instead, the
GFM creates an artificial fluid which implicitly induces the proper conditions
at the interface. In the flavor of the level set function which gives an implicit
representation of the interface, the GFM gives an implicit representation of
the Rankine-Hugoniot jump conditions at the interface. Since the jump
conditions are handled implicitly by the construction of a ghost fluid, the
overall scheme becomes easy to implement in multidimensions.

In this paper, a similar boundary condition capturing approach is used to
develop a new numerical method for the variable coefficient Poisson equa-
tion in the presence of interfaces where both the variable coefficients and
the solution itself may be discontinuous. This new method is implemented
using a standard finite difference discretization on a Cartesian grid making
it simple to apply in as many as three spatial dimensions. Furthermore,
the coeflicient matrix of the associated linear system is the standard sym-
metric matrix for the variable coefficient Poisson equation in the absence of
interfaces allowing for straightforward application of standard “black box”
solvers. Most importantly, this new numerical method does not suffer from
the numerical smearing prevalent in the §-function formulation of the “im-
mersed boundary” method. In fact, the new method preserves jumps at the
interface with a resolution comparable to that of the “immersed interface”
method. See [13] for a theoretical justification of this new method.

Before proceeding, a few comments on the need for yet another new
method may be in order, especially since this new method is only first order
accurate. First and foremost, note that the second order accurate methods
have not yet achieved widespread success. For example, the “immersed
interface” method is more of a strained attempt to satisfy truncation error



for static two dimensional interfaces, than a robust second order method.
That is, the “immersed interface” method has not yet been applied to three
dimensional problems with moving interfaces or to the multiphase Navier
Stokes equations in any dimension. Furthermore, when it was applied to
the Hele-Shaw problem in [6], the solutions quickly degenerated to first
order accuracy even though new ad hoc fixes were used in the discretization.
Because of these complications, the first order “immersed boundary” method
is the only scheme that is currently used for complex numerical simulations
such as the three dimensional multiphase Navier Stokes equations. However,
the “immersed boundary” method has problems of its own. For example,
the “immersed boundary” method cannot produce discontinuous solutions
and thus is unable to properly model the jump in pressure due to surface
tension forces in the Navier Stokes equations. Various authors have avoided
this problem by treating the pressure as a continuous function and adding
new source terms to the momentum equations, see for example see [1}, [24],
and [23]. Unlike the “immersed boundary” method, our method can be
used to obtain discontinuous solution profiles as will be shown in this paper.
Furthermore, we note that our new method can be used to model the Navier
Stokes equations directly, i.e. without the addition of source terms to model
the effects of surface tension [8].



2 Equations

Consider a Cartesian computational domain, 2, with exterior boundary, 952,
and a lower dimensgional interface, I', that divides the computational domain
into disjoint pieces, 1~ and Q1. The variable coeflicient Poisson equation
is given by

V- (B(E)Vu(@)) = f(F), el

'U:(f) e hind - A (1)

= g(&), Zeon

where £ = (z,y,z) are the spatial dimensions, V = (5%:, —6%, TE%) is the di-
vergence operator, and (%) is presumed to be continuous on each disjoint
subdomain, 2~ and QF, but may be discontinuous across the interface I,
Furthermore, 5(F) is assumed to be positive and bounded below by some
e > 0.

The jump conditions or internal boundary conditions are specified along

the interface T as

[u]p = a{Z), Fel @)

[Bugnlyr = b(E), Zel
where

['u'}i" = u+(f) —u (%) (3)
[Bunlr = BT (£)uz (Z) -~ B7(Duy (2)

specifies the direction of the jump with the “+” subscripts referring to Q.
Note that u, = Vu - N is the normal derivative of 4 where N is the local
unit normal to the interface.

Equation 1 uses Dirichlet boundary conditions for iHlustration purposes
only as the boundary conditions on 9f) are not crucial to our numerical
method. In fact, it takes little effort to replace the Dirichiet boundary
conditions with Neumann boundary conditions reformulating the Poisson
equation as

V- (BE)Vu(E)) = f(Z), el
un(%) = g(F - (4)
(%) = g(F), Z € 00

throughout the text.



3 Numerical Method

Since the interface can have a fairly complex shape, the interface location
is represented by the zero level of a signed distance function, i.e. a level set
representation of the interface is used [22].

3.1 One Dimension

Consider the unit domain Q = [0, 1] where the interface is a single point " =
.5 with a level set representation of ¢ = xr — .5 so that the interface location
is recovered when ¢ = 0. Since ¢ is the signed distance function, the set of
all points where ¢ < 0 and the set of all points where ¢ > 0 represent two
disjoint subdomains, 1~ and Q% respectively. For the numerical algorithm,
one needs to identify whether a given point is located in 2~ or % which
is determined by considering the local sign of ¢, unless ¢ = 0 implying that
the point is located directly on the interface itself. Since the interface is a
lower dimensional sef, this situation can be rectified by defining 07 as the
set of all points where ¢ < 0 and 2T as the set of all points where ¢ > 0 so
that no points lie directly on the interface.

The computational domain is discretized into cells of size Az where
the cell centers are referred to as grid points or grid nodes with the i-th
grid node located at z;. The cell edges are referred to as fluxes so that
the two fluxes bounding the i-th computational cell are located at z,, 1.
The solution to the Poisson eguation is computed at the grid nodes and
is written as u; = u(z;). An analogous definition holds for f;, g;, and the
level set function ¢;. In general, interfaces move throughout the grid as ¢
is evolved in time, and a reinitialization procedure is needed to maintain ¢
as an approximate distance function [23]. Since ¢ is known only at the grid
nodes x;, the value of ¢ at fluxes is defined by the linear average of the nodal
values, e.g.

biry = B ©)

is a second order accurate approximation to ¢ at the flux located between
the i-th and (i + 1)-st cells.
The level set function is used to define the unit normal as,
Vi

V=194 ©



where the normal is computed at each grid node using central differencing.
For example,

V, = (ﬁﬂ&tgﬂ) _ fig1 — i1

(gt iy — i

(7)

in one spatial dimension. Note that the denominator in equation 7 could be
identically zerc in certain rare situations, but the numerical method does
not make use of the normal in these situations. When ¢ = z — .5, equation
6 implies that N=1 everywhere so that u, = .

3.1.1 The Laplace Equation

Consider the one dimensional Laplace equation with # = 1 and f(z) = 0
given by

Uy = 0 (8)

with fixed Dirichlet boundary conditions on Q. Ignoring the interface, or
equivalently setting [u]p = [uz]r = 0, the exact solution is merely a straight
line connecting the two fixed points on 9. For example, if the boundary
conditions are 4(0) = 0 and u(1) = 1 then the solution is v = z on [0,1].
The standard second order discretization

(’Ui+£§;ui )A_m(u‘;;zd) . -

can be used to solve this problem. For each unknown, u;, equation 9 is used
to fill in one row of a matrix creating a linear system of equations. Since the
resulting maftrix is symmetric, a wide number of fast Hinear solvers can be
used. For linear solvers that require an initial guess, setting all u; identically
zero is usually sufflicient.

Next consider [ulp = 1 and [u,]r = 0 with Dirichlet boundary conditions
u(0) = 0 and u(l)} = 2 yielding an exact solution of v = z in [0,.5] and
u=x+1in (.5,1] where z = .5 is included in Q™ as previously discussed.
Consider the exact solution. If zp and x4y, are the nodes adjacent to the
interface, one can see that "%k ig O(Z%E), while all the other terms of

the form “4=" are O(1) and approximate the local derivative. Since the

derivative is not defined across the interface, the % term is not well



defined. Obviously, this term needs to be modified to give a reasonable
approximation of the derivative near the interface.

The jump condition, [u]r = 1, implies that u*(z) — u™(z) = 1 at the
interface I". Since the underlying idea of the Ghost Fluid Method is to apply
boundary conditions near the interface as opposed to applying them at the
exact interface location, the jump conditions are rewritten as u] —u; = 1 at
every computational grid node. Then for every value of u; in 27, one can
define u = u; + 1 including the boundary where ut(0) = w7 (0) +1 = 1.
Likewise, for every value of u;'” in 27, one can define u; = u;*" — 1 including
the boundary where v~ (1) = w*(1) — 1 = 1. At this point, every grid
node has two values for the solution, »; and uj, and one can see from
the boundary conditions that the exact solutions are u~ = z on [0, 1] and
ut = x4 1 on {0,1]. Furthermore, the jump condition, w;}
satisfied at every grid point and the boundary.

Two equations from the linear system contain the “£-2k term. It is

the first ferm in
wl, T Uy, —1y
k41" Me Y} f Me T
( Az ) ( Az )
= 0 (10)

Az

—u; = 1,18

and the second term in

+ + + -
UpyoUp iy} f gy Uy
Ax A
0

o (11)

where the “+” superscripts have been added to emphasize the domain as Q%
for each u;. Both these equations suffer from the mixing of terms from differ-
ent domains and are poor candidates for obtaining the exact solution. The
previous paragraph illustrates that equations 10 and 11 should be replaced

by
Upag Uy
( Az ) ( Az ) —0 12)
Az N (
and
Bpoa=¥gy1 ) “k++1_”:
vy Az _0 13)
Az N (



to remove the mixing of the “£” values. The nodal jump conditions imply
that u;,, = ug"_H — 1 and u} = u; + 1 giving rise to

() R W )
(o) - (55) “

and

(15)

from equations 12 and 13 as replacements for equations 10 and 11 in the
linear system. In equations 14 and 15 the W terms have been modified
in a way that makes them O(1) instead of O(x.).

In general, [u]r = a(zr) where zr is the interface location. The jumps
at the grid nodes, ay = a(z;) and agt1 = a{zg,1), and the local values of ¢
can be used to interpolate the jump at the interface as

_ Okl Prp| + an 1l fkl

16
|px| + 1kt (16)
writing
(uk+1—ﬁ-r)—uk o fUp— U
(tmgepion) () "
Az
and
(M el 1) - (M)
= = =90 (18)

Az

for use in the linear solver. It is interesting to note that one must use the
same value of ar in both equation 17 and equation 18. For example, if one
were to use ay, in equation 17 and ag4; in equation 18, then the linear system
does not have a solution since the jump at the interface is not well defined.

Next, consider the derivative jump condition and rewrite the standard
second order discretization (equation 9) as

(“x)w% - (”m)t_%
Az

=0 (19)



assuming that the derivatives, u,, are known at fluxes and thus subscripted
with 4 4 % Once again assume that the interface is located between z; and
Ty+1 and use the sign of ¢, i to determine whether (ug), 1 lies in 27 or
Q. For the sake of exposition, assume that (uz), +1 lies in £27. The case
where (), | 1 lies in @~ is similar and will be considered shortly.
Consider [ulr = 0 and [ug]r = 1 with Dirichlet boundary conditions
(0} = 0 and u(1) = 1.5 yielding an exact solution of v = z in [0,.5]
and u = 2z in (.5,1]. The exact solution dictates that (uz),_ L= 1 and
(e )y 1= 2 at the fluxes adjacent to the interface producing an O(zgl;)

(”m)k+%“{uw)k 1

value of ——2———=% in equation 19, while all the other terms of the

(“I)i l“(uz)iml .
form *%—1 are identically zero and approximate the local second
{um){,p%m{um)iﬁ%

derivative. In a more general situation, the terms of the form e

will be O(1) and approximate the nonzero second derivative, while the
{ue) 1 —{ua), 1 . .
mmff—t%}—f—mi—i term is still O(x:). Since the second derivative is not de-

. () L ~{a)y 1 .
fined across the interface, the ——24———= term is not well defined.

This time only one term of the form of equation 19 involves differencing
across the interface. It can be written as

(Ua:);c:% - ('U'x)k_%
N == {} (20)

with the “x" superscripts emphasizing the domain. This equation suffers
from the mixing of terms from different domains and should be replaced by

(uﬂ?)];_% - (UE)E_%
— =0 (21)

where the “.” signs are used for Q™ instead of the “+” signs for QF, since
thig is the equation for u; which has previously been assumed to be in

7. Writing the derivative jump condition at fluxes implies that (uz), 1=
2

(u:,;);'Jr 1 1 leading to

(W =1) = (w)iy

2

AN/

=0 (22)

10



(uz)y, 1 —{us), 1
where the modified _u_k_“_“_%_&;m’:‘mi term is O(1) instead of O(-).

In general, {uz|r = b(zr) where zr is the interface location and b, =
b(zy) and bgi1 = b(z41) can be used to define

B = by | drs1] + bria| Bl
I‘——

(23)
x| + B
as the jump af the interface with
((uw)L_A - bF) - (u:c),-:_l
2 2
= () (24)

Az

replacing equation 22.
Finally consider both jump conditions, [u]r = a(zr) and {ug]r = b(zr).

Combining equations 17, 18, and 24 gives
((ik_-l-_l_gg);_”ﬁ — br) — (M) ;

Ha
Az

(25)

and

Ugqo—ugy1) _ f Urs1—(ugtor)
Ax Amx

Aa = fep1 (26)

where f(z) is no longer set to zero. Note that this particular discretization is
based on the fact that the interface lies between zy and x4, and that ¢, 1
2

implies that the flux located at i lies in 7. If instead ¢, 1 implies that

the flux located at z; 1 lies in Q" then equations 25 and 26 are replaced
2
with

(wgqa—or)—up\  (up—ug
Nx Ax

) = fx (27)

Az

and

(uk+2A—uk+1) - (uk",,l—g;k-i—ar) + bl")

X
Az

= fr41 (28)

for use in the linear system.

11



Note that equations 25 and 26 can be rewritten as

(uk.{z;uk) _ (uk;;l;;-—]) s ar b

Az (Az)? Az (29)
and
(uk-i-i;xuk-‘}-]) _ (ukt&;uk) o ar a0
Az — R T (AR

while equations 27 and 28 can be rewritien as

Vpr1—Uep Yy f Up—Up_1
FaX ] A

and
Vptz=Up41 Y Yr41 Uk
( Az ) (m):fkmar‘ +b_r (32)
Ax A T Az

to emphasize that this numerical method yields a linear systern with no
modifications to the coeflicient matrix. That is, all modifications occur on
the right hand side of the linear system and the coefficients of the unknowns
remain equal to those of the standard Laplace equation on a uniform domain.
This allows standard “black box” solvers to be used on the associated linear
system.

3.1.2 Subecell Resolution

Taking the subcell location of the interface into account allows us to dis-
cretize the derivative jump condition more accurately. Assume that the
interface lies in between z; and z.1, and that [ulp = 0 and [uz|r = bp.
Then

. |k

ERUAERP

can be used to estimate the subcell interface location. That is, the interface
splits this cell into two pieces of size Az on the left and size (1 — 8)Az on
the right. Denoting the value of u at this subcell interface location by u;y,
and discretizing the jump condition, [uy|r = br, as

(as) - (Gaes) =br (34)

12

(33)




allows one to solve for uy as
ur = ugs18 + up{l — 8) — bpb{1 — ) Az (35)

so that approximations to the derivatives on the left and right sides of the
interface can be written as

Uy — g Upg) — U
= —br(l — 8 36
e s r(1-6) (36)
and
Ul — UL Upgpl — Ui
== bpf 37
(l-0As  hs T (37)
respectively.

These new approximations allow one to write

((Uk-t-lzlxr)—ﬂk —bp(l — 9)) _ (uk;‘;;]:fl)

e = f (38)
and
(Beracrest) _ (Senacfrton) 4 prg) f (39)
= = frs1

in place of equations 25, 26, 27, and 28 where the position of the interface
with regard to the subcell flux is no longer a consideration. Likewise,

(“""ﬁ“&;”’“) - (uk_AumM) — ft ar + br(1 — 6) (40)
Az — Uk (Az)? Az
and
gtz Uk 4] U p1 - Ug
( Az ) - ( Az ) _ ar brt!

replace equations 29, 30, 31, and 32.

13



3.1.3 The Poisson Equation

Consider the one dimensional variable coeflicient Poisson equation

(Buz), = f(z) (42)

with fixed Dirichlet boundary conditions on 85} and a standard second order
discretization of

oy [Ham) g MimBion
Py (255 )Af = = f; (43)

baf—
Pasiiinn ¥
g
[>l
&8
i
A
o

for each unknown u;. At the fluxes, f; +1 = B (wii% } are defined in accor-
dance with the side of the interface the flux is located on as determined by
by 1. Note that this produces a § with no numerical smearing or averaging,
i.e. B may be discontinucus across the interface. Next consider the jump
conditions {u]r = a{zr) and [Puz]r = b(zr). If ¢r and ¢py indicate that
the interface is located between zp and zp.1, then equations 16, 23, and 33
can be used to define ar, br, and 6.

Once again, taking the subcell location of the interface into account
and assuming that fulr = 0 allows one to discretize the jump condition,
[Bug]r = br, as

(1 as) — (“mat) =t (14)

and solve for uy as

_ BT up10+ B up(l - 8) — bré(1 — 8) Az
- Bro+ B(1— )

Uy (45)

50 that approximations to the derivatives on the left and right sides of the
interface can be written as

g (u;; Uk> _ 4 (UML— ”k) N 5%)(;- o) (46)
T T
and
PR

14



where

A s
= 48
b= 500 (48)
defines an effective 5.
The discussion above leads naturally to
A (upgr—ar)—up  bp(1-0}\ _ U —Up—3
FAV:
and
ﬁk+% (%Jrz—mukﬂ) - B (uk+1““A(7;k+ﬂI‘) + !B-_f) -
- = fin (50)

as the equations for the unknowns uy and ug . respectively. Of course, these
can be rewritten as

B (M55 ) - By (M : (1 —
) A B2 fe (iigg + ’%;Sm@) (51)
and
g {BRe2 k41 ) _ f f Bkp1—Uk - N
ﬁk+§ ( = AZ: 6( = ) = fr+1 — (2352 + ﬁﬁ_bf; (52)

to emphasize that this numerical method yields a symmetric linear system
with 8, 1= a.
3.1.4 Summary

Consider the variable coefficient Poisson equation

(Buz), = f(=) (53)

with interface jump conditions, [u]r = a(zr) and [Sug|r = b(zr). In addi-
tion, assume that ¢ < 0 in @~ and ¢ > 0 in " so that the unit normal
points from 7 into Q. Since N =nl= +1, one can write u, = u n' and
[Bun]r = [Buglrn! = b(zr). Moreover, [Bug]r = b(zr)nl.

15



For each grid point ¢, one can write a linear equation of the form

Bir1 (%)A_xﬁz—é (El;ﬁ%:l) — fi+ FL | FR (54)

and assemble the system of linear equations into matrix form. Each 8, 1
is evaluated based on the side of the interface that zy and zx 1 He on. I zg
and zx.; lie on opposite sides of the interface, then f§, 1 is defined along

the lines of equation 48 and equation 33. First define ¢~ and ¢ equal to
the values of ¢4 and ¢4, in the obvious fashion, then 3, L is defined as

BB (J¢~| +1471)
Brid~| + B¢t
Consider the left arm of the stencil, i.e. the line segment connecting z;

and z;_1. If both ¢; < 0 and ¢;_1 < 0 or if both ¢; > 0 and ¢; .1 > 0, then
F = 0. Otherwise, define

(55)

il
7= e+ 0] (56)
ag|di—1| A ai_1] il
R PR R Py 57)
and
bl" _ blni}lqﬁ%mll + bi*ln}—llqsi' (58)

|pi] + |i-1]

where the normal is calculated at each grid node using central differencing.
If ¢ <0 and ¢;—1 > 0, then

B,_xar B, 1bpf
2 2

L et J—
T (Ax)? ERAY, (59)
otherwise if ¢; > 0 and ¢;..; <0, then
B; rar B 1br@
Fl =2 : (60)

AYAL: + BNz

16



Next consider the right arm of the stencil, i.e. the line segment connect-
ing x; and z;41. If both ¢; < 0 and ¢y41 < 0 or if both ¢; > 0 and ¢ > 0,
then F® = 0. Otherwise, define

25
o= T+ o (61)

ap = ai|dig1] + aiq1|dil
|pil + |pit1l

and
b — bind|disi] + bipinly bl
| il + iyl

where the normal is calculated at each grid node using central differencing.
If ¢; <0 and ¢;4q > 0, then

(63)

Piprar  Biy1brod

R 64
F (Axz)? BtAx (64)
otherwise if ¢; > 0 and ¢;,; < 0,then
JB,; iar ﬁz 1bp8
FR=_T2 T (65)

(Az)? f~ Az

3.2 Two Dimensions

Constder the two dimensional Poisson equation

(Buz), + (Buy), = £(@) (66)

with interface jump conditions, [u]p = a(Zr) and [Puy|r = b(ZFr). The unit
normal is N = (nl,n?) with ¢ < 0in ©~ and ¢ > 0 in QF implying that
the unit normal points from Q- into Q7F.

The normal and tangential derivatives can be defined in terms of ug, u,
and N as

Uy, = Ugn + uyn’ (67)
and

Uy = ugn? — uyn! (68)

17



respectively. Then

ug = Upn’ + ugn? (69)
and

Uy = upn® — ugnt (70)

follow directly from equations 67 and 68. Multiplying equations 67 and 68
by [ and taking the jump across the interface leads to

[Bun]r = [Bug]rn + [Buylrn® (71)
and

[Buglr = [Bug]rn® ~ [Puylrn’ (72)
noting that NV is continuous across the interface. In the same fashion,

[Buclr = [Bun]rn' + [Budrn? (73)
and

[Buylr = [Bun]rn® — [Budrn! (74)

can be obtained from equations 69 and 70.
Suppose that

[Bus]p = [Buylrn' (75)

and

[Buyr = [Bun)rn® (76)

are used in place of equations 73 and 74. While equations 75 and 76 are
false in general, they still lead to an identity when plugged into equation
71. However, they lead to [fu]r = 0 when plugged into equation 72. That
is, equations 75 and 76 allow one to correctly capture the jump in the nor-
mal derivative while smearing out the jump in the tangential derivative.
More importantly, equations 75 and 76 allow the derivative jump condi-
tion, [fuylr = b(Zr), to be rewritten as two separate jump conditions,
[Bugir = b(Fr)n! and [Buy]r = b(Fr)n?, allowing a dimension by dimen-
sion application of the numerical method.
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In two dimensions, each grid point (4, 7) is discretized as

A ikl g B fwio1j
i+d.i Lw ik 5 ¥ n

Gl ’ N R (77)
ﬁi'j“"%(mwvll)*ﬁ"vj"%(_’ﬂwa_) ﬂfi,j+F$+Fy

Az

and included in the linear system of equations. Each 8, 1j is evaluated
based on the side of the interface that xzp; and xgi;; e on. If 23 ; and
Zp41,; lie on opposite sides of the interface, then ¢~ and ¢ are set equal to
the values of ¢y ; and ¢ 1,; in the obvious fashion, then f 1 is defined
according to equation 55. Similarly, ﬁi,k + is defined according to z;; and
T; k41- In addition, note that F'* = FL FRand F¥ = FB 4 FT.

Consider the left arm of the stencil, i.e. the line segment connecting x; ;
and z;_1 ;. If both ¢;; < 0and ¢;_1; <0 orif both ¢;; > 0 and ¢;_1,; > 0,
then F'' = 0. Otherwise, define

|hi-1 ;]
= T8
|bi 5] + |15} (78)
_ igléioal + a1l (79)
i 5| + |ehi-1,51
and

PRIV .| N

by = bi,J”i,jigbz—l,gl + bl—l,Jﬂ'ifl,jlqsz,Jl (80)

|big] + |di-1,4l
where the components of the normal are calculated at each grid point with
central differencing. If ¢; ; < 0 and ¢;_y; > 0, then

Bioyor By brd

Lo
= (Ax)? JERWAN: (81)
otherwise if ¢; ; > 0 and ¢;_; ; <0, then
B;.1ar B, 1 bro
FL — 1 Q)J T 2)3 (82)

C (Az)? B8~ Az
Consider the right arm of the stencil, i.e. the line segment connecting

Z;j and i 45. If both ¢;; < 0 and ¢41; < 0 or if both ¢;; > 0 and
$it1,j > 0, then F® = 0. Otherwise, define

|pit1 5]
f = e B 83
I6esl + [9ir1s (83)
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_ Gagldin gl aig 5]l
|31 + i1,

(84)

and
by gndilirn gl + bir1gnie jidigl
i j| + |ditr 5]

where the components of the normal are calculated at each grid point with
central differencing. If ¢; ; < 0 and ¢;41,; > 0, then

by =

(85)

Biry 00 Bipy;brd

R
= (Ax)? B Az (86)
otherwise if ¢;; > 0 and ¢;11; < 0, then
O S (87)

(Az)2 B Az

Consider the bottom arm of the stencil, i.e. the line segment connecting
z;; and z; ;1. If both ¢;; < 0 and ¢; ;1 < 0 or if both ¢;; > 0 and
$ij—1 > 0, then P2 = 0. Otherwise, define

i1
I b iV St S 38
s3] + i1l (88)

il dig—1] + i1l

i@ + ¢ij-1l

ar = (89)

and
bignd jldi 1] + biyg1ng;_1ldi gl
|Bi 5] + | -1

where the components of the normal are calculated at each grid point with
central differencing. If ¢; ; < 0 and ¢; ; 1 > 0, then

r= (90)

B; s_1ar B; ;_1brf
FB " W33 — — s.7+ 3 (91)
(Ay) Ay
otherwise if ¢; ; > 0 and ¢; ;_1 < 0, then
7B _ﬁi,j—%al‘ N ﬁi,j—%bfe (92)

(Ay)? B~ Ay
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Consider the top arm of the stencil, i.e. the line segment connecting x; ;
and z; j4+1. If both ¢; ; <0 and ¢; ;41 <0 or if both ¢;; > 0 and ¢, ;41 > 0,
then FT = 0. Otherwise, define

s 1]
0= — 3
Bel + o5l (93)
_ @igldigel + aijaldig] o
i 5] + |¢i 541l )

and

bi,31f 53 g ]+ b jand ol di gl
i g + i

where the components of the normal are calculated at each grid point with
central differencing. If ¢; ; < 0 and ¢; ;11 > 0, then

by = (95)

Bigriar  Bijpibrd

FT = 96
@y T By 90

otherwise if ¢; ; > 0 and ¢; j+1 < 0, then
T _ﬁi,j+%ai“ 6z‘,j+§;bl“9 (97)

Ay B Ay
3.3 Three Dimensions

Consider the three dimensional Poisson equation

(Bu), + (Buy), + (Buz), = f(Z) (98)
with interface jump conditions, [u]r = a(&r) and [Bun)r = b(Zr). The unit
normal is N = (n!,n?,n%) with ¢ <0in Q™ and ¢ > 0 in Q7 implying that
the unit normal points from Q~ into Q.

The normal derivative is defined by,

Up = Ugn® + uyn‘? + u,n® (99)
leading to

[Bunlr = [Buglen + [Buylen® + [Buzlrn’® (100)
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since N is continuous across the interface. Note that [Bugz]p = [Bun]rn!,
[Buylr = [Bunirn?, and [Bu,]r = [Bun]rn® are not identities, but they do
lead to the correct jump condition on the normal derivative when plugged
into equation 100, although the tangential derivatives are smeared out.
Rewriting [fun]r = b(Zr) as three separate jump conditions, [Bu.ir =
bEr)nt, [Buylr = b(@r)n?, and [Bu,lr = b(ZFr)n® allows the three dimen-
sional numerical method to be applied in a dimension by dimension fashion
with a discretization of

Uigl,j U Lo TMi-1,9
Pirii By
+

Az . A
JAY]
51-,3-%12 (uz‘lz‘tﬁly—ui,i)_ﬂ{,jm% (ui "‘Zy{,i#l) . (101)
Ay
g (S55) 0y (582) L
x )

for the grid point (7,7, k).
The remaining details are left to the reader, noting that they are a
straightforward extension of the two dimensional discretization.
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4 Examples

4.1 Example 1

Here we consider two examples that were discussed earlier in the text. Con-
sider uz, = 0 on [0, 1] with »{0) = 0 and (1) = 2. The interface is located
at = .5 with {u]| = 1 and [u,] = 0. Figure 1 shows the solution computed
with 100 grid points plotted on top of the exact solution of u = z to the left
of z = .5 and v = z + 1 to the right of z = .5. In figure 2, the boundary
conditions and jump conditions are changed to w(0) = 0, u(1) = 1.5, [u] =0,
and [ug] = 1. Once again the solution was computed with 100 grid points
and plotted on top of the exact solution of u = z to the left of z = .5 and
u = 2x — .5 to the right of £z = .5. Note the crisp representation of the
interface characteristic of the GFM with no numerical smearing.

4.2 Example 2

Consider {Buz), = f(z) on [0, 1] with »(0) = 0 and (1) = 0. The interior
region is defined by |z — .45] < .15 with the unit normal pointing from the
interior region to the exterior region. On the interior region 8 = 2 and
f(z) = (822 — 4)e~*" while on the exterior region § = 1 and f(z) = 0. At
=3 [u] = —e~" and [Bun) = ~1.2¢7" while at z = .6, [u] = —e
and [Bu,] = 2.4e73%, Figure 3 shows the solution computed with 100 grid
points plotted on top of the exact solution of u(z) = e~* on the interior
region and u(z) = 0 on the exterior region.

4.3 Example 3

Consider V - (8Vu) = f(z,y) in two spatial dimensions on {0, 1} x {0, 1] with
the interface defined by the circle {x — 0.5)* 4 (y ~ 0.5)? = .25? with an
outward pointing normal vector, N = (4z — 2,4y — 2}. As an exact solution,
u(z,y) = e~ ~¥" on the interior of the circle and u(z,y) = 0 on the exterior
of the circle with the appropriate Dirichlet boundary conditions. S = 2
with f(z,y) = 8{z® + y% — 1)e""" ¥ on the interior of the circle and § =1
with f(z, y) = 0 on the exterior of the circle. The jump conditions are
fu] = —e = ¥ and [Bun] = 8(222 +2y% =z —y)e~® ~V". Figure 4 shows the
numerical solution with 61 grid points in each direction and Table 1 shows
the results of numerical accuracy tests.
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4.4 Example 4

Consider V- (8Vu) = f(z,y, z) in three spatial dimensions on [0,1] x [0, 1] x
[0, 1] with the interface defined by the sphere (z — 0.5)% + (y - 0.5)% + (2 —
0.5)> = .25 with an outward pointing normal vector, N = (dr — 2,4y —
2,4z—2). As an exact solution, u(z,y, z) = ¢~% ~¥~%" on the interior of the
sphere and u(z,y, z) = 0 on the exterior of the sphere with the appropriate
Dirichlet boundary conditions. 8 = 2 with f(z,y,2) = 8(z% + y* + 2% —
%)e_“’z“?"rz—‘22 on the interior of the sphere and § = 1 with f(z,y,2) = 0
on the exterior of the sphere. The jump conditions are [u] = e Y
and [Bu,] = 8(2z% +2y% +22° —z —y — z)e~® "V’ ~=" Figure 5 shows the
w(x,y, z = .4) cross-section of the the numerical solution with 61 grid points
in each direction and Table 2 shows the results of numerical accuracy tests

for the two dimensional slice of data.

4.5 Example 5

This example was taken from [10]. Consider Au = 0 in two spatial dimen-
sions on [~1,1] x [~1, 1] with the interface defined by the circle z2 +y? = 52
with an outward pointing normal vector, N = (2z,2y). As an exact solu-
tion, u(z,y) = 1 on the interior of the circle and u(z,y) = 1 +In{2/z? + y?)
on the exterior of the circle with the appropriate Dirichlet boundary condi-
tions. The jump conditions are [u] = 0 and [u,] = 2. Figure 6 shows the
numerical solution with 61 grid points in each direction and Table 3 shows
the results of numerical accuracy tests.

4.6 Example 6

This example was taken from {10]. Consider Au = 0 in two spatial dimen-
sions on [—1, 1} x [~1, 1] with the interface defined by the circle 2 +y? = .52
with an outward pointing normal vector, N = (2z,2y). As an exact solution,
w(z,y) = e® cos(y) on the interior of the circle and u(z,y) = 0 on the exte-
rior of the circle with the appropriate Dirichlet boundary conditions. The
jump conditions are [u] = —e* cos(y) and [u,] = 2¢®(ysin{y) — z cos(y)).
Figure 7 shows the numerical solution with 61 grid points in each direction
and Table 4 shows the results of numerical accuracy tests.
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4.7 Example 7

This example was taken from [10]. Consider Au = 0 in two spatial dimen-
sions on [—1, 1] x [~1, 1] with the interface defined by the circle z2 + 4% = .52
with an outward pointing normal vector, N = (2z, 2y). As an exact solution,
u(z,y) = 2 — y* on the interior of the circle and u(z,y) = 0 on the exterior
of the circle with the appropriate Dirichlet boundary conditions. The jump
conditions are [u] = y* — 22 and [uy] = 4(y* — 2?). Figure 8 shows the
numerical solution with 61 grid points in each direction and Table 5 shows
the results of numerical accuracy tests.

4.8 Example 8

This example was taken from [11]. Consider V - (fVu) = f(z,y) in two
spatial dimensions on [—1,1] x [1,1]. The interface is defined by the col-
lection of points (z(6),y(8)) where z(8) = .02v/5 + (.5 + .2sin(56)) cos(8),
y(0) = .02/5 + (.5 + .2sin(50)) sin(6), 0 € [0,2x), and the unit normal,
N = (ni,n2), is assumed to point from the interior region to the exterior
region. As an exact solution, u(z,y) = z2 + y? on the interior region and
u(z,y) = 1(z? + y?)? —~ .011In(2y/22% + %) on the exterior region with the
appropriate Dirichlet boundary conditions. 8 == 1 with f(z,y) = 4 on the
interior region and 8 = 10 with f(z,y) = 16(z? 4 y*) on the exterior region.
The jump conditions are [u} = .1(z® +4?)? — 011ln(2y/2? + y2) — (z* + 4?)
and [Buy,) = (4(x? +9y?) ~ . 1(z? + y*)~! — 2){zn; +yng). Figure 9 shows the
numerical solution with 61 grid points in each direction and Table 6 shows
the results of oumerical accuracy tests.

4.9 Example 9

This example was taken from [11]. Consider V - (Vu) = f{z,y) in two
spatial dimensions on [—1,1] x [0,3]. The interface is defined by the col-
lection of points (x(#),y(#)) where z(0) = .6cos(0) — .3cos(36), y(@) =
1.5 -+ .7sin(8) — .07sin(38) + .2sin(76), & € [0,27), and the unit normal,
N = (n1,n2), is assumed to point from the interior region to the exterior re-
gion. As an exact solution, u(z,y) = e®(z® sin(y) +?) on the interior region
and u(z,y) = —(z? +1?) on the exterior region with the appropriate Dirich-
let boundary conditions. 5 = 1 with f{z,y) = ¢°(2-+y*+2sin(y) +4z sin(y))
on the interior region and 8 = 10 with f(z,y) = —40 on the exterior re-
gion. The jump conditions are [u] = —(z% + %) — *(2”sin(y) + y?) and
[Bun] = (—20z —e®( (22 +2z) sin(y) +y2))ng + (—20y — *(z? cos(y) + 2y) )na.
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Figure 10 shows the numerical solution with 61 grid points in the z-driection
and 91 grid points in the y-direction. Table 7 shows the results of the nu-
merical accuracy tests.
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Az || L®-errorin U | order || L2-error in & | order || L*-error in V- order
= 0.0088 0.0027 0.0675
T 0.0041 1.07 0.0010 1.43 0.0348 0.95
= 0.0020 1.04 0.0003 1.73 0.0186 0.90
= 0.0011 0.86 0.0001 1.58 0.0108 0.78
Table 1
Az § L®-error in U | order || L7 -error in U | order j| L*-error in V- order
S 0.6064 7.49e-4 0.0335
- 0.0035 0.87 2.37e-4 1.66 0.0142 1.24
i 0.0023 0.54 1.01e-4 1.23 0.0074 0.94
s 0.0015 0.68 4.66e-5 1.12 0.0049 0.59
Table 2
Ag || L®-error in U | order || L%-error in U | order || L*-error in V- order
L 0.0326 0.0299 0.1240
= 0.0130 1.33 0.0111 1.43 0.0463 1.42
£+ 0.6050 1.38 0.0040 1.47 0.0167 1.47
& 0.0019 1.40 0.0014 1.51 0.0060 1.48
Table 3
Az || L®-error in U | order | L2-error in I/ | order || L*-error in V - order
5 0.0153 0.0054 0.1380
= 0.0081 0.92 0.0022 1.30 0.0703 0.97
i 0.0044 0.88 0.0009 1.29 0.0370 0.93
| & 0.0023 0.94 0.0003 1.59 0.0209 0.82
Table 4
Ax || L®-error in U | order || Lo-error in I7 | order || L*-error in ¥ - order
5 0.0068 0.0033 0.0770
= 0.0033 1.04 0.0014 1.24 0.0337 1.19
G 0.0014 1.24 0.0005 1.49 0.0169 1.00
B 0.0008 0.81 0.0002 1.32 0.0108 0.65
Table 5
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Az || L®-error in U | order {| L%-error in IV | order || L*-error in V- U | order

= 4.90e-4 3.69¢-4 0.0610

%5 3.20e-4 0.61 1.53e-4 1.27 0.0221 1.46

= 1.67e-4 0.94 8.49¢-5 0.85 0.0079 1.48

25 7.35e-5 1.18 3.64e-5 1.22 0.0028 1.50
Table 6

Az || L®-error in U | order || Li-error in U | order || L*-error in V- U | order

i 0.2437 0.1136 1.3141

o 0.1534 0.67 0.0666 0.77 0.7969 0.72

W 0.0498 1.62 0.0189 1.82 0.2798 1.51

& 0.0358 0.48 0.0082 1.20 0.1992 0.49
Table 7
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Figure 1: uge =0, [u] =1, [ug] =0
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Figure 2: uzy =0, [u] =0, [ug] =1
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Figure 3: One Spatial Dimension, V - (8Vu) = f(z), [u] # 0, [Buy] # 0
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Figure 4: Two Spatial Dimensions, V - (8Vu) = f(z,y), [u] # 0, [Bu,] # 0
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Figure 6: Two Spatial Dimensions, Au = 0, [u] = 0, [u,] # 0
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| Figure 10: Two Spatial Dimensions, V - (6Vu) = f(z,v), [u] # 0, [Bu,] # 0
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