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ON WAVELET FUNDAMENTAL SOLUTIONS TO
THE HEAT EQUATION — HEATLETS

JIANHONG SHEN AND GILBERT STRANG

ABSTRACT. We present an application of wavelet theory in partial differemtial equa-
tions, We study the wavelet fundamental solutions to the heat equation. The heat
evolution of an initial wavelet state is called a heatlet. Like wavelets for the L? space,
heatlets are “atomic” heat evolutions in the sense that any general heat evolution can
be “assembled® from a heatlet according to some simple rules. We study the basic
properties and algorithms of heatlets and related functions. Serving as a pointer to an
interesting topic is ouwr major goal.

Dedicated to Alan Newell

1. INTRODUCTION

It is a pity that wavelets, in fact, have very little to do with physical waves or the
wave equation (uy = c*Au). But the search for mutual interactions between wavelet
theory and differential equations has never stopped. This paper is a part of it. The
idea presented here awaits further exploration (and criticism) by both communities of
differential equations and wavelet theory.

So far, the application of wavelet theory in (ordinary or partial) differential equations
has been mostly focused on numerical computation. Wavelet-related functions are chosen
as the basis functions or test functions for numerical solutions. It is now known that a
large class of differential operators can be efficiently represented and stored through a
wavelet basis (see Beylk'mr et. al. [1], for example}. Despite its successful applications in
numerical computation, wavelet theory still seems to keep some distance away from the
theory of PDE’s.

On the other hand, people have already felt certain theoretical links between PDE
and wavelet theory. For example, one contact emerging between the two subjects is the
concept of “scale.” Both communities see it as they work on scale similarity. But the
WO, 1999.
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2 SHEN AND STRANG
gap is still open and no one has seen the bridge yet. Our work shall provide a partial
answer.

A possible bridge is the invariant properties of wavelets and differential operators.
Once an invariant property is shared, there exists a chance for interesting interactions
to occur. It is this simple principle that has guided our following work.

A heatlet is a “fundamental” solution to the heat equation. The fundamentality is
with respect to a wavelet decomposition. Consider the 1-D heat equation (homogeneous

and with constant conduction coefficient)

0.2

utm—é—-um, 00 < & < 00, t>0,
with the initial state

u(z,0) = fz).

If f(z) is the Dirac point-source at z = 0, i.e. f(z) = 6(x), then the heat evolution
u(x,t) is the classical fundamental solution. In this paper, instead of §(z), we study
the evolution of a wavelet-source ¢(z) (a wavelet). The corresponding heat evolution
u(x,t) is called a wavelet fundamental solution to the heat equation, or simply a heatlet.
The name “heatlet” is given on the consideration that a general heat evolution (from
an arbitrary initial state f{z)) can be assembled from heatlets by simple rules. In this
sense, a heatlet is an “atomic” heat evolution, analogous to the role that wavelets have
played in the L? space.

The interaction between wavelets and the heat equation has been made possible by
first applying a wavelet decomposition to the initial state, and then investigating the
evolution of each wavelet component. The invariance under translation (z — z — ) and
dilation (z — ez), for special ¢ and b, of both wavelets and heat equations make such a
dialogue successful.

Another channel that has connected the heat equation and wavelets is their common
probabilistic background. The phenomenon of heat diffusion is closely related to Gauss-
ian random process (through the kernel function). Similarly, the fundamental equation
in wavelet theory — the refinement equation, also allows probabilistic interpretations

{Derfel [3] and Shen [11]). As a result, we are able to view heatlets or related functions



HEATLETS 3
in the framework of probability theory. This idea points to a computational algorithm
for heatlets.

We have chosen the simple homogeneous heat equation as the model equation to
illustrate our idea. Possible applications of the same idea to other equations are discussed
briefly at the end of the article. These equations include the Schrédinger equation with
a zero potential.

The presentation has been organized as follows. Section 2 is a brief survey on some
fundamental concepts of wavelet theory. Section 3 introduces heatlets and heatlet de-
compositions. We have restricted ourselves to the 1-D heat equation. The probability
interpretation and subdivision algorithm for heatlets constitute the main content of
Section 4. In Section 5, we study the applications of munltidimensional wavelets in mul-

tidimensional heat equations. The key idea is eventually summarized in the last section.

2. MULTIRESOLUTION, SCALING FUNCTIONS AND WAVELETS

To make the paper self-contained, we first give a brief survey on some major concepts
and ideas of wavelet theory (See Daubechies [2, or Strang and Nguyen [14]).

The word “multiresolution” first appeared in image processing and was axiomatized
by Mallat and Meyer in 1986. A multiresolution of L*(R) is a chain of closed subspaces

indexed by all integers:
e VaCVacVWooViCVaeer,

subject to the following three axioms

Axiom-1 {Completeness)
TR 2 2 _
nI_.l)l:Iﬁ_lQQ Vo = L*(R), Jlim Vi, = {0}.
Axiom-2 {Scale Similarity)
flz) €V, &= f(22) € Vot

Axiom-3 (Translation Similarity) V; has a Riesz basis consisting of all integral translates
of a single function ¢(z): {¢{e—n): n € Z}. ¢(x) is conventionally called the

scaling function.
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The axiom on scale similarity determines the whole chain from one subspace V3, and
the existence of the scaling function ¢{z) compresses the information to a single function.
The existence of such a multiresolution is the design problem. To design a multireso-
lution, it suffices to construct the scaling function ¢(z). The whole subspace chain can
then be reconstructed from ¢(z) according to the latter two axioms. From the fact that
Vo C Vi and Axiom-2 and 3, it is easy to see that ¢(z) must be a linear combination
(maybe infinite) of {¢(2z —n): n € Z}. This leads to the so-called refinement equation:
$(z) =2 hnd(2z —n)
nel
for a certain set of coefficients (---,h_1, ko, h1,---). The design problem often starts
with a good choice of this set of coefficients.
From the standpoint of digital signal processing, where computers can only manipulate
finitely many numbers, the set should be finite. A typical equation in applications

therefore has the form of
L
(2.1) Bz) =2 hnd(2e - n),
=0

with hohr # 0. Since / ¢ = 1 is always assumed in wavelet analysis, the coefficients

must satisfy the following so-called lowpass condition:
ho+hy+ - by = 1.

In signal processing, the coeflicients set (hg,hi,-+-,hy) is called a digital filter with
finite impulse response (FIR). The connection between signal (and image) processing
and wavelet theory is basically bunilt upon this simple but immportant concept (see Strang
and Nguyen [14]).

Let Wy denote the orthogonal complement of Vg in Vj. This is the space storing the
“lost” detailed information of a signal {or an image) when one zooms out from a finer
resolution Vi to a coarser resolution V5. So it is sometimes called the detail space at
level 0. The good news is that Wy also has an “atom,” conventionally denoted by #(z},

such that the integral translates of 9(z) yield an orthonormal basis of Wy. It satisfies
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the wavelet equation since () € Vi:
(2.2) P(z) =2 gad(2e —n)
nel
for a suitable set of new filter coefficients {...,9_1,40,61,.-.). From Axiom-1, 2 and 3,

it is clear that
{pin(z) = 2792z — k) : 4,k € L}

is an orthonormal basis of L*(R).

The wavelet decomposition refers to the expansion of an arbitrary L2 function f(z)
with respect to this basis of localized waves. Whereas the classical Fourier expansion
and transform mainly analyze the wave contents of a signal, the wavelet decomposition
unfolds a signal at different scales or resolutions, It is this attribute that has made
wavelet analysis so powerful in data compression and image processing.

We hope this short survey is useful. For a deeper introduction to wavelet theory, we
recommend the classical book by Daubechies [2], and the more recent one by Herndndez

and Weiss [7].

3. TaE HraTeeET DECOMPOSITION

Let ¢(x) and % () be the scaling function and wavelet associated to a multiresolution.

Let ®"(z,t) and ¥"(z,t) be the heat evolutions of ¢(z) and ¢(z):
h_ Ok k
b7 = ?@M, O (z,0) = ¢(z).

We call U a heatlet, and ®" a refinable heat.

Proposition 3.1 (Similarity). Suppose that ¢(x) and 9P(z) satisfy

3(2) =2 had(22 — n),

nEd

Pplx) =2 Z gn (22 — n).

neZ
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Here (hy),{gn) € {2, the Hilbert space of all square summable real sequences. Then the

refinable heat ®" and heatlet U* also satisfy the self-similarity equations:

x4 =2 h, B2z — n,4t),
hS L LJ AY K ;i
nEL

(e, 1) =2 2 9, ®" (22 — n, 41).
nek

Proof. Tt is easy to check that ®"*(2z — n,4t) is the heat evolution corresponding to the

initial state ¢(2¢ —~ n). Hence, by linearity,

23 he®*(22 — n,41)
nez
is the heat evolution of

2 Z hnd(2e —n), or ¢(z).

nel
By uniqueness, it must be ®", This completes the proof of the first equation. The second

one is done in the same fashion. ]

Remark 1. In most applications, (h,) and (g} are chosen to be FIR filters (see the pre-
vious section). Then both ¢(z) and ¢(z) are compactly supported, and the summations

on the right-hand side of the preceding four equations are all finite.

One instant application in wavelet theory is in the design of high dimensional refinable

() ()

For negative t, define ®*(z,t) = ®*(z, —t). Then ®*(x) is a 2-D refinable function that

functions. Define

satisfies the 2-D refinement equation

P(x) =2 Z ho®(Mx — n).
neZ?

Here Z? is the lattice of all integral points (i.e. both coordinates are integers) in the
plane, and hy, is zero unless n = (n,0)’, in which case hy = h,. This jusiifies the name
“refinable heat”. Design of high dimensional refinable functions and wavelets is still very
challenging in wavelet theory.

Once having a heatlet ¥*(z,1), we define

\P;ﬁn(m,t) = 2/2gh(29g — n,4%1).
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This is obtained from T* by a dilation and a translation (with different rates for space

and time). Then we have the following heatlet decomposition theorem.

Theorem 3.1 (Heatlet Decomposition). Suppose f{z) € L*(R). Then the correspond-
ing heat evolution in L*(R) from f(z) is given by

u(m,t) = Z Cj,n(f)w?,n(w:t)?

smei
where C;(f} s the wavelet coefficient of f(x) attached to ¥, = 21/24p(2x —n). More-

over, the infinite series converges in L*(R) uniformly with respect to t.

Proof. Let P{(x) be the heat kernel

— _12
e 2to? |

- 1
h (m) - o/ 2t

Then the heat evolution of any initial state f(z) is given by
u(z,t) = P} f.

Since f € L*(R), and the one-parameter family (F7 )i>o is an approzimate identity (see
Helson [6]), by Féjer’s Theorem, at each time ¢, we have u(-,t} € L*(R) and u(-, 1) — f(z)
in L*(R) as t — 0.

Since (1;) is an orthonormal basis of L*(R}), the wavelet expansion of f(z) converges
to f(z) in L%R). From the heat equation, it is easy to check that ‘I’?n is the heat
evolution of ;. Finally, since for any time ¢, the heat kernel P7 is a bounded operator
in L?(R) (through convolution) with the operator norm less than 1, we conclude that

the infinite series of the heatlet decomposition converges in L%(R) uniformly (w.r.t. the

temporal parameter ) to the heat evolution of f(z). This completes the proof. ]

Likewise, corresponding to the multiresolution decomposition of the initial state

@)=Y ComDbom(t)+ D Cin(Hin(e,b),

meZ J>0mneZ

we have the decomposition for the heat evolution

w(@, ) = Y Chn(HBE(z, )+ Y Cinl /¥ (2,0).

meZ 120ncE
Here C?, (f) is the coefficient of f attached to ¢;x(z).
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For any fixed positive integer J, define f; to be the projection of f(z) onto the J-th

resolution space Vj(¢). Denote its heat evolution by wj(x,t). Since

=Y Chm(Hdom(m)+ D CialNin(e),

mEZ 0<i<J—1,neL

we have

wg(e,t) = Y Ch( )0 u(2.t)

meEL

=3 ComNBule )+ D CialH(a,8)

mEZL 0<j<J—1,nEZ
If, as in most applications, both ¢(z) and the initial state f(x) are compactly sup-
ported, then only finitely many coeflicients C'f,’m( f), m € Z are non-zero. Therefore, the
projection uy{z,t) is in fact a finite sum.

Suppose the wavelet () has p vanishing moments:

/wk¢(m)dw=0, k=0,1,...,p—1.
R’

With some extra conditions on the decay rate and regularity of 4:(x) we have the following

well-known estimation {Strang and Nguyen [14]).

Theorem 3.2. Suppose the wavelet ¥(z) has p vanishing moments and f(z) € CP(R)

with a bounded p-th derivative. Then

17(z) = fa(@)lpeoqe) = O(RY),

where, hy = 27 is the resolution size at level J.
This estimation extends to uz(z,?) via the heat kernel.

Corollary 3.1 {Uniform Convergence). Suppose (x) has p vanishing moments and the

initial state f(z) € CP(R) with f®)(z) bounded. Then as J tends to +oo,

lu(z,t) — wy(z, Ol peomxmty = O(Y).

Here, R x RY denotes the upper half plane.
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Remark 2. The major advantage of a heatlet and refinable heat is that they are uni-
versal, i.e. independent of the initial state. Once they have been worked out (as shown
in the next section), we store them somewhere ready to profit from them. Given any ini-
tial heat state f{z), we first apply DWT (discrete wavelet transform) to get the wavelet
coefficients of f(z). This is the only essential computation involved and is much easier
in applications due to the many existing wavelet computational techniques such as the
FWT (fast wavelet transform) and direct sampling. The heat evolution u(z,f) can then
be assembled simply based on the wavelet coefficients and the heatlet or refinable heat

stored in the memory. An example is in order now.

EXAMPLE.

We compute the simplest heatlet — the Haar heatlet derived from the Haar multiresolu-
tion. The Haar wavelet ¥(x) is defined by

I, 0<z<1/2,
Pple)=q-1, 1/2<a<],
0, elsewhere.

It was constructed by Haar [5] in 1910 searching for a “good” orthonormal system on
[0, 1] with respect to which the Fourier expansion of any continuous function converges
uniformly. It has been re-explained in terms of wavelets after the wavelet theory emerged.

Recall the heat kernel
2

(3.1) )

Hence the associated Haar heatlet ¥* and refinable heat ®* are

_ z z—1 z—1/2
W(a,6) = B + 3 - 28,

&t (z,t) =

o) -8,

Here ®(z) is the standard error function

o2
“Fds.

It can be verified directly that

Th(z,1) = &2z, 41) — B (22 — 1, 41),
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as predicted in Proposition 3.1.

The Haar heatlet belongs to a general class of “B-spline heatlets,” the heat evolutions
of the B-spline wavelets. Recall that the n-th order B-spline (scaling function) is defined

recursively by
Bn = Bn—l * BQ, Bo = 1[0’1)(32).

That is, B, (z) is the n+ 1-th convolutional power of the indicator of [0,1). As the power
increases, so does the smoothness of the splines, which pleases numerical computations
demanding smooth basis functions.

Denote the associated refinable heat by Bﬁ(w, t}. Then the following proposition shows

that the convolutional structure is preserved.

Proposition 3.2 (B-spline refinable heat). For any time t, B2(z,1) is the n+1-th con-
volutional power (with respect to the spatial variable 2) of Bl(z,t/(n + 1)), the Haar

refinable heat at time t/(n + 1).

Proof. By direct computation,

dron t B t .
E[B (z, ﬁ) * Bg(m,“)] * by n times

t N t X t
=(0+ 1) [ B, —) * B, —) -5 B, ——)

d 1 ¢ t
~[—5?B0](m’m)*B0(w’n+l) - * By (2, +1)
Similary,
9% L t h t
@[Bo(ﬂi,m)*"'*f%(fc,n—“)]
0* . ¢ ¢ t

Y e h o h
W{szBo](m’n-i—1)*BD($’n+1)* x B{(z ).

"n41
Therefore the n + 1-th convolutional power of Bl (z,t/(n + 1)} does satisfy the heat
equation. By letting ¢ — 0, we find that it corresponds to the initial spline state B,(z).

The proof is thus complete. O
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Remark 8. Due to the infinite-diffusion-velocity property of the heat equation (a de-
fect caused by the linearity of the model equation, see Kolmogoroff et al. [8]), heatlets
and refinable heats are not compactly supported as a 2-D function, even as a 1-D time-
parameterized spatial function. However, as explicitly recognizable from the Haar heat-

let, the “essential” support at time ¢ is approximately 2c+/1.

4, PROBABILITY METHOD AND THE SUBDIVISION ALGORITHM

Except Haar and B-spline wavelets, general scaling functions and wavelets have no
closed form. This makes it necessary to study the algorithms for computing quantities
that involve the scaling functions or wavelets. In this section, we illustrate how the
probability interpretation can lead to the continuous subdivision algorithm for cornput-
ing heatlets. Continuous subdivision generalizes the classical discrete one in wavelet
method and computer aided design (Derfel, Dyn and Levin [4]). An early application
has appeared in solving refinement differential equations (Shen [11]). Here we are giving
another nontrivial applicaton.

By Proposition 3.1, to compute a heatlet, it suffices to work out the associated refinable
heat function. Qur main task is to avoid using the scaling function ¢(z) directly, and
proceed with only the help of the filter coefficients.

Suppose @ is a positive scalar. Let N N{, N3,--- be a sequence of independent
random variables with an identical N{0,¢a) distribution (i.e. normal distribution with

mean 0 and variance a). Define

N{ Ny Ny
> ta Tt

(4.1) Y =

Then Y is again a normal random variable of type N(0,a/3).

Suppose ¢(z) is the scaling function defined from

L
Hze)=2 Z had(2z — n).

n=0

In addition, let us assume temporarily or formally that

“all the filter coefficients A, are non-negative.”
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The B-spline case is an example. From the lowpass condition
ho+hy+---+hp =1,

this set of coefficients define a unique discrete probability density function (p.d.f.). Sup-

pose X" is such a random variable so that
Prob(X*=n)=h,, n=0,1,---,L.

Then ¢(z}) is the p.d.f. of the random variable

where XJ', X}, .-+ are i.i.d. random variables of the same type of X* (see Shen {11]).
Recall that the refinable heat is the convolution Fy * ¢, where Py is the heal kernel.
P? is also the p.d.f. corresponding to N(0,20%). Therefore, <I’h(-, t) as a spatial function

is the p.d.f. of the random variable
Z = X% 4 N¥°.
Theorem 4.1. For any fized time t > 0, let p*(2) denote the p.d.f. oth-|—N3t"2. Then

the refinable heat ®"(z,t) associated with the scaling function ¢(z) solves the following

refinement equation for an unknown function F{x)

(4.2) F(z) = 2] pH(8)F(2z — s)ds.
R
Proof. Suppose Zg, Z1, Za,--- are a sequence of 1.i.d. random variables of type X" +
N37" Then
o D 2o Dy
7 = 5 + 2 + 3 +

is a random variable of type
Z=X®4 N,

From the definition, it is clear that Z* has the same distribution as

Zo+ ZF
—

Note that the p.d.f. of Zg and Z* are p*(z) and ®*(z,t). Therefore, ®"(z,t) solves the

given continuous refinement equation for each parameter ¢. (Recall that the addition of
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two independent random variables leads to a convolution of their probability measures.)

O

Remark 4. Continuous refinement equations have been recently studied in Derfel, Dyn
and Levin [4], and Shen [11]. The good news about (discrete or continuous) refinement
equation is that they can always be solved by the subdivision scheme. The algorithm
originates in computational geometry and plays an important role in wavelet computa-
tions. The continuous version of the algorithm has been applied to refinement differential
equations in Shen [11]. Shen {12] also reveals its combinatorial meaning in the context
of umbral calculus. Based on the preceding theorem, we can now apply the continuous

subdivision algorithm to compute the heatlets and related functions.

Let P7(z) be the heat kernel as defined in (3.1). Then the density function p(z) in

the preceding theorem is

L
oHz) = 3 haPils — ),
n=0

which is a mixture of Gaussians (or “multi-humps”). If ¢ is small, p'(z) must have totally
L + 1 humps if all the filter coefficients are non-zero (a typical case in practice).

We have agssumed for convenience that all the filter coefficients are non-negative, which
leads to a probability interpretation of the continuous refinement equation. It is not
difficult to see that even when (h,) changes signs, the continuous refinement equation
(4.2) still holds (by Fourier method, for example).

Therefore, the refinable heat ®%(z,t) (and hence the heatlet ¥?(z,1)) can be obtained
by the following continuous subdivision process, which avoids the exact expression of the

scaling function and wavelet.

CONTINUOUS SUBDIVISION ALGORITEM FOR ®"(z,?)

a) Initialize Fp(z,t) = §{z);

b) Forn = 1,2, .-, define

I (z,t) = / 20t (2 — 28) Fp_1(s,1)ds.
R
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Since for any ¢ > 0, the continuous filter p*(2) is a C° and rapidly decaying function,
the results of Derfel, Dyn and Levin [4] and Shen [11] on continuous subdivision guarantee

the following.

Corollary 4.1. For any t > 0, and non-negative infeger m,
E (2™, 1) converges uniformly to  ®"(-, t) in C™(R),

as n — o0,

As t — 0%, p'(z) converges in the distributional sense to the impulse train

L
E hné(z — ).

Then the continuous subdivision scheme degenerates to the ordinary discrete one, which
is essentially an interpolation process. The limit produces the scaling function ¢(z),
which is consistent with the fact that ¢(z) is the initial state of the refinable heat

®"(2,1).

Remark 5. In deriving the continuous refinement equation for the refinable heats, we
have applied the semi-group property Iy + P = Pg,, of the heat kernel. This makes it
possible to “decompose” any normal random variable into the infinite sum (4.1). It also

explains cur special interest in the heat equation.

5. Tee Hice DiMENSIONAL CASE

Let

02 02 o2
Sttt e

denote the n-dimensional Laplacian operator. The associated heat equation becomes

0.2

(5.1) (X, ) = 5

Au(x,0), u(x,t) = f(x).

More generally, let A = (a; ;) be an n by n positive definite matrix. Define the A-weighted

Laplacian A4 by

32
AA = Z G,z";,*‘———*amzamj

1<i,0<n
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Then the associated A-weighted heat equation is
1
(5.2) ug{x,t) = :?mAAu(x, t), u(x,0) = f(x).

Definition 5.1 {Dilation Factor). An n by » matrix D is called a dilation factor if

a. all entries of D are integers and the determinant |D| > 0; and

b. all eigenvalues of D are outside the unit circle.

If in addition, |D| = 2, then D is said to be tight.

In wavelet theory, dilation factors are used to design high dimensional multiresolution.

The refinement equation associated to a given dilation factor D is given by

(5.3) #(x) = 1D ¥ ha(Dx —n),

ngZn
The difficulty is to design the filter coefficients h,. Under some special choice of the

dilation matrix and filter coefficients, the scaling function $(x) leads to a multiresolution

in L*(R"™). Then, defining

¢in(x) = |D|j/2¢>(Djx —n) and V;=span{¢;n|n € Z"}
as for n = 1, we have
1. lim V; isdensein L*R™) and lim V; = {0};
=t J——00

2. (¢o,n)nezn provides a Riesz basis for V.

Under these conditions, the existence of multidimensional wavelets is ensured by the

theorem of Meyer [10].

Theorem 5.1. There exist |D| — 1 wavelets
Y1), $3(x); -, P (),
whose lattice translates by Z™ provide an orthonormal basis for the orthogonal comple-
ment of Vo in Vy. Especially, the following functions constitule an orthonormal basis of
LAH(R™):
{vf, :+ 1<k<|D|-1,j€Z,neZL"}.

Therefore, if D is tight, one wavelet is still sufficient to encode the information of

LA(R™).
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Definition 5.2 (A-unitary). Suppose A is an n by n positive definite matrix. A non-

singular real matrix D is said to be A-unitary if

DTAD = |D|% A.

Notice that D is A-unitary if and only if DT AD = dA for some non-negative scalar d.
If A is a scalar matrix ¢I,, then an A-unitary matrix D is also said to be isotropic.

In fact, D is isotropic if and only if D/|det D|¥/™ is an ordinary orthogonal matrix.

Definition 5.3 (Multidimensional Heatlets), Suppose the heat equation (5.2) is given.

Let
Pl(x), p3(x),. .., 9P (x)
be the wavelets for a multiresolution of L*(R") with an A-unitary dilation matrix D.
Then the heat evolutions of the wavelets, denoted separately by
l(x, 1), U¥x,1),..., 0P (x, 1),

are called the heatlets of the heat equation with respect to the given multiresolution.

H, in addition, D is tight, then there is only one heatlet. Asin the 1-D case, we denote
it by *(x, ). Similary, the refinable heat, i.e. the heat evolution of the scaling function

#(x), is denoted by ®*(x,1).

Proposition 5.1 (Self-Similarity). Suppose that ¢(x) and ¥*(x),k = 1,2,---,|D| - 1

satisfy

$(x) = |D| > hu(Dx - ),

nezn"

$Ex) = D] D ghé(Dx —n),

neEZ™
Then the refinable heat ®"(x,t) and heatlets U*(x,t) satisfy the similarity relations

(5.4) oMx,t)=|D| Y ha®(Dx - n, di),
neEan

(5.5) Ur(x, 1) = D] ) gu®(Dx — n, db),
nezn"

with k = 1,2,---,|D| =1, and d = | D|?/™ > 1.
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Proof. Similar to the 1-D case. Notice that since D is A-unitary, ®(Dx — n, dt) is the

heat evolution of ¢{Dx — n). 0

-

T . IS TR - SUNY S N T S NN SRS A.,-.q‘.,.‘l.‘l- f“‘“ ISR LSy
LE o) 15 <uib 1lLeger, titel ¥ k)(., L} i85 &Il 7o+ L-ULERReESIUEaE FeIHIE e T LI0LE l.-Uiib'pr]lu.LﬂE

to the dilation matrix

D 0
0 dj’
For example, if n = 4 and |D| = 4, then d = 2. i D is tight, i.e. |D| = 2, then only

when n = 1 or 2, can d be an integer.

Remark 6. The A-unitary condition on D is critical for the simple self-similar rela-
tion (5.4) to be valid. From another angle, the condition combines the (scale) invariant
properties of the heat equation and wavelets. This seems to us a significant link between

PDE and wavelet theory.

EXAMPLE,

Consider the simplest 2-I) heat equation:

0.2
U = wém(ua:a: + uyy)! H(X, 0) = f(X)

Here x = (z,4). The weight matrix 4 = ¢%1; is a scalar matrix. Therefore, a dilation
factor I must be isotropic, or equivalently, D/+/|D| is an ordinary orthogonal matrix.

Especially, if D is tight, then up to a scalar multiple of —1, D must be

1 -1
r=li )
or its transpose. Notice that all its eigenvalues lie on the circle |z| = +/2. A refinement
equation associated to R has the following form

$(x)=2 ) hop(Rx —n).

nez™
Set A=1+4+4,z=z +iyif x = (z,y), and n, = n+im if n = (n,m)". Then in the

notation of complex nnmbers, the refinement equation simplifies to

Hz) = QZhnzqﬁ(}\z — Tz ).
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If one chooses the Haar filter: hg = hy = 1/2, and h,, = 0 for the remaining lattice

points n,, then the equation becomes

$(2) = $(Az) + ¢(Az — 1).
The solution is the characteristic function of a fractal set famously known as the twin

dragon (see Louis et al. [9]).

Under the setup of Definition 5.3, we can now state the multi-dimensional heatlet

decomposition theorem.

Theorem 5.2 (n-D heatlet decomposition). Let ®%(x,t), k¥ = 1,---,|D| — 1 be the
heatlets of the given heat equation (5.2). Assume f € L*(R™) has the following wavelet

decomposition

) = o (Heha(x).

Ein
Then the heat evolution of f(x) (in L*(R™)) can be decomposed into

u(x, )= Y ek (FHVE L (x).
: k.j.n

Here,

Tk (x,1) = |D)2OR(DIx — n,dt), d=|D"
The probability method and subdivision algorithm apply to the n-D case similary.

6. CONCLUSIONS

First we emphasize again that a wavelet basis is invariant under a scaling (x — Dx)
and translation (x -+ x — n).

A first order (in time) linear evolution equation takes the form
au(x, 1)+ Lyu(x, 1) =0, u(x,0) = f(x),

where @ is a scalar and Ly is a linear spatial differential operator with constant coeffi-

cients. Then L is automatically translation invariant, i.e.

Lxlg(x + ¢)] = [Lxg)(x + ¢),



HEATLETS 19

for any real vector c. Therefore, to take the full advantage of a wavelet basis, it is

necessary for Ly to be also scaling invariant in the sense that
Lylg(Dx)] = alLxg](Dx),

where o is a scalar universally for g{z). If so, the factor @ can be absorbed into the
temporal variable ¢ {(by a proper scaling). The A-unitary condition introduced for the
multi-dimensional case meets this requirement.

Based on this idea, we make the following closing remarks.

(a) The method works equally well for the following Schrodinger equation with a zero

potential;
iudx,t)+ Au(x, ) =0, xeR" t>0,

with an initial condition u(x,0) = f(x). We require the dilation factor D to be
isotropic. For the 1-D case, one can simply take D = 2. The kernel function of the
equation becomes
1 jon b
Rix) = w———e "¢ i,
&)= Gy
Its convolution with a scaling function (or a wavelet) is an integral of Fresnel type

and possesses the character of self-similarity {see Proposition 3.1).

(b) The method also works for the homogeneous wave equation:
(X, 1) — c2Au(x,t) =0, xeR" >0,
We can study its zeroth order wavelet fundamental solution corresponding to the
initial condition
u(x,0) = ¥(x), ug(x,0) = 05
and the first order wavelet fundamental solution corresponding to the initial state
u{x,0) =0, us(x,0) = P(x).
Again, we require the dilation factor D to be isotropic.
(¢} We can study the Laplace equation (in the upper-half plane) in the same manner.

The interaction between the Laplace equation and wavelets has special meaning and

is discussed in Shen [13].
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