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ApsTRACT. We develop both mathematical models and computational
algorithms for variational denoising and restoration of non-flat image
features. Non-fiat image features are those that live on Riemannian
manifolds, instead of Euclidean spaces. Familiar examples include the
orientation feature (from optical flows or gradient fiows) that lives on
the unit circle 8', the alignment feature (from fingerprint waves or cer-
tain texture images) that lives on the real projective line R, and the
chromaticity feature {from color images) that lives on the unit sphere
82, In this paper, we apply the variational method to the restoration of
non-fiat image features. General mathematical models for both contin-
nous image domains and discrete domains (or graphs) are constructed.
Riemannian objects such as metric, distance and Levi- Civita connection
play important roles. We also discuss efficient computational algorithms
for the non-linear restoration equations. Numerical results support both
the models and algorithms developed in this paper. The mathematical
framework can also be applied to the restoration of general non-fiat data

outside the scope of image processing and computer vision.
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2 CHAN AND SHEN
1. INTRODUCTION

In image a,na.lysis,Arestoration and denoising by variational methods are
typically applied to gray level image functions or vector-valued (color) im-
age functions (see Mumford and Shah [10], Rudin, Osher and Fatemi [15],
and the monographs by Morel and Solimini [9], and Weickert [21]). Such
functions are “flat” or affine. By flatness or affinity, we mean a function
that takes values in a linear space, such as the real line, or the linear RGB
space.

There are some important image features that do not live in flat spaces,
however. One example is the orientation feature, which comes from op-
tical flows or gradient flows (of gray images). One can easily see that in
a video that records the rigid motion of an object against a static back-
ground, the orientation of the motion stores one half of the whole valuable
information (and speed is the other half).  The second example is the
alignment feature which is commonly found in many texture images. For
example, for fingerprints, the alignment pattern of fingerprint “waves” is
crucial for identification tasks (see Perona {12]).  The chromaticity feature
of color images is another example of non-flat features {see Tang, Sapiro
and Caselles [19, 18]). For a linear RGB color image, the pixel value Iis a
vector in R®. The magnitude ||I|| measures the brightness, while its trace
on the unit sphere § = I/||I|| contains the color saturation information, and
is called the chromaticity feature in Tang, Sapiro and Caselles [18]. It lives
‘on the unit sphere S? in the linear RGB space.

‘The mathematical object for modeling non-flat features is differential
manifolds. Percepiual sensitivity to a particular type of feature is measured
by Riemannian metrics. Therefore, our models shall be inevitably based
on Riemannian manifolds, The complete picture has been summarized in

Figure 1. The first step is taken by image processing or video processing

Image u or image flow Interesting feature f Feature manifold M
( gray level or color ) { orientation , opfical flow, e.t.c.) and Riemannian structure

Figure 1. The flow chart of model setup.

researchers. Meaningful features are often defined according to our visual
system or the type of task we attempt to carry ont. The second step leads to

mathematical analysis. Once the feature is described, the manifold stands
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there. But a truly perceptually meaningful Riemannian metric depends on
our visual system. For example, orientations in 2-D images live on the unit
circle. It is quite reasonable to assume that generally our visual system
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Riemannian structure (rotationally invariant) for orientations. Sometimes
the converse is true: familiar manifolds usually have their natural (related
to certain tra.nsform groups on symmetry) Riemannian metrics, and one can
directly start with them for convenience. _

The starting point of this paper is the last box. That is, we assume that
a ﬁerceptuaﬂy meaningful Riemannian structure is already defined.

As for flat features of an image, variational method is one of the most
efficient tools for analyzing non-flat features. This is primarily due to its
denoising and restoration effects. The nonflat features obtained initially are

often noisy due to common factors like

(1) the noise contaminating original images, or left there even after a de-
NOISING pre-processing;

(2} regional destruction of raw images {(due to the aging of a film, say}), or
insufficiency of resolution in raw images;

(3) inefficiency of the algorithm that extracts the non-flat features.

As in the classical literature, properly designed variational models can (i)
attenuate noise, (ii} preserve intrinsic singularities, (iii} enhance the “edges”
of non-flat features. For general features, an “edge” means a segment where
. the feature distribution undergoes abrupt changes. Tor the orientation fe:‘i—
ture from optical flows, for example, the edges may be identical to the real
physicai boundaries of moving bodies.

Perona has taken the pioneering step in [12] by studying a variational
model for orientation diffusion with applications to fingerprint analysis. His
work defines the right framework for further deeper mathematical and com-
putational study on the subject. Our present work is its followup and ex-
tends it both theoretically and computationally. (Note: By the time we
completed the initial version of this paper, we found surprisingly (and hap-
pily) that Sapiro and his colleagues were also develdping the diffusion the-
ory for directions (corresponding to the feature manifold S ) independently
(see [18, 19]), almost at the same time. We shamelessly admit that some
ideas on chromaticity presented in this final version are impossible without

benefiting from this inspiring team.)
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There are two key mathematical questions upon studying variational
restoration of non-flat features. First, it is not as obvious as in Euclidean
spaces to come up with a feasible energy functional for non-flat features.

D r1 ‘-)'] ’ 3 - LR
Perona [12] offered some bright physical intuitions for th

ture, but a general mathematical framework is still missing, which may
delay many potentially important applications for other non-flat features.
Secondly, as one can easily expect, the associated Euler-Lagrange equations
or steepest-descent (diffusion) equations are generally non-linear because of
the non-flatness of feature manifolds and the intrinsic non-linearity of their
classical counterparts (the TV model, for instance). To get our mathemat-
ical models truly work for applications, it is important to develop efficient
(simple, stable, or fast) numerical algorithms for these non-linear equations.

Answering these two fundamental questions is the main task of our present
paper. We present a systematic way for constructing the energy functions
for general non-flat data or features. We interpret Perona’s original model
in this general framework and discuss its generalizations. The mathemati-
cal framework also extends the classical total veriational (TV) model. Nu-
merical evidence shows that the TV model is more successful than the L?
model for restoring non-flat features which have intrinsic singularities. We
also design eflicient numerical algorithms to solve the non-linear restoration
equations. Numerical results highlight the success of both our mathematical
framework and computational algorithms.

The organization of the paper is as follows. Section 2 constructs the math-
ematical foundation for the work of both Perona and ours. We study the
restoration of non-flat features in-a general and abstract way. The starting
point is the construction of the energy functional on a Riemannian feature
manifold. In section 3, we discuss restoration models specifically for orienta-
tions and alignments, two non-flat image features frequently encountered in
gray level image analysis. Construction of energy functionals is through the
new concept——Locally Riemannian Distance. The latter half of the section
is devoted to developing numerical algorithms that can solve efficiently the
nonlinear equations associated with the orientation and alignment features.
Section 4 studies the computational issues for the chromaticity restoration
on S%. A simple two-step filtering -algorithm on the sphere is established for
the discrete models. Numerical examples are gathered in section 5, where we

discuss applications in fingerprint images, optical flows, and color images.
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Whereas our work was initially motivated by image processing, we believe
that the mathematical framework and algorithms can find their applications

in the restoration of general non-flat data in other fields as well.

2. VARIATIONAL MODELS AND RESTORATION EQUATIONS

Since non-flat features do not live in a flat space, the energy function-
als and associated restoration equations depend on the “geometry” of the
non-flatness. The geometry is described by Riemannian manifolds and Rie-
mannian metrics. These are the basic objects that we work with in this
section. We shall establish the most general models for the restoration of
non-flat features.

In the two subsections, we study models for both continuous image do-
mains and discrete image domains {or graphs, more generally). The latter
has the advantages of easier implementation in computers and friendly ac-

cessibility to the widest readers.

2.1. Models for continuous image domains. Let Q be an image domain
in R?. For the purpose of image analysis, ! can be a square, a disk, or other
regular domains. '

Suppose that the non-flat feature of interest lives on an m-dimensional
Riemannian manifold M. We shall call M the feature manifold. For ex-
amples, the unit circle S! is the feature manifold for orientation (or arrows
with unit length), while the real projective line RP! is the feature manifold
for alignment (or line segments with unit length).

An image is a real function-u : @ — R" (n = 1 or 3, practically). The
collection of “all” images is denoted by the symbol (& — R™). One can put
the class labels such as L? or BV (bounded variation) in front of it. But
since we do not study the theoretical sides (i.e., existence and uniqueness) of
the model equations in the present paper, the symbol allows more freedom.
Moreover, the regularity of most images from natural scenes is usually poor
since they belong to the statistical category in a large degree.

A map §:Q — M is called a feature distribution and (2 — M) denotes
the collection of all feature distributions of interest. An M-feature of images

is a map
Fi(Q—RY — (0@ - M),

such that for any image u, f = F, is a feature distribution. That is, for any

pixel p = (z,y) € , f(p) = F,(p) is a (feature) point on M.
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It is often true in applications, as outlined in the introduaction section,
that the M-feature distribution f = F,, associated to a given image u is often
noisy. Our major goal is to construct denoising and restoration models using
the classical too! of variational method.

In practice, a feature distribution § € (£ — M) is typically a map without
overall smoothness. However, when we constructing a restortation model,
as well practiced in the case of affine features, f(p) is always assumed to-
have certain degree of regularities. For instance, we can assume that f(p)
belongs to the Sobolev space W13(Q2, M). In numerical computation, it is
fortunately true that models based on the good regularity assumption often
work effectively for irregular images as well. Next section discusses discrete
models, for which the regularity of data causes no problem in both theory
and computation.

Under this setup, 8;f(p) and 3,§(p) are two tangent vectors in the tangent
space Typy M. Let (-, - )jp) denote the Riemannian inner product at f(p),
and || [ljp) the induced norm in T,y M. We shall omit the location subscript
if it is clear or insignificant in the coniext.

We now define the strength function

(1) e(fip) = \/Hazf(i")“z + 18§ ).

To have a better understanding of its meaning, we introduce the correlation

matrix

(0uf, 0:F) (Baf, Byf)
C = .
i) [( Of, 0uF) (D)5, By >]

Then

(i) = Jirace(Cy(p)) = /o + o,

where oy and o3 are the singular values of the m (the dimension of M) by 2
“matrix” [0,f, 0,f] (which is well-defined under any local orthonormal frame
on M). A similar formulation has also been proposed in Sapiro [17, 16] when
f is a vector valued distribution.

The strength function defined in this way is rotationally invariant. That

is, for any orthogonal transform in the image domain
R: R?-=R?
we have

e(f(R™1-); Rp) = e(f(-); p)-




RESTORATION OF NON-FLAT IMAGE FEATURES 7

The reason is that the corresponding correlation matrices are orthogonally
similar to each other. This property is meaningful in real life since we do not
want the results to depend on the direction in which an image is displayed
before us.

The L? total energy of a feature distribution f is

&) =3 [ m) .

Inspired by the affine case where Rudin and Osher [14], Rudin, Osher and
Fatemi {15] first introduced the total variational (TV) model for image

restoration, we define the total variation to be the L' total energy

v = (AR N
ETV(F) = /ﬂ (F:p) dp

Let d denote the metric on M induced by its Riemannian structure. That

is, for any two points f and g€ M,
d(f: g) = Hrl.f length(r)?

allowing T’ to go over all piecewise smooth paths that link § and g. (We shall
also allow other kind of distances later. See the discrete model in the next
subsection.)

Given a noisy feature distribution §¢) (p), the classical restoration model

associated with the L? energy is to solve
min £, ),
where the fitted L? energy

£ 0= )+ [ #TO0 dp
1 [ 5, A
—5 [SGm ap+ 5 [ 265 .

As in the affine case, the first term regularizes the restoration solution and

the second omne is a fitting constraint.

For the TV restoration, the associated fitted TV energy is

TVie yy — 3 A 2(£(0)
eV = [ elhip)dp+ 5 [ 2G5 dp

The constant A above is related to the Lagrange multiplier for the asso-

ciated constrained optimization problem—
Minimize  £(f) (or £TV(f))  subject to Ell—]/ (19, Hdp = o2,
0

where || is the area of @ and ¢ the standard deviation of the noise. In

the flat case, the connection between the constrained and unconstrained
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~ formulations was discussed theoretically by Chambolle and Lions [2] and
numerically by Blomgren and Chan [1]. In image analysis, A is often con-
veniently fixed or chosen a priori, or estimated by the gradient-projection
method {Rudin, Osher and Fatemi [15]).

To solve the above variational problems, we study the associated Euler-
Lagrange equations. For the fitted L? energy £(f;A), the Euler-Lagrange

equation can be shown to be
. . A
—8;(8:1) — 05(8,) + Feradid® (1%, 1) =0,

where, at any pixel p = (z,y) € @, gra.dfdz(f(o),f) denotes the gradient
vector of the scalar function d*(f®(p),-) on M; and 3} and & denote co-
variant derivatives acting on vector fields defined on f{2). Specifically, let V
be the Levi-Civita connection {(see Helgason [7}) on the feature Riemannian
manifold M. Then the covariant derivatives d} and J; are given explicitly
by

3; = Vaxf, 6; = Vayf.

They can legally act on any vector field X that is defined along f(?) due to
the locality property of covariant derivatives. For instance, if M is a domain

in R™ .then

T

TX = 2 X(f(z,0))

"Generally, when M is isometrically embedded in Euclidean space R™ (N >

m), a vector field X on M is also one in R". Since the flat derivative in RV

2 X(5(zv))

usually overshoots from the tangent space of M, one needs an extra step of

projection for the covariant derivative—
. 0

where II; is the orthogonal projection from TfRN onto the tangent space
TiM.

The Euler-Lagrange equation can be solved by the infinitesimal steepest
descent method (or time-marching method). This leads to the fitted diffusion

equation

g _ A
o = 02(0.0) + 3(8,1) - Seradi (1,9,
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with the Neumann adiabatic boundary condition plus the initial condition

f |t=0 = 1:0,

where, f can be the given raw feature distribution £, for convenience. All
the terms in the diffusion equation are in the tangent space Ty M. As
the marching time increases, § evolves to the equilibrium distribution of the
functional.

Similarly, for the TV model, the Euler-Lagrange equation becomes

o ( Oaf ) —a ( i ) + %grad,dﬂ(f(o),f) =0.

e(f; p) e(f; p)
Steepest descent leads to a forced anisotropic diffusion equation
Bf * 8:1-‘f ayf

A
ar y _Z L2(50) £y
ot F (e(f; P)) +9% (E(f;p)) 5 grad; (f™. 1)

Remark 1. Let us understand the first two terms on the right-hand side of
the last equation. Assume the image domain is 1-dimensional (i.e. a real

interval [a,b!) and parameterized by z. Then f{z) is a path on the feature

/ e

is to reduce the total path length. This viewpoint connects our problem

manifold, and minimization of

to the much familiar object — geodesic. A geodesic is self-parallel in the

well-known sense that if 7 is the unit tangent vector, then
Ver =0.

This condition also means that it is locally a “straight” line on the manifold.

Now it is easy to see that

ke s
"IN T Fp)’

and the linearity of the Levi-Civita connection leads to

(&) () = wetroem

This gives us a better geometric sense about the two “T'V-terms” appearing

in the last two equations.

EXAMPLE 1. Feature manifold M embedded in RV.

When the feature manifold M can be isometrically embedded in Euclidean
space RY (such as the unit circle in R? and the unit sphere S™ in R™*1),

the Levi-Civita connection is simply the Euclidean derivatives followed by a
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projection as pointed out above. In this case, a feature point f can be seen

as an ordinary vector in R", and the definition of the strength function

e(f: p) = 1/I1fm(n\I12+I}f,.(p)1I2

now only involves the ordinary differentiations of vectors and is exactly -

IVl = VIVRIE + IVl + - + VNI,

if f= (f1,f2,-.fw) € RY. Moreover, the diminishing flow fields F' of the
energy functionals can be computed explicitly. When M = 8™ is embed-
ded in R™+1 this work has been carried out recently in Tang, Sapiro and
Caselles [19], and was also worked out independently by Osher [11]. For a

general embedded feature manifold, for example, the diminishing flow field
F = 07(0:f) + 05(8,5)

for the L? energy & is simply given by

3) F = I Af,

where, A is the flat Laplacian on £, and II; is the orthogonal projection
from TjR™ onto T;M. Spheres 8™ in R™*! are the most interesting to image
processing. For the sphere, it was shown by Tang, Sapire and Caselles [19]
and Osher [11] that the diminishing flow for the L? energy is

4 F(f) = Af + | V5%,

and for the TV energy,

TV oy Vi
) FY() = V- (e ) + IVl

Osher [11] established these formulae by the method of Lagrange multiplier
analysis, and Tang, Sapiro and Caselles [19] proved them by working out
explicitly the variational problem. Here we give a simpler geometric proof
based on the special form of the Levi-Civita connection (2).

Proof of Eq. (4) and (5) (see Figure 2}).  Take the TV diminishing flow
Eq. (5) for example. For sphere 8™, the projection at f is

Ov=v—-{(v-Df



RESTORATION OF NON-FLAT IMAGE FEATURES 11

grad(f) |
iv )
| grad(f) |

FiGUuRE 2. The TV diminishing flow.

Hence for any distribution f: 2 — 8™,

\%i
TV =1V ——
FEO=0Y 15y |
_ Vi V§ )
—v. 2 _(g. Y.
XZ] ( A
\%i ( f-V§
=v. L (v.I. X v
Kz o ! f”)f
v
=V VI,
oI
since §- Vi= V§*/2 = 0. : ‘ : ]

This continuous model provides a universal language for restoring non-flat
features. However, the model assumes that the readers have some knowledge
of modern differential geometry, concepts such as the Levi-Civita connec-
tion. It is unavoidable in this continuous formulation since the variational
formulation is global. Fortunately, there does exist a way that one can cir-
cumvent this technical difficulty. We now develop a simpler model for “dig-
ital” image. domains, namely graphs, where differentiation of vector fields
(i.e. Levi-Civita connection) can be avoided. Besides, the discrete models

have their own computational advantages as discussed later in the paper.

2.2. Models for discrete image domains. Since numerically it is always
necessary to lay down a finite discrete grid to approximate the continuous

image domain £, it is practically convenient and important to study directly
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non-flat features over a discrete grid, or more generally, a graph. This is the

main task of this section. Perona took the first step in [12].

Let G[Q,] be an undirectional graph over a finite set of nodes Q,, (“n”

Ao fam £ o A1

ok o Sy un N LLAY 3 3
stands for “numerical”), and G is the dictionary of edges. We write o ~ 8
e

~

if nodes @ and 3 are linked by an edge. For any node o € (2,, denote by
N, all its neighbors

{pe,: p~al

We start with the definition of the concept of LRD, which shall play an
important role in our models. A locally Riemannian distance (LRD) is a

piecewise smooth continuous function d;
d: MxM-—R"=][0, ),

such that

(1) For any f,g€ M, di(f,8) = di(g, ).

(2) di(f,8) =0, if and only if f = g.

(8) di(f, ) + dilf, b) = di(a, b).

(4) di(f,9) = d(f, 8) + O(d*(f,9)) as d(f,a) — 0.

Here d is the induced Riemannien distance defined in the previous section.

Remark 2. Conditions (1)—(3) are the basic ingredients of a distance, which
authorize d; to “legally” measure the amplitude of noise. Condition (4)
restricts our attention to only those distances that are locally Riemannian.
The motivation is as follows. Suppose the feature Riemannian manifold is
locally flat (i.e. locally isometric to Euclidean space R™). Then condition (4)
ensures that the “non-flat Laplacian” (see the remarks at the end of this
section) is locally exactly the ordinary Laplacian. In this way, many classical

analytical results may be transplanted easily.

EXAMPLE 2. Perona’s distance.
Consider the unit circle 8! as the concerned feature manifold. For any

two points § = €'®t and g = €2, define

dperona.(fag) = \/2(1 - COS(Bl - 02))

Symmetry is immediate. Now if dperona(f, 8) = 0. Then cos{(6y — #,) = 1,
which implies that f = g. It is also clear that the leading term of dperonal(f, 8)

is the Riemannian distance when f and g are close. Therefore,'to show dperona
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is a locally Riemannian distance, it suffices to verify the triangular relation.

The proof follows. Formula
sin{f; + @2) = sin #; cos B, + sin f, cos &y
leads to

[sin(fy + 62)| < |sin(f1)] + | sin(fs)|.

1= cos 26
| sin 8] = 1/_“92-;95-"—-,

/1= cos(26; + 263) < 4/1 — cos 20, + /1 — cos 26,.

Noticing that

we obtain

Now that #; and &, are arbitrary, this last inequality holds even without the
factor 2, which eventually leads to (by noticing that 63 — 6, = (61 — 82) +
(05— 61))

\/1 — cos(fz — 02) < /1 —cos(6y — 8,) + \/1 — cos(f3 — 6y).

It is the triangular relation for dperona!l

It is the distance that Perona has proposed in his work [12] (though he
did not formulate it in this way).

As an example of a non-LRD, consider

iine(, 8) = \/1 — COS(QZEHI - 92))_

Tt is not a local distance for S! since
diine(1, —1) = 0.

For the real projective line RP!, however, djj,c is an LRD.
For a given LRD d;, we define the associated strength of a given feature
distribution f to be

i
e(fia) =1 di(is fa)l7,
BEN
which generalizes the continnous strength function in Eq. (1) or ||Vf|| when

f is a flat function. Next, we can define the I? total energy

En=3Y 5¢Gia)

aEll,
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and the total variation (TV)
£V = > elfa)
ceeiln
For a given feature distribution f9 and some weight constant A, define the
fitted 1? total energy '
1 .
EGEN =€+ Y Sdi( T,
2739
and the fitted TV total energy
1 :
EVHEN=ETVH+A Y §d?(f§°),fa)-
aefin
To establish the diffusion equations, we first compute the gradient fields
for the total energies. For the /2 total energy,

(6) a;:g) . afa df(far f0)5

BENG

for the TV total energy,

A S KA LS R

O BEN,

Hence the corresponding fitted diffusion equations are

(8)

do P - (fas o) = 5 5O, o)

® |
it e(fio) +1/eEB)) A0
e 5 [ it (LD GD) 22 0. 1),

BEN,

Notice that here our‘starting point is the locally Riemannian distance d;.
In his work on orientation diffusion, Perona [12] started with a choice of
energy, which is originally inspired by physical considerations. For general
non-flat feature manifolds, d; (and the special case of d; = d, the Riemannian
distance) seems to be more fundamental.

As an example, we now apply the discrete models to the restoration of
chromaticity. The continuous diffusion model without the fitting constraint
was first discussed in Tang, Sapiro and Caselles [18]. Our discrete model
has the following advantages: 1) unlike the continuous model, one does
not need to choose a numerical discretization scheme (often complicated)
for the spatial derivatives; 2) the discrete model rigorously diminishes the

energy function; while in the continuous model, the numerical PDE’s only
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asymptotically {i.e. as the step size of time or space tends to zero) diminish

the continuous energy functionals.

EXAMPLE 3. Restoration of the chromaticity feature on S2

The 2-dimensional sphere S? models the chromaticity feature of color
images. Let I(p) denote the linecar RGB vector value at pixel p. Then I(p)
can be perceptually separated into the brightness component B = {|I(p)],

and the chromaticity component

f(p) records the saturation degree of colors. We now apply the discrete
models developed above to chromaticity restoration. Take the TV model (9)

for example.
Embed 82 in R2 and take d; to be the embedded Euclidean distance, i.e.

d}(f,ﬂ) = ”f“ gl}R‘? = (f - g)z! for any fag € Sg'

Let V¢ denote the gradient for f € R and 8/8f the gradient on S?. Then

for any scalar function G{f) on R3,
J
”5";G(f) = I{V§G ().
Therefore, for any fixed feature point g € S%,
i
gfd?(f,ﬂ) = I;Vy(f - g)*
= 211;(} -g)= —211;(9)
= —2(g — (- ).

The TV model (9) is explicitly given by

dfa 1 1
1) %o S w00 (s + o) RO

AEN,

There are no spatial derivatives in the last equation! In computation, one
only needs to take care of the time discretization, which is easy to handle
with the geodesic marching scheme we propose in Section 4. It is easily
seen that the fitted diminishing flow on the right-hand side is indeed on the
tangent plane at f,, which is crucial to prevent f, from wandering away from
the feature manifold infinitesimally. This completes our example. We will
return to it later in Section 4.

More generally, suppose the feature manifold M is isometrically embedded
in RV, Let 11} denote the orthogonal projection from TfRN onto the tangent
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plane T3M. If we choose d; to be the straight line distance in RY (but

restricted on M), then the TV restoration equation is given by

dfe ( 1 1 ) (0)
(11) w,;,;-—ﬁgﬁ‘ oo fo) { Sy + 55 ) + AT (7 — -

Especially, if M is the level set of a non-singular (i.e. with non-zero gradient
everywhere) function ¢(f) in R™*!: ¢ = 0, then

Miv = v —(v- qb;)“;:#,

where ¢y denotes the gradient of ¢ and v € T{qR™*'. In the continuous case,
Osher [11] first proposed to consider the level-set feature manifolds {and
indeed, both S! and S? are level-set manifolds).

Some comments are in order now.

Remark 3.
1. Non-flat Laplacian.  Suppose the feature manifold M is in fact a flat

domain in R™. Take d; to be the natural Fuclidean distance

d(far fo) = [Ifa — foll, i R™

Then

o e,

and

which is the flat graph Laplacian acting on f (up to a constant). Graph
Laplacié.ns unlock many combinatorial secrets of a graph, a topic which
has been recently well studied in the spectral graph theory (see Chung [4],
for example).
Therefore, formula (6) can be viewed as a “non-flat” Laplacian.

2. Nonlinear Adaptive Filter.  The right-hand side of formula (7) gener-
alizes the curvature term frequently appearing in image analysis (Rudin
and Osher {14]; Rudin, Osher and Fatemi [15]) —

Vu
\vA
(1)
which leads to the total variational anisotropic diffusion of a gray level
image u, and is a special but the most commonly applied case of Perona

and Malik’s general concept of anisotropic diffusion [13]. For a general

graph, formula (9) defines a non-linear adaptive diffusion. The feature
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diffuses faster near a node where the strength e is smaller, or equiva-
lently, where the feature distribution is smoother. It adaptively slows

down when the distribution gets rougher and the local strength grows.
This adaptivity is particularly useful for preserving local characteristic
architectures of a given feature distribution, such as the singularities of
fingerprint “waves,” and feature “edges.”

3. The Graph Curvature Term.  Suppose that M is isometrically embed-
ded in RV, and d; is the restricted Euclidean distance. Denote by K,(f)

the flat flow field in RY
1
> Ga~1o) (e * o ﬁ)) '

AEN,

Then the TV restoration equation (11) reads

o - 1y, Kalf) + M, ()~ T

We now show that Ka(f) is exactly the graph version for the classical
curvature term. Fix a node a. Let € denote any of the directed edges
starting from a. Define the directional derivative of a flat feature f along
P by

_ of
Cgels

o _ of
de el

where 3 is the tail node of €. Then the strength function is exactly

= fo — fes

1

e(f;a)f > (;—;)2 2,.

-

€ regy

which generalizes the magnitude of the ordinary gradient. Here € ~ «
includes all directed edges starting from «. Under this setup, it is easy

to see that

, 8 1 6
ﬁa(f)xza—j;'gga,

—_
£~y

which is exactly in the form of graph divergence and gradient!

3. RESTORATION OF OQRIENTATION AND ALIGNMENT: EQUATIONS AND
ALGORITHMS

In this section, based on the general mathematical models constructed
above, we study the restoration of two classes of non-flat features frequently

encountered in gray level image analysis, namely, the orientation feature and
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the alignment feature. For the time being, we shall only discuss the discrete

models.

3.1. Restoration equations for orientation. Orientation lives on the
unit circle S!, which can be naturally parameterized by the angle parameter

#. Define the sawtooth function on R:

Dy {1 ol < v

27 periodic extension for general z.

Then the Riemannian distance d is given by
d(e®1, %) = D(8, — 8,),

or simply, d{#;,8,) = D(#, — ), which measures the length of the shortest
arc on S! that links the two feature points. Recall that in the previous

example, we discussed Perona’s locally Riemannian distance
0y — 0,

sin

dperona(gls 32) = \/2(1 - COS(gl - 92)) =2

The fact that it is an LRD is better seen geometrically through Figure 3,
which shows that dperona measures the Euclidean distance of the two feature

points e and ' in R? (instead of measuring along S*).

FiGURE 3. The Perona distance.

Remark {. The Perona distance belongs to a wider class of isometrically em-
bedded distances (IED). An IED, denoted by die, is the result of an isometric
embedding of S! in R? (see Figure 4). Precisely, this means to establish a

smooth (C?, say) injective mapping

F:8 - R?



RESTORATION OF NON-FLAT IMAGE FEATURES 19

which satisfies the isometry condition
dF |lgz> = {lds]|s:,

for any infinitesimal segment ds on the circle and its image dF. The IED

0T an

associated with F' is defined by

(12) die(f: 3) = “F(f) - F(Q)HR%

for any §,gin S!. dj is an LRD because of the isometry condition. Such
a distance is biased, or not rotationally invariant. It can be useful in occa-
sions where we do know a priori that certain directions are more robust or

important than the others.

FIGURE 4. The isometrically embedded distance (IED).

One advantage of dperona Over D is the smoothness of d2on,, 0n Which we
take derivatives in the restoration formulae Eq.(6-9). Remarkably, dperona
is also rotationally invariant. In what follows, we shall only discuss this
distance function.

We now derive the parametric restoration equations for dyerona- Parame-
terize the circle by # — ¢*?. Then the tangent vector /88 {or equivalently,
ie*?) is an orthonormal basis for the tangent space at each point. All vectors

appearing in the diffusion equations are expressible using this basis. Assume
fo = e¥a Then

Ofa _ 02 0
at — ot 88y’
8d12>erona(fm fﬁ) 5(1 — CDS(ﬁa - 9,3)) o ) 9
g =2 00, a0, 2 sin(fo — Bﬁ)’a—gg,
ad}%erona(fa:fg))) _ 6(1 — COS(HQ, — BS}})) o

O 2 00, 00y

= 2sin(fy — 95?))3_‘3-.
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Then the fitted {? diffusion equation (8) becomes

8,

== 3" 25in(fp - 0a) + Asin(60) — 6,),

BeNa

(13)

which is exactly the equation that Perona first studied in [12]. Similarly, the
fitted TV diffusion equation is

dé,, . . 1 i .
04 = Xm0 (gt ) + e - 02),

BENa

where, according to the previous section, the strength is

(i) = [ ) 2(1—cos(fs — bo)]?
BEN,
Remark 5. Notice that the parametric equations (13) and (14) are equivalent
to equations (8) and (9). This is one of the main advantages of the discrete
(graph) model — it is less sensitive to the discontinuities in the raw data 9(0)
In fact, a graph is “blind” to discontinuities since there is no infinitesimal
distance. For the continuous model, the parametric equations (i.e. on ) are
not equivalent to the corresponding embedded equations (i.e. on f, treated

as a vector in R?), when the given raw data 6(°) has discontinuities.

Equations (13) and {14) generalize classical flat equations. To see it,

consider a smooth orientation distribution #,, that is,
B — b, = O(¢),
for all 8 € N, and some small characteristic parameter €. Then
3 sin(8p—0a) = Y (65— 8a)+ O().
BeNa BEN

The leading term is exactly the flat Laplacian on 8. This is generally true
for any choice of locally Riemannian distances because of the last condition
in the definition list.

Similarly, the strength function can be shown to be

e(B;0) =Y (85— 0)"15(1+ O(e)).

BENa ~

For example, for a typical internal cross node o = (,7)in image processing,

its neighbors are

Bu=(,i-1), Ba=(ji+1), B=0G-17), B =GE+1,75).
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Thus the leading term of the strength function is simply the finite difference

approximation to the magnitude of the gradient

K=

o= van | (29Y L (20V7]
! \oz) "\ay) |~

where h is the discretization step size.

3.2. Restoration equations for alignment. For alignment, direction of
a line segment is unimportant (see Figure 5). This amounts to saying that

the feature manifold is the real projective line RPZ.

/\
Energy Increases. Largest Energy Energy Decreases

Ficure 5. The alignment feature.

A line segment in the direction of # is denoted by lg. Then Iy and lgy
denote the same line segment. A one-to-one correspondence between RI*
and the unit circle 8! can be established by representing each line segment
15 by a point €??. This embedding technique has already been practiced in
image processing (see Perona [12], and Granlind and Knuttson [6]).

The Riemannian metric on RP? is given by
d(lgl,lgz) = |91 - 92’7

whenever |6y — fy} < 7/2.

The line distance mentioned in Section 2 is given by

diine(la,, 16, ) = \/1 — 608(22591 —6)) = |sin(f; — 82)}.

diine 1s in fact the pull-back of dperona under the circle representation of
RP!. If fact, any LRD d; on the circle (an IED, especially) can be pulled
back to RP! by defining

1 . .
dF¥ (I, la,) = di(e™, ™).

In what follows, we shall only work with dine.
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Similar to the orientation diffusion, we obtain the fitted 12 diffusion equa-

tions for dijne

(15) % = Y sin(20s —26,) + ésin(?ﬁff) - 26,).
R dt = T P g

BENa
The fitted TV diffusion equation is

(16)
1 1

d8 1 | A
Za = 3 s - 20, Zsin(204%) — 26,,),
dt s 2 sin(265 ) (6(9; o) t e(ﬂ;ﬁ)) + 2 sin(265 )

where, the local strength is given by

-

z
1-— 205 - 28
e(f;a) = Z cos( 2'6 o) .
AN

We shall only discuss these two equations in the following. Our later
numerical experiment shows that the alignment restoration model is partic-

ularly useful for fingerprint processing (also see Perona [12]).

3.3. Algorithms. The parametric restoration equations (13-16) are all non-
linear. The good news from the discrete model is that the steady equations
are all algebraic. Various existing solvers for non-linear algebraic equations
can thus make their contributions, though careful modifications should be
made.

In this section, we discuss three numerical approaches. We first.study the
_I2 restoration equations in details, and then point out how to make suitable
adjustments for the TV restoration equations. Let (, denote the graph
image domain. For the purpose of image processing, one can be happy with
the standard rectangular grid, where each (internal) node a = (%, 7) has four
neighboring nodes # = (i,7£1),{¢+1, 7) such that 8 ~ . Considering that
our models and algorithms may be applicable even out of the scope of image
processing, in the following, we still state the algorithms using the abstract
notation for nodes: o, 3,---.

Recall from the previous subsections that we try to solve directly the

system of steady restoration eguations

(17) 2Y sin(fp — 6a) + Asin(dy — 6) =0, @ € Q.
Brocx |
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Here ¢ is the given raw (noisy) angle distribution. The associated total

energy is given by

E(B;0) =2 (1 —cos(8p— 6,))+ A Y (1= cos(du — ba)),

ﬁN‘)’ orelin

where § ~ v denotes all distinct edges.

3.3.1. The non-linear Gauss-Seidel method. We first propose a nonlinear
Gauss-Seidel method for solving it numerically. It proceeds as follows.
Choose an initial guess 8° (° = ¢, say) and assign a linear ordering for

all nodes:
el a<y <
For convenience, for each node o, define
N7 :={BeNy:8<a}, NI ={8eN,:p5>a}l

Let k denote the global npdating clock and a a certain node. Suppose

that in the beginning of step k|a, we have the following data available
9;_; B <oy Bﬁ_l; 95_1 18>

We try to update #5~1 to 8% by the end of step k|

Set z = #%. According to the restoration equation (17), we demand that

(18) 2 Z sin(ﬁg_l -z)+2 Z sin(ﬂfé — ) + Asin{gy — 851y = 0.

pend PENS
Define
=2 Z cos(ﬂg_l) + 2 Z cos(ﬂg),
ﬁENé' BeENT )
S=2 Z sin({?g_l) + 2 Z sin(é’f}).
peNS PENT
Then
(19) Scosz — Csing = —Asin(d, _02.;1)’
Define

r=+C*+52, w=ZC,8).

Here Z(a,b) is the angle in the direction of (a,b). Then Eq. (19) simplifies

to

sinfw — z) = —% sin(po — 8571),
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which gives (mod 27)
z = w + arcsin [% sin{¢y — 51 )] ,
or
T = w — arcsin [—j-} sin( gy — 851 )] - .

Here we take the principle range of arcsin to be [—7/2, 7/2]. To determine

which one we should choose, consider the updated orientation distribution
¢=05:8<0, z, 67 :8>a).
We require that the total {2 energy

E(0) =2 (1 cos(8; — #,))
By
can be as small as possible. This implies that z should be chosen so that
2 Z (1-— cos(f)g —z))+2 Z (1- cos(f)g_l —z))
BeNy peNy
is the smallest, or equivalently,
2 z cos(f)g —z)+42 Z cos(Bg"l —z)
AeENy peNd

can be the biggest. This amounts to maximizing
Ccosz + Ssinz
under the constraint (19). Hence z is given by
k AL E—1
(20) #, = z = w + arcsin —T—sm(¢a -8,
This completes the kja—step of the nonlinear Gauss-Seidel updating.

Remark 6. Careful readers may have noticed that in the updating equa-
tion (18), we do not replace 851 by z in the fitting term. This is one
important lesson we learned from numerical experiments. If one permits

~ that replacement, then the algorithm tends to giving a constant solution.

Gauss-Seidel is simple, local and reliable, but with a relatively slow con-

vergence compared with the other schemes we propose below.
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3.3.2. Linearized iteration method (LIM). Let sinc(z) denote the function
sina/z. Then Eq. (17) can be written as
(21) D (65 — 0)2 sinc(0s — 0a) + Mba = ba) sinc(ds — ) = 0.
B
The linearized iteration method generates the iteration as follows. Take a
guess @Y (taken to be ¢, say) for the initial step 0. Suppose in the beginning
of step k, 85~ is available. We update 851 to 8* by solving a linear algebraic

system. Define

(22) agy = 2sinc(8571 - 0571), if B~
(23) Co = Asinc{g, — 92_1), forall acQ,.
Based on Eq (21), for each a, we require that
D aap(8 — 02) + calda — 05) = 0.
frac

This leads to an ordinary linear system
Af* = b
with b = (cae : @ € 2,)T and A = (Aag: 0, B € Q)

Aaar =cu+ Z B3y

Breo

— a3, lf € Ncn
Aog = Oem P
0, else,

" Under this linearization, the non-linear updating can be achieved using
any numerical linear algebra solver. LIM converges geometrically, faster

than the nonlinear Gauss-Seidel scheme above,

3.3.3. The time marching method. In this subsection, we approach the steady
distribution by time marching according to the discrete diffusion equation.
Recall that the fitted diffusion model using /2 energy is given by

b, , .
(24) — =2 > sin(fp — 6s) + Asin(¢a — 0a), @€ Q.
Brogy

Take a marching step size h and set
6F = 0,(kh).

Then the system of differential equations (24) can be solved using various

numerical methods.



26 CHAN AND SHEN

Introduce the non-flat Perona Laplacian symbol A’
Aty = Y sin(dp — ta)-
frocr
The simplest singie-step method that ignores the non-linearity of the diffu-

sion equation is the Euler method
O+ = 68 4+ R2A'GE + hAsin(¢y — 65),

for each step k. In practice, this is implemented by choosing two small

positive free parameters a and b:
o5t = % 1 aA'0% 4 bsin(¢, — 65).

Numerically, Euler method suffers from low accuracy and slow conver-
gence. The major advantage is its simplicity and easy implementation, es-
pecially for such a non-linear problem. It can also be easily parallelized.
Moreover, from the practical point of view, the exact steady distribution is
not so unique and critical for human vision. Numerical experiments show
that near-steady distributions are usually already good enough for human vi-
sion and recognition of characteristic patterns residing in a given raw (noisy)
feature distribution. This is the good news Euler method.

From the numerical point of view, one can also try other high order single-
step methods such as Runge-Kutta 2. But both methods require a small
time step to ensure stability. In order to achieve faster marching by allowing

-larger step size h, we discuss the implicit trapezoidal scheme (or second-order
Adams-Moulton method, see Golub and Ortega [5]) combined with the idea
of linearization in the precedihg subsection. The major advantage of such a
scheme is its stability and permission for a large marching step size.

Recall that for a system of equations like

%— = fo(f), a€Q,

the implicit trapezoidal schemes at step k is given by
B = 0+ U7(0) 4 1074
Applying it to our problem, we have
B4 = 65 4 (RAYGE + "X s — 04)] + [RAEEH + 2 sing, - 051,
or |

i — (h B+ "X sin(g - 051)] = 05 + [BABE + 2 sin(g — 68)].
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Next, similar to the previous method, we linearize the left hand side by the

substitution
(25) XF*t gineX® « sin X5

for any expression X**1 jnvolving the current unknown #%+!. Define

agy = h sinc(ﬁg - 9,];), if A~
hA
Co = -5- sinc{, — 9;‘;), a € Qy;
k P k .
bo = 65 + RA'EE + 75111(@, — 85} + coaPay € Qn.
Then the above implicit scheme leads to a linear system of equations A#¥tt =
b with b= (by:a € Q,)T and 4 = (Aup: @, B € Q)

Aga = o + Z Ty
Broa

. Qs if ﬁ €N,
Aug = ’
0, else.
This linear system is bandlimited, symmetric and positive definite for suf-
ficiently small k and can thus be solved easily using the standard numerical

linear algebra solvers.

3.3.4. Algorithms for the TV restoration equations, With the algorithms
ready for the fitted /2 energy, it is easy to modify each one separately for

the fitted TV energy. We summarize them briefly below.

The non-linear Gauss-Seidel method. The modification is done by comput-
‘ ing the local strengths e’s explicitly without involving z. Therefore, Eq. (19)
holds with a new pair.of constants (C, §). The discussion there is also valid.
For the flat case, the idea appeared in Chan and Vese [3].

The linearized iteration method (LIM}. The sin-sinc linearization technique

extends to the TV model by modifying the constant a.g to

1 1
o k—1 k—1
Gop = smc(ﬂﬁ ~0:7) L(gk—l;a) t e(9k‘1;ﬂ)] '

This generalizes the algorithm for the classical flat case

0=-V- (%) Mu —u®),

where Vogel and Oman [20] proposed the linear iteration scheme

Vuk
0=-V. (m) + .)\(’U.k - 'U.O).
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The time marching method. The modification is done by modifying (25} to

k1 sineX k - sin X k+1
e(0%;0) ~ e(fFt1;e)

Remark 7.

1. In practice, the local strength function e is usually modified to
€. = Va? + €2,

for some small parameter a (¢ = 107*, for example). This modification
avoids the zero denominator in all the above TV formulae; On the other
hand, it produces an intermediate effect between the TV energy and the
12 energy. If a is large enough, then this modified TV model gets closer
to the [ energy. This regularization technique is commonly practiced in
the classical literature (see Marquina and Osher [8], for example).

2. For the time marching method, as Marquina and Osher [8] recently pro-
posed for the continuous case, instead of solving the direct infinitesimal

steepest descent equation (16)

86 1 1 1 A
e s — 20, Z 5in(26©) — 24,
ot ﬁ;ﬂ 2 sin(265 ) (ea(ﬂ; @) + eq(0; ,6)) + 2 sin(26, )

one can solve its preconditioned version

W N~ L iiom, - eal0i0)) | A 4. a)sin(20(®
5 = ﬁ;ﬂ 5 sin(28p — 260,,) (1 7_;‘ ea(ﬁ;ﬂ)) + 2ea(l.‘),az) 5111(20&_ 264).

Since the “diagonal” multiplier e,(f; &) is non-zero, the preconditioned
equation still marches to the original steady solution. However, from
the numerical point of view, this modification dramatically improves the

marching speed and numerical stability.

4. RESTORATION OF CHROMATICITY: ALGORITHMS AND DISCUSSIONS

In this section, we discuss the.restoration models for the chromaticity
feature living on the unit sphere S? and the related computational issues. We -
shall discuss the computational issues only for the discrete models developed
in Section 2. For the work on the continuous pure diffusion model (i.e.

without the fitting term), see Tang, Sapiro and Caselles [18, 19].
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4.1. The continuous models. Let §: @ — S* be a given raw noisy chro-
maticity distribution. In Section 2, we have discussed the continuous restora-

tion model corresponding to the L? and TV regularization energies:
e = AF+ [Vl + A - 9), (L%)

= i ) AL (5@ — TV
fo= V- (o ) + IV XL -, (Tv)

Here we have chosen the distance function for the fitting term to be the
restricted Fuclidean distance in R? (not the geodesic distance on S?). The

orthogonal projection is given by
I; : TR® — T;S%,  Iyvi=v —(v-ff.

Since IIf = 0, the two equations simplify to

(26) fe = Af+ || VIPF + MO,
= i ) VI + AL,

One can start the evolutions with the initial condition

f|3=0 = f(o)a

for instance.
There are two practical problems with these continuous models. Take the
TV model for instance. First, if a numerical scheme is sought for Eq. (27),

we must take a special care for the diminishing flow term

Vv Vi
FV = V- () + 19

to make sure that the numerical F TV(§) does lie on the ta.ngent-plane 1352,
If the distribution f is smooth, this tangency condition causes no serious
problem since it is in any case satisfied to the leading order. But our task
is to denoise and restore feature distributions with poor regularities! We
have to permit discontinuities and singularities. In this realistic situation,
typically, the numerical diminishing flow FTV overshoots the tangent plane
73S?. This can of course be fixed by artificially projecting it back onto the
tangent plane. But by doing so, we introduce a new degree of uncertainty
regarding the diminishing effect of the algorithm.

Besides this overshooting problem, another issue is that we lack a rigorous
explanation for why the numerical evolution truly minimizes the continu-

ous energy functional £TV(§; A} on S2, The gap between continuous energy
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functionals and numerical PDE’s cannot be smoothed away easily because
of the discretization error.
These are the intrinsic problems with the contintious model. They disp-

e the latter starts with discrete ener-

=
D
[
‘:!
':"
[5+]
!:L.
in
i
L]
I]
i
3]
=]
I
e
=,
A
52
]
3
=,

gies and results in a.lgebra,ic equa.tions (on S?), which need no numerical

discretization for spatial derivatives.

4.2. The discrete models. Let {9 : Q, — S? be the given raw discrete
chromaticity distribution. By taking d; to be the restricted Euclidean dis-
tance, we have established in Section 2 the discrete restoration equations

corresponding to the I? and TV energies:

dfa
% =23 I+ M0,  ee, ()
, BENa
df ( 1 1 ) o),
— =2 I, + + Al §5 o € . TV
a =2 2 Ui\ ) )
Define the weight
1 1
wap(f) =

_|_
e(fia) * e(f;8)’
for any # ~ a. Then w,p = wg,. Rewrite the above equations using the

linearity of the projection operator

dia

dft =T, | S 2+ MO | = Fulf), @€ Qs
BEN

dfa . ) . TV

==l | D wasfe + MO | = FJV(, o€ O

feNg

The steady restoration equations are thus given by

(28) Faf) =T | D 2fe+ A ) =0,  aey
AENG

(29) FIVH =M | Y wasfs+ MO ) =0,  acq,.
BEN.

Here 0 denotes the zero vector in T3S*. These are “algebraic” equations on
the chromaticity sphere S2.

Now we discuss the numerical implementations of both the marching equa-

tions and the steady algebraic equations.
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4.2.1. Geodesic marching for the discrete evolution equation. Take the TV

model

q
Yo BV, aem,

for example. Set {* = f4(nAt). The classical Euler method is a flat marching

‘fﬂ, = a_l + AtFEV(fnml)'f

o

followed by a projection {see Figure 6)

FicurEg 6. A flat marching followed by a projection, and the

geodesic marching,.

To compress these two steps into a single one, we propose the geodesic

marching:
(30)
_ ~ . _ FTV(fn—l)
fo = cos [ALIFZY(F)I] a7+ sin [MIESY (7] oy

It means that {2~ marches for distance At||F" (f*')|| along the big cir-
cle (i.e. the geodesic) determined by f*~! and the flow vector IV (f*~1).
Therefore, the marching always stays on the sphere. It is easy to see that for
small At, the above two-step classical scheme is equivalent to the geodesic
marching up to the leading order. Precisely, the latter always marches a dis-
tance O{At?) farther than the former (see Figure 6). The geodesic marching
scheme is intrinsic for the geometry of the feature manifold, and thus has

the most general meaning for numerical restorations of non-flat features.
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4.2.2. Fized-point iteration, filtering, and the Convex Cone Theorem. Again
take the system of TV equations

FVH =T | Y wasfa+ Af&“’\ =0, @€,
AEN,

for example. It can be interpreted as: for the optimal restoration f, at each
node ¢,
2 peN, Wag o+ /\fff) is parallel to fa.

This explanation inspires the iteration scheme:

o= > wap (PO + A

B€Na

fa = fa/llfall-

Or, to stabilize the algorithm (and even lead to new insights), define

th.@(ﬂ h — A
e E UL S F Y

We consider h as an adaptive lowpass filter. Then the above algorithm

hap(f) = 5

stabilizes to

(31) fo= > hug'fi 4RGSR
BENG
(32) fo = fa/llfall-

Here hggl = hap(f*1).

This filtering formulation immediately rewards us with one important
property. A region I' on S? is said to be a conver cone if its spanning cone
I'in R®

F=R*xT={rxv:r>0,ver}
is convex.

L‘” ’s belong to

Theorem 1 (Convex Cone Theorem). Suppose the raw data f
a convex cone I'. If we start the above tleralions using f(U) as the initial data,

then for any step n, all §2°s belong to T

The simple proofis left for our readers. Since RGB values are nonnegative,
the chromaticity feature lives on the positive cone (one eighth of the sphere),
which is convex. Therefore, the above fixed point iteration scheme keeps new
feature points from wandering away from the positive cone on the sphere.

This another advantage of the discrete model.




RESTORATION OF NON-FLAT IMAGE FEATURES 33

The above fixed-point iteration is similar to the Gauss-Jacobi method in
numerical linear algebra. In the same fashion, we can construct the spherical

Gauss-Seidel-like iteration. Assign a linear ordering for all the pixel nodes:
el B<agcy <.,

Let n denote the Gauss-Seidel clock and o a pixel under consideration.

Suppose in the beginning of step n|a, we have available the data

(33) (f3:F<es fahs 137 2 B>a)

Within step n|a, we update f2~! to {2 by

fa= Z hesfp + Z hafp + ko fl;
BEN genN

fo = fa/llfall

Here the lowpass filter coefficients (A, ;) are defined similar to the previous
algorithm, but for the distribution given by (33). The Convex Cone Theorem
still holds for this non-linear Gauss-Seidel method.

5. NUMERICAL EXAMPLES AND APPLICATIONS

5.1. Denoising by the /? model: 1-D example (Figure 7). Figure 7
displays the restoration effect of the 2 model for a noisy orientation distribu-
tion. The first subplot shows the angle distributions, and the rest three are
- the corresponding orientation distributions. In the first subplot, the solid
line represents the clean angle distribution. Then uniform random noise is
added to produce the dotted dash line. The restoration with the a priori
Lagrange multiplier A = 0.01 is given by the dash line. Small A leads to
smooth interiors. However, the resulting weak effect of the fitting term may

smear orientation “edges,” as clearly observable from the figure.

5.2. Restoration by the TV model: 1-D example (Figure 8). Similar
to Figure 7, we apply the TV model (14) to restore the noisy orientation
distribution. We have chosen A = 1, and the small parameter a discussed in
Section 3.3.4 to be 0.0001.

Compared to the {* model, the TV model clearly works betier. The
restoration of orientation “edges” is more faithful. This is generally true

when the underlying clean feature distribution undergoes abrupt changes.
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Denoising using the fitted L2 model (3=0.01) : the angte distributions.
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FiGURE 7. Denoising using the {? model Eq. (13). The ori-

entation edges are smoothed out. {See Section 5.1.}

5.3. Restoring wave lines of a fingerprint (Figure 9). For fingerprints,
the alignment pattern of wave lines is the most important feature. Therefore,
instead of Eq. (13), we use Eq. (15), which yields better results.

We first apply the enhancement and diffusion techniques to the original
raw fingerprint image to obtain the alignment distribution. This was done

by computing the gradient flow of the processed image. We then have the
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Denoising and restoring edges by the TV model {(A=1, a=.0001) : the angle distributions.
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Ficure 8. Denoising and restoration of edges through the
TV model Eq. (14). The orientation edges are faithfully re-
stored. (See Section 5.2.)

“heads of the arrows” removed. The alignment pattern has been superim-
posed on the fingerprint image in the top subplot Figure 9. Notice that it
is indeed a noisy distribution regardless our smoothing effort.

In the bottom subplot, we apply the line model Eq. (15) with A = 0.1 to

denoise the above distribution. The result is very successful. The alignment
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patiern coincides very well with the fingerprint except on a couple of local

regions where the original image is not clear or damaged.

Alignment distribution obtained from the denoised image by the gradient mathod .,

Denoised alignment disiribution (3=0.1).

20 40 60 80 100 120 140 160 180 200 220
FiGuRE 9. Restoring the alignment feature of fingerprints
by the [? model Eq. (15). (See Section 5.3.)

5.4. Restoration of optical flows by the /* model (Figure 10). In
Figure 10, we show an application of the {? model for denoising optical

flows.
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Noisy optical flow: a foctball hits & saccer ball

Restoration by the L2 made$ with 4=0.01

20}
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80

100§
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180};

Angle distrbution of the raw optical flow The restored angle distribution

50 100 150 200

FiGURE 10. Restoration of optical flows by the I2 model
Eq. (13). (See Section 5.4.)

The upper left subplot shows the noisy optical flow of an imagined video
recording the spinless rigid motion of a football and a soccer ball. The
background is noisy.

The upper right subplot shows the restored optical fiow obtained by the
model. We have chosen A = 0.01. The length of each arrow is not changed.A
The two subplots at bottom plot the corresponding angle distributions.

Observe that the motion near the boundaries is smeared due to the

smoothing effect of the /2 energy.
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Optical flow: a football hits & soccer bal Restoration by the TV mode) with =1, a=0.0001
O oy e e

20f:
4
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The angia distribution of the raw optica flow The restored angle distribution

FIGURE 11. Restoration.of optical flows by the TV model
Eq. {(14). (See Section 5.5.)

5.5. Restoration of optical flows by the TV model (Figure 11).
Similar to Figure 10, in Figure 11, we have tested the TV model with A = 1
and a = 0.0001. TV model restores the boundaries better than the I model.

5.6. Restoration of chromaticity (Figure 12 and 13). In Figure 12,
we apply the discrete chromaticity restoration model for a clown image with
Gaussian noise (the top image). We first separate the vector RGB image I
into the brightness component B = |iIf|, and the chromaticity component
f(O = ||1||/B. Then we apply the fixed-point TV filtering algorithm (31) to

§(9) and get the optimal restoration f. Finally, we use the original brightness
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The raw Image with Gaussian noise

100

20 40 60 80 100 120 140

The new image with restored chromaticity. A=5.

20 40 80 80 . 100 120 140

Ficure 12. Restoration of chromaticity from Gaussian noige
by the discrete TV model and spherical filtering Eq. (31).
The brightness component remains unchanged. (See Section

5.6. The raw image is from the courtesey of . Sapiro.)

value B to assemble the new image I = f X B, which is shown in the

bottom subplot. {One can also apply the classical flat restoration model to
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the scalar field B along with the chromaticity restoration. See Tang, Sapiro
and Caselles [18].)

Raw R—~channel Restored R-channel

% T

20 20 g5

40 40 §

60 60
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100 . - 100 ;
50 100 150 50 100 150
Raw G-channel Restored G-channel
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aofy 4wl

60 60

80 80

100 50 " jo0 150 190 50 100 150

Raw B-channel Restored B-channel

20 20
40 40
60 80
80 80
160 100 :
50 100 150 50 100 150

Ficure 13. TV Restoration of chromaticity from Gaussian

noise: the effect on each channel. (See Section 5.6.)

In Figure 13, we plot the raw and restored images (from Figure 12) channel

by channel.
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The restoration is quite successful. The visible noisy red and green dots
have been almost completely removed. The eyes and dark lines resume

their original black color. The nose and lips are now smoothly red. The

{or linear) restoration to the brightness component B (see Tang, Sapiro and
Caselles [18]).

5.7. Concluding remarks. We have developed the general mathemati-
cal models for denoising and restoration of non-flat image features. The
restoration models for three types of important non-flat features are studied
in details. They are the orientation feature, the alignment feature, and the
chromaticity feature. Algorithms resolving the nonlinearity of the models
are constructed. Numerical evidences show that generally, the TV type of

models perform better than the L? models.
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