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A STABLE DIVIDE AND CONQUER ALGORITHM FOR THE
UNITARY EIGENPROBLEM

ROBERT GUZZO* AND MING GU!

Abstract. We present a Divide and Conquer algorithm for computing the eigendecomposition
of a unitary upper Hessenberg matrix H. Previous D & C approaches suffer a potential loss of
orthogonality among the computed eigenvectors of H. Using a backward stable method based on
previcus work by Gu and FEisenstat in the rank-one modification of the symmetric eigenprobler,
our algorithm provides a backward stable method for computing the eigenvectors. The method also
compares weil against the efficiency of other available methods.

1. Introduction.

1.1. Problem Defined. In this paper, we describe a stable and efficient method
for determining the spectral resolution of a unitary! upper Hessenberg matrix H of
order n:
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where oy, are real and positive, || + o2 =1for 1 < k <n,v =1 and |y,| =1 [16].
We call the v's the Schur perameters of H, and the oy’s the complementary param-
eters of H.

We seek the spectral resolution of H:

(1.2) H=Waw"

where the columns of the matrix W are the eigenvectors of H; and ) is a diagonal
matrix whose diagonal entries are the eigenvalues corresponding to the eigenvectors
in W. It is easy to show that since H is unitary, W can also be chosen to be unitary
and the eigenvalues of H must have unit modulus {11}.

There are two general methods available for calculating the spectral resolution
of H: QR algorithms and Divide & Conquer algorithms. Various QR algorithms
have been developed which compute solutions to the eigenproblem in a stable fash-
ion. Recent work by Ammar [4], Gragg [9, 12], and Stewart [16] has shown certain
QR algorithms to be quite stable. However, there are certain advantages to Divide &
Conquer strategies proposed by Ammar, Reichel and Sorensen [2], Gragg and Re-
ichel [11]. Namely, such methods can be implemented much more efficiently and are
better-suited to parallel implementation. In fact, such strategies have been used to
solve the symmetric tridiagonal eigenvalue problem with great success (see Cuppen [6],
Dongarra and Sorensen [7], Gu and Eisenstat [13, 14]).

*Department of Mathematics, University of California, Los Angeles. Email address:
rguzzo@math.ucla.edu. This research was supported in part by NSF Career Award CCR-8702866.
YDepartment of Mathematics, University of California, Los Angeles. BEmail address:

mgu@math.ucla.edu, This research was supported in part by NSF Career Award CCR-9702866
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1A unitary matrix H satisfies that H*H = HH* = I, where = denotes complex conjugate
transposition.
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‘the traditional problem with D & C methods is numerical instability, especially
in regards to calenlating the eigenvectors of H (see Ammar, Reichel and Sorensen [2]
and Stewart [16]). On the contrary, the method presented here will be numerically
stable, guaranteeing that the columns of W are numerically orthogonal and that
the eigenvalues of H all lie on the unit circle in the complex plane. Our extensive
numerical experiments indicate that our method compares very well against existing
methods in both efficiency and accuracy (see § 5).

It is helpful to note that the interest surrounding this problem arises out of signal
processing applications [3], more specifically, in frequency estimation, including Pis-
arenko’s method [1]. The applications to signal processing are closely related to the
computation of Gauss-Szegd quadrature rules, which is discussed more fully in [11].

Throughout the paper, we use the usual model of floating point arithmetic:

A(zoy) ={zoy)(1+9),

where 7 and y are floating point numbers, o is one of +, —, X, +, fi(zoy) is the floating
point result of the operation, and |£} < ¢, the achine precision. We also require that

fi(vz) = vz(l +¢)

for any positive floating point number z.

Let # be an approximation to = % 0. For the purpose of this paper, we say that
& is close to z (to high absolute accuracy) if  — & = ({e); and we say that Z is close
to = 7 0 to high relative accuracy if {z — £)/z = O(¢). Finally, we shall let |- | denote
the vector 2-norm. ‘

The rest of the paper is organized as follows. In § 2, we introduce the Unitary
Divide and Conquer (UDC) algorithm presented in [2, 10}, which is referred to as “old
UDC” or “original UDC” in this paper. This algorithm is a FORTRAN implemen-
tation of the method introduced by Gragg and Reichel {10, 11}. In the same section,
we will also introduce our new method, referred to as “new UDC” or “our UDC al-
gorithm.” The new UDC is a modification of the old UDC, extending previous work
by Gu and Fisenstat in [13, 14]. In § 3, we discuss the nature of the rootfinder used
in the new method as well as providing a specific way to handle eigenvalues. In § 4
we prove the numerical stability of our method. Finally, in § 5, we will present some
numerical regults for various types of eigenproblems.

2. Solving the Unitary Eigenproblem Recursively. From the Schur pa-
rameters and complementary parameters of H in (1.1), we can uniquely represent I
in its Schur parametric form [18]:

(21) ’ HIH(’YM’MJ"';’YTL) = G1G2"'Gﬂ—lén,
where each 7, € C**",1 < k < n, is 'a Givens matrix,
T
— - Ok 2 2 ..
G = ~ s wWEC, o €R, 01 20, Il +of =1,
2§ Vi .
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and G,, is the diagonal matrix

én:: [InWI }, T € C,{¥n| = 1.
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Given the matrix K in upper Hessenberg form, it is easy to compute the Schur param-
eters (for details, see [11]). Working with the Schur parameters and complementary
parameters of H, instead of with H itself will greatly reduce the computational com-
plexity of the algorithm. It would appear that we can further reduce the amount
of storage necessary by only storing the -, values, and calculating the o, values as
needed. However, this calculation could lead to numerical instability shonld any of
the || be close to one (see Stewart [16]).

2.1. The Divide Phase. The idea behind Divide and Conquer is to obtain the
spectral resofution of A from the spectral resolution of two subproblems. As described
in [2] {details in [11]), we will make use of the fact that a complex Givens matrix G,
is diagonally unitarily equivalent with a real Givens reflector, which can be written
as & Householder transformation. Define

{ Ys/lvsl, s #0,

Y=, )

Then |v,] = 1 and

o Lo i —l o
— Gs ,YS -]

s s s
Inws Inmsw_ml I 3
n—s—

The right hand side above can be written as a Householder transformation I — 2ww*,
where w € R™ satisfies

W= Ws€y + Wsp1€e31 With wy = ((1 + |'Ys“/2)l/2: Wyl = _0'5/(2(1 + |7S|))1/2g

and e; denotes the 7" axis vector of length n. We can now express (2.1) as two
subproblems “pasted” together by the Householder transformation: :

_| & N
{2.2) H= [ I, ] (I— 2ww™) { i, ] ,
where, using the notation in (2.1},
Hy = H(’Yl) ceoy Va1, ‘“’7;) S Csxa,
H2 = H(’?;78+1}’7;73+2, e ,’7;’7."’) & C('ﬂ—s)x(n-—a}.

For the purposes of Divide and Conquer, we assume that we know the spectral
resolutions of the two submadrices:

Hy, = WA WY, k=12

where the W), are unitary and the A; are diagonal. Now we seek the spectral resolution
of the original matrix, H. Define

= [ Wy Wiesws

iy . | M -
Wa } o A =diag(A, Ag,y. . A) = [ A :l , Z= [ RaWreniwost J

Note that z*z = 1, in exact arithmetic. Substitution of above into (2.2) renders the
following formulation: '

(2.3) H=WA( —2229)W".

W =



Since W is unitary, (2.3) reveals that H and the core matrix
(2.4) A=AMI-22z") with z7z=1

have the same eigenvalues. Let A = UA'U* be the eigendecomposition of 4. Then
the eigendecomposition (1.2} for H is simply

(2.5) Q=A" and W=WU.

Since A'is a rank-one modification on diagonal A, we will determine the spectral
resolution of A by using a similar strategy as in [13). '

To complete the divide phase, we choose, say, s = |n/2]. We then recursively
apply the dividing strategy (2.2) to H; and Hj, respectively, until their dimensions are
sufficientty small (less than 10, for example), resulting in O(log, n) levels of recursion.
We can obtain the spectral resolution of the sufficiently small problems at the bottom
of the recursion tree directly with little effort. To obtain the spectral resolution of the
original matrix H in (1.1), we solve the core problems of the form (2.4) at every level
of the recursion tree in a bottom-up fashion. The eigenvectors of H can be recursively
computed as W U (see (2.5)). The total cost for this algorithm is O(n®) flops®. Note
that the actual cost of this algorithm can sometimes be much lower due to deflation
(see § 2.3). :

Similar to the Divide and Conquer methods for the symmetric tridiagonal eigen-
value problem, the above recursion can also be simplified into a Divide and Conquer
method for computing the eigenvalues of H only, with a total cost of O(n?) flops (see
Ammar, Reichel and Sorensen [2], Cuppen [6], Dongarra and and Sorensen [7], Gragg
and Reichel [11], Gu and Eisenstat {13, 14]).

2.2. Roots of the Spectral Function. To determine the eigenvalues of 4, we
must find the roots of its characteristic polynomial,

x(A) = det(4 — AT) = det(A — AT} (1 + 22" (A~ M) "TAz) = 0.
Thus, the eigenvalues of A include the roéts of the spectral function,
(N =1+22%(A - A)"TAz =0

Since z*z = 1 according to (2.4), we can rewrite the spectral function as

= A+
(26) o) =Y |55 =o0.
i=1 I

Recall that the eigenvalues for a unitary upper Hessenberg matrix all lie on the
unit circle. Hence, the eigenvalues of 4 and A can be written as A = exp(if) and
A; = exp(i8;), respectively, where ¢ = +/—1 and we restrict —7 < 8; < 7. Substitution
into (2.6} renders

) =0.

2A flop is a floating point operation x ¢y, where = and y are floating point numbers and o is one
of +,—, X, and +.

(2.7) ( = —i(A Z 12;]% cot (
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Thus,-""ﬁnding the roots of the spectral function is equivalent to finding the roots of
&(4). Tnspection of this function shows that & has n poles on the interval (—=, 7],
occurring at each of the 8;’s. Also, ® is a monotonically decreasing function on any
interval between two adjacent poles. Following Golub [8], we call equation (2.7) the
secular equation. We will talk about how to find roots of this equation in § 3.2.

2.3. Deflation. The work of Divide and Conquer methods can be reduced (some-
times dramatically) by the deflation procedure described in [2]. If two diagonal entries
of A, A; and A, are identical or have very close arguments, then A; can be regarded
as an eigenvalue of 4. If some component z; of z is zero or has very small magni-
tude, then A; can again be regarded as an eigenvalue of A. In both cases, A can be
reduced to a matrix with similar structure but smaller dimension. This will reduce
the amount of computation involved in finding the eigenvalues, since there are fewer
roots of ®. Used to full advantage, deflation can also reduce the amount of calculation
involved in computing the eigenvectors of A and H. More fundamentally, the sta-
bility of our method relies on the assumption that deflation has been done (see § 4).
Similar deflation procedures have also been used in the numerical solution of the sym-
metric tridiagonal eigenproblem (see Cuppen [6], Dongarra and Sorensen [7], Gu and
Eisenstat [13, 14]). )

From now on, we will assume that the deflation procedure of {2] has been applied
to 4 in {2.4). We assume that n > 1 and that the §’s are ordered in the following
way:

{2.8) T < <Oy << By <

Our implementation of the deflation procedure ensures that

(2.9) 2] =€, Opp1—0r > ¢ and (m+6)+(x—6,) >¢ .
where ¢ and € are some specified deflation iolerances, to be discussed in more detail
in § 4. The last condition in (2.9) ensures that angles between any two eigenvalues,
both in the clockwise direction and counter-clockwise direction around the circle, are
at least as big as ¢ .

The conditions in (2.9) imply that the eigenvalues of H, )\;- for 1 < j§ < n, strictly
interlace on the unit circle with the A; [2). Let A; be the computed eigenvalues of .
Since all eigenvalues of H are on the-unit circle, we can further write

(2.10) /\; = exp (139;) and A; =exp (z'éj) .

2.4. Unstable Eigenvector Formulas. It follows from (2.4) that the normal-
ized eigenvector of A agsociated with /\;- satisfies the following formulas:

o ’
(2.11) vi=r, . w=(—A"2)""z
7 7
The UDC algorithm in [2, 10] computes approximations éj by solving (2.7), and
comptutes the eigenvectors of A and H using equation {2.11), with )\;- replaced by

5\5. However, due to the potential ill-conditioning in the eigenvectors, the vectors
computed this way can often lose mutual orthogonality in finite precision, leading
to inaccurate spectral resolution of A and H (see Ammar, Reichel and Sorensen [2],
Gragg and Reichel {11], and Sun [17]). Similar instability problems also occurred in
the old Divide and Conquer methods for the symmetric tridiagonal eigenproblem (see

Dongarra and and Sorensen [7], Gu and Eisenstat [13, 14]).



a’5 Stable Eigenvector Formulas. To develop a stable method for computing

tha n;rrernreni-nvn weo firat r-n,“rr-itn tha L.th romnanant af 11 ae fallawe:
Ve CIECHRVELLUTLG, WO OIGY IO WIS Wil & LUILPOACHL U L oo DLW,
2 Zh
f e R 1 PR B Uy W
R ik
2

1 — cos(f; — By} — isin(8; — 8x)

Making use of the double-angie formulas, we find that
2

wee= .o f 8;—b . 0" —6; 8 —by

2sin > — Zisin | <5 e
i Bk — 9; y 9;‘ — &
3 exp | ¢ 5 2L in 3

From the above formulation, we observe that the eigenvectors of H can be directly
calculated in terms of the poles and roots of the spectral function and the compo-
nents of z. Furthermore, if 9;. were known exactly and could be exactly represented
as a floating point number, then we would be able to compute v to full accuracy
using (2.12). :

Of course, the angles 633- computed by our rootfinder by solving (2.7) are only
approximations to 9:,-. it 9,— is used in place of 9} in equation (2.12) to compute
uy, the computed wug can incur a very large relative error, which can lead to loss of
orthogonality among computed eigenvectors. In other words, equation (2.12) is still
an unstable way to compute the eigenvectors.

It turns out that a stable method {or computing the eigenvectors can be developed
by constructing a new matrix

(2.13) - A= A(I - 2y85%),

(2.12)

where -« is a complex scalar. It is clear that A has a similar structure as 4. We
choose the scalar v and vector £ so that the exact eigenvalues of A are the eigenvalues
we computed for A. In § 2.6 we will show that this matrix does exist and is in fact
unitary with distinct eigenvalues. Hence the eigenvectors of A are always mutually
orthogonal. R )

Similar to formulas (2.11) and (2.12), the eigenvector of A associated with A; can
be computed as

=

(2.14) B =

ik

where the kiR component of i satisfies

o anie(35) (o /(5%)

Note that v does not appear in (2.14) and (2.15). It also follows from (2.15) that

£s/=(454)

(2.16) lal =

[ R
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1‘ § 2.6, we show that the vector # can be computed to high relative accuracy from
the @g; and in § 3.2, we show that the denomir _a_nrﬂ in formnlas (2.15) and (2.186),
_{8; -8 .
sin ( 5 ), can also be computed to high relative accuracy. Consequently, we

can compute fi to high relative accuracy as well. In addition, it is clear that we

g’l%fm)) in (2.15) to high relative

accuracy. It now follows from (2.14) and (2.15) that we can compute the eigenvector
¥, to high relative accuracy. .

The above analysis implies that we can compute all the the eigenvectors of A
to high relative accuracy regardless of its eigenvalue distribution. Since A is itself
unitary, these compnted eigenvectors will be numerically orthogonal. In our UDC
algorithm, we use these vectors as approximations to the eigenvectors of A. In § 4,
we justify this approach by showing that the matrix A is very close to A in finite
precision, hence the spectral resolution for Aisa good approximation of that of A.
A similar approach has been taken by Gu and Eisenstat in the rank-one modification
of the symmetric eigenproblem [13].

can compute the unit modulus term exp (

2.6. Building A. In the following we construct the matrix A by deriving formu-
las for v and the components of the vector 2. We assume that the deflation procedure
has been performed on A and thus the deflation criteria (2.9) hold.

It has already been stated that the n roots of @ strictly interlace its poles on the
unit circle. Our rootfinder discussed in § 3.2 guarantees that the computed angles s
satisfy

(2.17) < <8 <Oy <by <o <y < Bn <On <O+ 27

Note that the unique 8, that satisfies (2.17) may actually be greater than m. We will
have further discussion on 8, in § 3.2 (see {3.7)).
The characteristic polynotnial for A can be written as follows:

F(A) = det{A — M) = det(A — AT) (1 — 2y3*(A — AI)"EA2)

ZJ |2

= det(A — AI) [ 12y Z

(2.18) =i[ (A —A)—2 Z( E,_l)(\)u ))

On the other hand, the fact that the -)A\j’s are the eigenvalues of A implies that

n

(2.19) 2 =TT - A

Combining (2.18) and (2.19), and setting A = A, for k =1,2,...,n, we obtain

(2.20) [T =2 ==2vxsal [ Qv —2)

i=1 j=1, jk



gglving for 7|2,|%, and using the same calculations as in (2.12), we get

al? = Ma—x) I /-1
T 22z Hj;ék(f\j = Ap) ZHj;ék(/\j/f\k -1)
. o0 = 05\ TG sin((5 — 61)/2)
(2.21) = —iexp (’a; J 5 J) H;k (B, B

In the following, we discuss how to choose v and 2; according to {2.21). To this end,
we rewrite the ratio of products in (2.21) as

IT5- sin((d; —0)/2) _ s _ sin{(8; — 6,)/2)
C2) L pusn@ =072 ~ "~ (}}ksm((ejwek)/z))'

The interlacing property (2.17) implies that -

6:.— 0, - — B
0 <« ZzO Bizh Lo
(2.23) 6 29 ¢ 29
_ i — Uy i — Ok e .
w < 2 3 2 < 07 lf.?<k)
and
(2.24) 0<@r—6)/2<m

It follows from these relations that the first term in (2.22) must be positive; it also
follows that every ratio in the product in (2.22) must be positive. Hence the left hand
side in (2.22) must be positive for every k.

This discussion suggests that the following choice of v and 2, satisfies equa-
tion {2.21):

| Hioisin((6; = 8:)/2) L b — 8
(2.25) |&%|= \J Hj¢k TR AYP) and 7y = —fexp (zg 5 )

Furthermore, since 25, is usually a complex number, we choose the phase angle of 2,
to be that of z;. Hence

(2.26) Be = || 2E, for 1<k<n.
EY

To complete the construction for X, we note that by working the above steps
backwards, it is straightforward to verify that equations (2.13), {2.26) and (2.25)
indeed uniquely define a matrix A that has the ;\j 's ag its eigenvalues,

In the following, we show that A is unitary. According to (2.10),

n

1= 115 |det |_§det (A{T — 2y25™))]
=1

fl

7
|det(A)] - Idet(] — 2y25*)| = |1 — 2v2* 2] .



The Fast equation implies that

Y+7 - 222z = 0.

Consequently,

A* A= (I - 2v23*)*A*A(T — 2v33%)
= (T —2y88*) (I~ 2y88") =T ~ 2 (v + 7 = 211 52) 28" = L.

Finally, we note that the comporenis of the vector z can also be expressed in
terms of A and the eigenvalues of A. Indeed, equation (2.21) now becomes

o ' [17y sin((8; — 6:)/2)
(2.27) |2f? = —iexp ("'; ) [1 ;24 sin{(8; — 61)/2)

Since the )\;- are the eigenvalues of H and-since 2*2 =1,

j=1

exp (z Z 9;) = H A;- = det(H) = det (A(] — 222*})
J=1
= —det(A) = —ﬁ j = —exp ( 29)

j=1
It follows that

LA
(2.28) exp (zz J 5 ’) =i,

i=1

In light of above discussion, we can rewrite (2.27) as

(2.29) | 2] = J [T}, sin{(6; — 6x)/2)

Hj;ék sin((f; — 0x)/2)

3. Some Computational Issues.

3.1. The FORTRAN Sine Function. Formulas (2.15), (2.16) and (2.25) all
involve the sine function. To guarantee numerical stability, we would like to compute
every sine term as accurately as we can. Throughout this paper, we assume that

ASSUMPTION 3.1. The FORTRAN sine function computes sin(y) to high relative
accuracy for W] < w/2.

- It is not realistic to require the FORTRAN sine function to compute sin(v) to
high relative accuracy for any +. In fact, since sin(Zw) = 0, large relative errors are
hard to avoid for any FORTRAN sine function if ¢ is very close to &m.

In the following, we show that for |¥} < 7/2, a small relative change in 1 can
only imply a small relative change in sin(¢). In fact, for any |¢| € 1,

sin{9(1 + €)) — sin = sin - {cos(vpe) — 1) + sin{ee) - cos
= —2sin 4 - sin? (ve/2) + sin{ye) - cos .
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’I‘aknié absolute value,

Jsin((1 + £)) — sin-zp| < 2|sin® - sin® (e /2)} + |sin(te) - cos |
< 2|sin (ve/2)| + |sin(ve)| < 2 - |e/2| + [ye]
= 2[e] < mlesingl,

where we have used the fact that

(3.1) <Y o1 for g < w2

ERES]

It now Iollows that

|sin{®H (1 +€)) —sin 1/)|
|sin 2] < miel.

Assumption 3.1 and relation (3.2) imply that the sine terms in formulas (2.15), (2.16)
and (2.25) can be computed to high relative accuracy if their arguments are between
—n/2 and 7/2 and are computed to high relative accuracy. In § 3.2, we will fur-
ther discuss how to compute the sine terms in these formulas accura,tely when the
arguments are not between —m/2 and #/2.

(3.2)

3.2. The Rootfinder and Computing Angles., Our rootfinder for finding
the roots of equation (2.7) is basically the cubically convergent rootfinder developed
in [2, 11], with a number of modifications aimed at improving numerical accuracy. We
assume that the deflation procedure has been performed on A and thus relations (2.9)
and (2.8) hold. The n roots 9;- of & satisfy strict interlacing properties similar to (2.17).

In each interval, (6;,8;41) for j < n, denote

(3.3) ;=658 and B =01 — 0

If 9; is closer to #;, the rootfinder computes an approximation &; to «j;. It then
compuies Bj, the approximation to §;, according to the following:

(3.4) B = (841 — 6;) — éy.

Ii 9;- is closer to 0151, then the rootfinder computes an approximation ﬁ,- to f;; it
then computes the approximation &; from (3.4).. We will postpone discussion on the

computation of 9 to the end of § 3.2.

By computing the smaller of the two angles between the root GJ and its two
nearest poles, we prevent any catastrophic cancellation when the 00t is extremely
close to one of the poles. With &; and ,63, the difference between 9 and any pole &
can be approximated as

6: — 6 —{ & +(6; —6g), Torbr <6;
* (Oj41 — Ok) ~ By, Tfor 8y > 8;

This way, we can compute 9j — @, to high relative accuracy, given &; and ﬁj. In
particular, we avold any catastrophic cancellation in the event that 6;- is very close
to one of the poles. According to (3.1), we can also compute sin((f; — 8;)/2) to high
relative accuracy if |§; — 6;]/2 < 7/2. A similar result kolds for sin((8; — 6x)/2).
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10 accurately compute the sine terms in (2.15), (2.16) and (2.25) when the ar-
guments are not between —x /2 and 7 /2, we recall that the eigenvalues all lie on the
unit circle. Therefore, calculating angles between eigenvalues can be done in either
the clockwise or counter-clockwise direction around the circle. If the angle between
two points on the unit circle is calculated in the counter-clockwise direction to be
close to 2m, then in the clockwise direction, the angle is close to zero. We achieve this
effect when we make the following alternate formulation:

(Vl + (8, —61) + (6, — 6) -i—vn)

- ~sin s if (85 — 8)/2 < —7/2,
sin(~L——2) =
B, —8; g, — 8
sin(”"+( J);'(’“ 1”“) if (605 ~ 84)/2 > 7/2,
(3.5)

where »1 = 7 + 6y and v, = 7 — 6,. Given v; and v,, the arguments on the right
hand side of (3.5) can be computed to high relative accuracy, so can the sine function.

We also make a similar reformulation to sin((§; — 6,)/2). However, since 7 is not a
floating point number, it sometimes may not be possible to compute v, and v, to
high relative accuracy. See § 4 for further discussion on their computation.

Now, we address the issue of computing 6,,. In the spirit of the above discussion,
let &, and 53, be the smaller angles on the circle between Gln and its nearest poles,
#n and 6 + 2x. I an, < Bp, then our rootfinder computes an approximation &, by
solving (2.7} and computes Gy from G, using the following formula:

(3.6) Br= (81 + 27 — 0,) — by = (11 + ) — G

Otherwise, it computes 3, by solving (2.7) and computes &y, from B,. After 7 and
the eigenvectors for A are computed from @&’s, 8’s, and #'s, we compute

s ] O +é, if 0, + & <y
(37) 9“‘{9”&,,—% if 6, + Gy, > 7

This formula ensures that §, will satisfly —m < 6, < « after the eigendecomposition
of A is computed.

3.3. The-Stopping Criterion. In practice a rootfinder can not be expected
to make progress at a point A where it is impossible to determine the sign of &{#).
Motivated by [13], we use the following stopping criterion in the rootfinder: -

é,-—()k d !Zk|2
ﬂ(m( 2 ))‘Sng & (sin(®; - 0:3/2)) |

where 7 is some appropriately chosen multiple of machine precision; and

fi (cot (@D and Al (sin((d; - 9k)/2))

are the floating point results of computing the cot and sin functions by computing
the arguments with the procedure described in § 3.2. Similar to [13], the right hand
side in (3.8) is an upper bound on the round-off error in evaluating ®(8;). Using

F

(38 D lul

k=1
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Hp . . . .
arguinents similar to those in [13], it can be shown that the set of approximate solu-
tiong satisfying (3. R\ is non-empty in finite precision for any 7. We would -expect a

good rootfinder to be able to compute such approximate solutions. In our FORTRAN
implementation, we used a modified version of the rootfinder in (2, 11].

4. Numerical Stability of the Method. In this section we show that Ais
close to A. Consider the following:

—~

A—-4 AT ~ 222*) — A(I -~ 2/7“*) = 2A (y£2* — 222%)

2A((y ~ D22+ (2 — 2)5* —z(2 — 2)*).

So, to show that A is close to A, we only need to show that «v and 2 are close to 1
and z, respectively.

Before our formal analysis, we note that the secular equation (2.7) is derived
under the condition that |z] be exactly 1 {c.f. (2.4)), which rarely holds in practice.
In addition, our analysis below will require that 1 and v, be computed to high relative
accuracy, which may not be possible if v; s close to —7 or v, close to . To simplify
the analysis, we assume for the moment that vector z in (2.4) satisfies |z| = 1 exactly
and that scalars vy and v, in (3.5) are known to high relative accuracy. We will come
back to these assumptions at the end of § 4.

Under our assumption on the high relative accuracy in »; and vy, the formula,s
established in § 3.2 for computing the sine function guarantee that we can compute
sin((8; — 8r)/2) and sin((f; — 8)/2) to high relative accuracy for any j and k. Let
us denote

djk = (Qj - 3;,,)/2, d_;:‘k = (9; - 9,1,,)/2 and d\jk = (é] - 3;;)/2.
Since @(9;) =0, and
sin ((éj - 8;-)/2) = sin(tfjk} cos(d;k) - sin(d;k) cos{cfjk),

we have

ke

S\ wtd a1 g o2
—®(0;) = ®(0;) — ®(0;) =sin | (8; — 6,)/2 e
(0 = 2(0;) = 800 =sin (65 - )/2) Y- e s
The rootfinder guarantees that 4; and 9; are in the same interval (8;,8;.1) for j <mn,
and that 4, and 9' are in the same interval {#,,61 + 2m), which ensures that the

product sin(d;) sin(d, ) is always positive.
Combmmg the above equation with stopping criterion (3.8), we have

in (6 02) 3. i - >

sin ((éj - 9;}/2)‘

| sin{d i sin(d;, ) sin(dje)
| I»l . 12 |”
(4.1) =180 <
Z ﬂ»)l LZ | sin( JL)Sm(dJLN

This yields the following result:

(4.2) ’sin ((éj - 9;)/2)’ <
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{4.3) ’A; - 5\3’ = ]exp(ﬂ;) - exp(éj)i =2 |sin ((fjJ - 9;)/2)| < 27,
which is to say that the eigenvalues are computed to full accuracy.

Note that the third condition in (2.9) guarantees that éj - 9; can not be too close
to +2x for j < n:

!(E}J —9;-) /2! <m—¢ /2.

We choose sin(e“/2) > 7. These two conditions guarantee that éj and 9} in (4.2)
must satisfy

(4.4) |éj - 9;.’ < 2sin~7.

Now we use the above inequality to show that -+ is close to 1. Tt follows from (2.25)

b9,
and (2.28) that y =exp [ i) 3) . Combining this with (4.4),
=1
- . éj "6; e . éj - 9;-
|’Y“1|=H9XP(1( 2 ))—1 SH(I—{-exp(g( 5 —1l71 =1
J=1 j=1
. n . é‘j_g; n é’j_g;_ .
ijl(l-}—Qsm( 1 —15£ 1+ 5 -1

(4.5) < {l4sin™im)" —1<e™™™ " 1< (e~ 1nsin "y,

where we have used the fact that (¢ — 1)/z <e-~1for0<z <1
To show that £ is close to z, we need the following lemma.
LEMMA 4.3, Letsiny # 0. Then

sinz
siny
Proof:. To prove the first inequality in (4.6), we first consider the case 0 < z < n/2

and 0 < y < w/2. Since it holds trivially if z > y, we further assume that = < y.
Using (3.1), we get that

sin x smmﬂ:y s%nz_i_sin(:y—z)zww(\/?_i_y—-x)
\/ siny siny v siny siny y Y
T HA
=27r(1+\/:(1w W))ZQ?T.
/ ” ” /

Hence the first relation in (4.6) holds when both 0 < 2 < /2 and 0 < ¥ < w/2.
Replacing = by 7« — x in the inequality, the resulting inequality is exactly the same,
hence it holds when 7/2 < z < 7. Similarly, the inequality still holds when #/2 <
y < m. Thus, It holds for any value of z and any siny # ( due to periodicity.

+ 2 .
sm(a: y 2; and +/|sinz siny| < [sinz| + [sin(z £ y)|.

siny
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A prove the second inequality in (4.6), we also restrict our attention to the special
case 0 <z <y <w/2 Let ¢ =y —x. Then

|sinz| + |sin(z £ y)| = sinz +sina > Vsinz + sinzsina

> V/sin? zcosa -+ sinzsin acosz = +/sinwsin{a + ¢} = \/sin Tsin g.

Hence the second inequality in (4.6) holds when 0 < z < y < w/2. With arguments
used earlier in the proof, it is straightforward to further conclude that this inequality
holds for any = and y.

Let z = djj, and y = d, 1 10 (4.6), and we have

L /2 7/2 | sin(dss — dj)|
[sin(diu)l ™\ /jsin(dy) sin(d, ) |sin(dge) sin(dy )]

Note that d;; — d;-k =(6; - B;) /2. Plugging the above into the first inequality in (4.1)
and simplifying, we have

n

|2 /2
sin 6’ 2
' ) )IZ iSln(dJL)Sln(dJL)l S 1-7q/2 2 \/I Sln(d_?k)mn(dgk)f

lzlmn/2 | |28
= 1—xn/2 \JZ in(d’ -

izt |sin(d;y) sin(cfjk}| ’

Zklz

where we have used the Cauchy-Schwartz inequality. Further simplifying,

s w2 [ 5~ Jal
’sm ((93 93')/2)| < 1—77/2 /J ; ]sin(d;k)Sin(ij)l

1z mn/2
(4.7) < W\/I sin(d;y ) sin( die)l-

Set z =d;, and y = d, ;1. in the secoid inequality in (4.6), we have

VIsin(d)) sin(di)] < |sin(djy)| + | sin(dsx — d)]
= | sin(d;, )| + ] sin((8; — 6;)/2)].

Plugging this into (4.7) and simplifying,

|2l 7 n/2

(4.8) ’sm ((9 -8, )/2)’ S Ao -7 Eﬂ'n/2|8in(d}k)|'
Similar to (4.4}, and in light of (3.1), we get from (4.8) that
5 g -1 izl mn/2 2
oy ai] < 25 (el i)
l21771/2 g 20y

(4.9)

< @ ro/lal - R S =
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In (279), we choose the deflation tolerance
€ > w’nn/d > /(1 — =n).
This implies that

_ Jzlx* /4
A =wn/2) - [l m/ @)

We are now in a position to show that 2 is close to z. Using {2.25), (2.26) and (2.29),

5k S’JTZ/Q.

5 s | %k Zk ~
2 — 2| = 18] — — lzi| —| = |1z0] — |2
| k f»l l kl |zk1 ! f-l §2k§ ” Li l F-.”
- 1/2 . ;o (1/2
H?:l sin(d;y) _ H?=1 Sln(djk)
Hj#k sin(djk) Hj;&k Si}’l(djk)
LY
‘ e sin(de)
(4.10) = |z - 1.
;.'I=]; sm(djk)

We seek bounds on each factor of the product. Using (3.1) and the identity,
sin(z +y) — sin(z — y) = 2sin(y) cos(x),
we get:

“ r ~

-0, 0;+6, 8 b; -8,
‘ 2sin(-F——2) cos(———2 o Z

sin{djr)
sin(d}k}

i VIR Y e
sin(dy;) ~ |sin(dj;)

With {4.9) and the upper bound on &, we have

2
1| B o mn
2] = 2l

sin(dji).

(411) sin(d,,)

Plugging this into (4.10),

7r2'q n2 2
5, — 21| < |z —1) < |zl {em naidlzad) 1Y .
|2k — ze] < |l ((1 + 212k|) 1) <zl (6 1)

Using the fact that 72nn/(4|z]) <1 and that (e® —1)/z<e—-1for0<z <1,

(4.12) 12, — zi| < |2z|(e — D)@Pnn/(4]z:]) < wPnp/2.

This last relation implies that 2 is indeed close to z. And hence we conclude that A
is indeed close to A.
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Finally, we address the issues regarding |z} and the computed accuracy in 14 and
v,. We note that since |z| is close to 1, the matrix

AYAT-257), 2=2z/]2),

is close to A with ||| = 1. The stopping criteria (3.8) for A and A differ by a common
factor 1/]z} on both sides of the inequality and hence are equivalent. Repeating the
above analysis leading to (4.12), we conclude that A is close to 4, and thus to 4. We
point out that A is constructed for the above analysis only, not actual computation.

We have also developed a somewhat more detailed analysis paralleling the one in
this section to show that A is still close to 4 even if 1y and v, are computed only to
high absolute accuracy. We omit it in our paper for the following reasons: first, this
analysis is quite technical and does not provide additional insight; and second, #; and
v, can easily be computed to high relative accuracy with emulated extra precision
techniques (see Priest [15]).

5. Numerical Experiments. We now present some experimental results to
compare the performance of onr method against the “old UDC” described in [2] and
the HQR methods in [5]. To make easy comparison with the FORTRAN subroutines
UDRC and CHSEQR, we have implemented our algorithm in FORTRAN as well. Below
are four graphs representing the performance of the three algorithms. All three were
run on a Sparc-20 workstation in single precision arithmetic, roughly corresponding
to seven significant digits. Deflation tolerance was set to 1075,

Fic. 5.1, Efficiency of Method
Times/Type—1 Times/Type—H

Times/Type--1i

o 500 1000
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F1¢. 5.2. Fitting Efficiency with Quadrotic Least Squares
Quadratic Fit'Type-|

Quadratic Fit/Type-i}

- New udc — New udc
. - - Quadratic Fit \ - - Quiadratic Fit
10 . L 10° - L
4 200 400 €00 800 3000 0 200 400 600 BOO 1000

Fi¢. 5.3. |HW — WQee/vn

Residual/Type—I . Residual/Type-—Il _. Residual/Type—Ilil
1077 10 7
- QR E - QR 3 - QR
— Qid udc F — Old udc i - Old udc
— New udc [ — MNew udc l — New udc
1077 * .
4 E 3
P
£
- !i‘ ?\ w
] 107k o & 4
#¥ 1 PRI E
Fotoe Wr v
*#ﬁ#\'g ” ’; \‘ rx}?‘x‘: ; : : 1{*"_
% L 7 . ]
: 5 ! 107°F =
* : : S

L 107 £ 10
500 1000 =] 500 1000 [} 500 1000

We considered twenty matrices ranging from size 50 to size 1000, measuring the
speed of the algorithms, the accuracy of the spectral resolution compared to the orig-
inal matrix, and the orthogonality of the eigenvectors. For Figure 5.1, we measured
the speed of the algorithms in seconds. To calculate how close the computed spectral
resolution came to the approximating H, we took the infinity norm of H W —W Q. If
all arithmetic was done in exact precision, this residual should equal zero. Figure 5.3
illustrates the numerical value of the residnal. Similarly, to calculate how close the
eigenvectors come to being orthogonal, we took the infinity norm of W*W — I. Fig-
ure 5.4 illnstrates this numerical value.
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F1G. 5.4, [W*W — Ijoo/ V7

_Orthogonality/Type—I 1C)rtht:u‘:;om—zllity/‘l'ypt::-—II D()r’thc:gonality/Typ@aw»III
o 1077 10°% o
- QR 3 - QR 3 o QR
— Old udc : — Oid udc b - Old udc
— New udc - — New udc P ~— New udc
1072 E 3
¥ -2
- A )ic 10 - % ; > E
P i -~ 3 i E i e 3
® al }ﬁ_ 1 1% & E * S & 1 ;"iﬂ" i #* VallaVa
it it ] A y L ]
(xR . I z!”ET LA 107k 7 *
o< R *AM,' — PE G o L,
Seah 1 T 2
W*k* ] Eo= ; ¥ s e
i B R S
| ! v
10Tk T 3 .
E s 3 1085 L
* Mmr W
109 E'**** i o
E 3 10
| :M, Wﬁ?ﬁ tfRe I‘\E‘ ¥
L 1077 L 1077 L
500 1000 o 500 1000 o 500

‘We experimented on three kinds of matrices. In Figures 5.1, 5.3 and 5.4, the
dotted line marked off with asterisks represents the performance of the HQR from
LAPACK; the dashed line marked off with x’es represents the performance of the
“old UDC” code; and the solid line marked off with o’s represents the performance of
our method, the “new UDC” code.

e In our first experiment, we simply considered randomly generated unitary

upper Hessenberg matrices. Such an H is constructed by inputting the Schar
parameters, v; = pjexp{ic;),1 £ j < n, where the a; are uniformly dis-
tributed random variables on [0, 27} and the p; are uniformly distributed on
[0,1] and p,, == 1. This Schur decomposition ensures that H is unitary.
The results of this experiment showed that our method improved upon the
original UDC method by roughly a factor of 10 or more with regard to both
the residnal and orthogonality of the eigenvectors. It is also much faster and
significantly more accurate than the HQR code. The original UDC performs
only slightly faster then oar method. Additionally, the speed of our method
seemed to be on the order of the square of the size of the matrix, since the
data seems to fit a quadratic polynomial of n guite well {See Figure 5.2).

e In our next experiment, we considered matrices which have one or more eigen-
values whose arguments are near . This is constructed by creating a real-
valued matrix H with odd size. Then, one of the eigenvalues cannot have a
distinct complex conjugate, thereby forcing that eigenvalue to equal 1 or —1.
By setting v, = —1, we force the real eigenvalue to have an argnment at 7.
The results of this experiment showed remarkable improvement on the original
UDC algorithm. For sizable matrices, the original method becomes highly
unstable, prodncing inaccurate results. An examination of the results for a
matrix of size 651 reveals the residual and orthogonality results on the “old
UDC?” to be somewhere in the neighborhood of 1072, whereas the results for
our method stayed stable around 10~%, the deflation tolerance. Again, our
method compares very favorably with the HQR code. Similar to the previous
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¥ experiment, the efficiency of the new method is only slightly worse than the
original method, and Figure 5.2 still suggests that the speed of our UDC is
guadratic with respect to the size of the problem.

o In the third experiment, we designed H to have nearly multiple eigenvalues.
We do this by making H nearly block diagonal with identical blocks. As
deseribed in {2], we let n = pk. Generate the first p — 1 Schur parameters
as in the first experiment. Then set o, equal to some small constant. The
remaining parameters are given by Yip+; = 5,04 = 05,1 < j < p,1 <
I < k. Then set v, = 1. If o, = 0, then the eigenvalues of H occur with
multiplicity k. Otherwise for small op, we get nearly multiple eigenvalues.
Experimental results on the third experiment once again show a vast improve-
ment over the original UDC method and HQR, with regards to stability of the
eigenvector calculations. Figure 5.1 indicates that the efficiency effect of de-
flation on Type-IIT matrices is both dramatic and erratic, making predicting
the speed of our UDC for Type-1Il matrices difficult.

6. Conclusion. This paper has outlined a stable algorithm for computing the
spectral resolution of a unitary upper Hessenberg matrix. We showed that our al-
gorithm is stable regardless of eigenvalue distribution of the given problem. The
computed eigenvalues are all unit modulus, and the computed eigenvectors are ail
numerically orthogonal.

This method relied on several delicate techniques. First, as in all Divide and
Conquer methods, we required a deflation procedure to ensure that we could find the
roots of the spectral function. Additionally, in the calculation of the eigenvectors of
I, special attention is given to the way that angles are handled. Finally, we used a
matrix reconstruction idea from [13, 14] to guarantee that the computed eigenvectors
are automatically orthogonal.

Future work includes parallelization of the new UDC algorithm and developmg a
simplified version for the special case where the input data is all real.
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