UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

A Boundary Condition Capturing Method for
Multiphase Incompressible Flow

Myungjoo Kang
Ronald P. Fedkiw
Xu-Dong Liu

August 1999
CAM Report 99-27

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 98095-1555

http://www.math.ucla.edu/applied/cam/index.html

A Boundary Condition Capturing Method for
Multiphase Incompressible Flow *

Myungjoo Kang 1
Ronald P. Fedkiw
Xu-Dong Liu *

March 15, 2000

Abstract

In [6], the Ghost Fluid Method (GFM) was developed to capture the
boundary conditions at a contact discontinuity in the inviscid com-
pressible Euler equations. In {11], related techniques were used to
develop a boundary condition capturing approach for the variable co-
efficient Poisson eguation on domains with an embedded interface. In
this paper, these new numerical techniques are extended to treat mul-
tiphase incompressible flow including the effects of viscosity, surface
tension and gravity. While the most notable finite difference tech-
niques for multiphase incompressible flow involve numerical smearing
of the equations near the interface, see e.g. [19, 17, 1], this new ap-
proach treats the interface in a sharp fashion.

*We would like to thank Dr. David Wasson and CEO Stanton Rutledge of Arete
Entertainment (www.areteis.com) for developing the fast level set rendering software that
was used in the visualization of the three dimensional calculations.

tResearch supported in part by NSF and DARPA grant NSF-DMS961854, for Virtual
Integrated Prototyping (VIP)

tResearch supported in part by ONR N00014-87-1-0027

YResearch supported in part by NSF DMS-0805546

i Introduction

The “immersed boundary” method [14] uses a é-function formulation to
compute solutions to the incompressible Navier-Stokes equations in the pres-
ence of a submersed elastic interface. This method allows one to incorporate
the effects of the interface on a standard Cartesian mesh. For more details,
see [15]. In [19], this approach was extended fo treat multiphase incompress-
ible flows in three spatial dimensions including complex topological changes.
In [17] and [2], the authors replaced the front tracking formulations of [19]
with level set formulations [12] that are generally easier to implement espe-
cially in the presence of three dimensional topological changes.

While the “immersed boundary” type methods of {14, 15, 19, 17, 2] are
fairly attractive using finite differences on a Cartesian mesh, the inherent
numerical smearing is known to have an adverse effect on the solution forcing
continuity at the interface regardless of the appropriate interface boundary
conditions. That is, the numerical solution is continuous at the interface
even if the actual boundary conditions imply that the solution should be
discontinuous. For example, surface tension forces induce a discontinuous
pressure across a multiphase interface [10], while these methods smear the
pressure profile into a numerically continuous function. While it is possible
to formulate surface tension models based on continuous pressure profiles,
see e.g. [1], one would hope that better results can be obtained if the
jump conditions remain intact. However, this increases the possibility of
introducing disturbances on the length scale of the mesh as discussed in
[19], especially for calculations that are not well resolved.

In [6], the Ghost Fluid Method (GFM) was developed to capture the
boundary conditions at a contact discontinuity in the inviscid Euler equa-
tions. In this paper, we extend those ideas to treat three dimensional mul-
tiphase incompressible flow including the effects of viscosity, surface tension
and gravity eliminating the numerical smearing prevalent in the é-function
formulation of the “immersed boundary” method. Since a projection method
[5] is used to solve for the pressure, a Poisson equation with both variable
coefficients and a discontinuous solution needs to be solved at each time
step. This is accomplished with the GFM related technique developed in
[11} which yields a symmetric coefficient matrix for the associated linear sys-
tem allowing for straightforward application of many “black box” solvers.

2 Equations
2.1 Navier-Stokes Equations

The basic equations for viscous incompressible flow are,

pe+V -Vp=0 (1)

(2ﬂ'u:c)g; + (P"('”‘y + Um))y + (pluz + 'wx))z
p

ut+I7-Vu+E§—w

(w(uy +v5))y, + 2poy), + (p(vg -+ wy)), ‘g

Ut+17'v11+2£ﬁ
p p

w + V- Vo + % _ (p{us + ws)), + (u(?: +wy)), + (2uw;), W

where ¢ is the time, (z,vy,z) are the spatial coordinates, p is the density,
V =< u, v, w > is the velocity field, p is the pressure, p is the viscosity, g is
gravity, and ¥V = <3%, %, 6%). These equations are trivially derived from the
Lagrangian form of the viscous compressible Navier-Stokes equations using
the divergence free condition, V - V = 0. The equations for the velocities
can be written in condensed notation as a row vector
T
17+(T?-V)I7'+@=M+g’ (5)
P P

where “I"™ represents the transpose operator, § =< 0,4,0 >, and 7 is the
viscous stress tensor for incompressible flow,

T
T Uy +Vp Uy T Wy Vu Vu
T=p] Uyt 20, wvytwy |=p| Vv | +pf Vv (6)
Uy + Wy Up +wy 2w, Vw Vuw
2.2 Jump Conditions
Defining the unit normal vector
N =< N1, N2, N3 > (7)

and applying conservation allows one to write the jump conditions for an
interface moving with the local fluid velocity in the normal direction as

ey

N oK
7 | @I-nNT] =] 0 (8)
T 0

where Cﬁ and T:q are orthogonal unit tangent vectors, I is the identity matrix,
o is the coefficient of surface tension (a constant}, x is the local curvature
of the interface and

[A] = Apight — Atefe (9)

defines “[-]* as the jump across the interface. Equation 8 states that the
net stress on the interface must be zero (since it has no mass). For more
details, see [10, 7.

Using the definition of 7 in equation 8 leads to

P N Vu-N
0 |-p| & Vo - N
0 T;; Vuw-N
Vu-N Vu-N Vw-N oK
—u| Vu-T, Vo-T, Vu-T, | Nl =] 0 |0
Vu-Ty, Vo-Ty Vw- T 0

which can be written as three separate jump conditions

[p-Z#(VU‘ﬁ,VU'ﬁ,VW'N)'ﬁ]=0'f'5 (11)

1 (Vu N, Vv N,V N)-Ti+
#(Vu-ﬁ,Vv-ﬁ,Vw-ﬁ)lﬁ} =0 (12)

[,u (Vu-N,Vv-ﬁ,Vw-ﬁ) o+
p(Vu-Té,VU-ﬁ,Vm-ﬁ)-N]=O (13)
Since the flow is viscous, the velocities are continuous

[u] = [v] = [w] =0 (14)

4

as well as their tangential derivatives

Ve Ty = [Vo-T1] = [Vw - T} =0 (15)

[V To] = [Vo - Ty] = [Vw - Ty] = 0 (16)
so that the identity
(Vu-N, Vv -N,Vw-N) N+ (Vu- T, Vo - T, Vo -) - T+
(w-ﬂ,w-ﬂ,vm-ﬂ) T =V-V =0 (17)
can be used to obtain
[(Vu-N,Vo-N,vu.N)-N| =0 (18)

emphasizing that the normal derivative of the normal component of the ve-
locity is continuous across the interface allowing equation 11 to be rewritten
as :

{p]m2[y](Vu-ﬁ,Vﬂ-ﬁ,Vw-ﬁ)-ﬁ=o*r-c (19)
Next, the family of identities of the form

[AB] = B[A] + A[B] (20)

A ~

A=aArght +bAess, B =bBrignt +aBiept, a-+b=1 (21)

is used along with equations 15 and 16 to rewrite equations 12 and 13 as

[(vu-ﬁ,w-ﬁ,vm-ﬁ) i) =Z£-f‘-ld (22)
and

(Ve N, Vv-N,Vo- N} B] = :f;f*lé (23)
where

o= (Vu-ﬁ,w-ﬁ,vw-ﬁ) T+ (Vu - T3, Vo - R, V- B) - N (24)

and
B = (Vu-ﬁ,Vv-ﬁ,Vw-]\‘f) -ﬂ—l—(Vu‘ﬁ,Vv-f"z,Vw-’fQ) N (25)

with the “hat” superscript defined as outlined above.
Finally, equations 15, 16, 18, 22, and 23 can be compiled to obtain

T

N [Vl N w000
T [Vl f| =—F|laoo (26)
7)\ [Vl] \ & P \Boo
or more simply
— T p
[ug] [uy] [u] —{u]]_\‘r ¢ 00 IY
val] [o] [v] | = 2 | b a 00 T (27)
[wa] [wy] [w:] I g 00 Tz
Alternatively, equations 15, 16, and 18, can be compiled to obtain
N [BVu] A N Vu g\
IR IR
2 V] 5 Ty Vau Ty
N Vu A 0 (V] A
]| © Vu 0 +| T (V] 0 (28)
G/ \ Vw § 5)\ V)]
or
N [V A N Vu §\"
AWl || 5] =Wl % | W || T
2 (V] 1z Ty Vuw I
N Vu N T 0 vu \" [N T
| @ Vv 0 —[u]| T Vu 0 (29)
0 Vw i T Vw 0
using equations 12 and 13 as well. This can be rewritten as
ST ; =
[pua] oy} (o] Vu 9 9
[oe] [pvy] [wo] | =[p]] Vv 7 T+
[pws] [pwy] [pw:] Vuw Ty T

T

Vu 0 0 Vu
WININ| Vo | N'N-[u| T T vo | NTN (30
Vuw T, T Vaw
noting that the right hand side of this equation only involves derivatives
that are continuous across the interface as opposed to equation 27.

In viscous flows, the velocity is continuous across the interface implying
that the material derivative or Lagrangian acceleration is continuous as well.

That is,
ERERER

are valid jump conditions allowing one to write

o] [(mm)m o+ (uloy +05)),, + (s + wm))z}
p p

(32)

[&] _ [(u(uy +va)), + (2pvy), + (v + 'wy))z] (33)
p p
Pz {p(u, + 'wm))g; + (M('Uz “+ 'wy))y + (zﬂ*wz)z
== (34)
P P
based on equations 2, 3, and 4.
2.3 Level Set Equation
The level set equation
¢ +V V=0 (35)

is used to keep track of the interface location as the set of points where
¢ = 0. To keep the values of ¢ close to those of a signed distance function,
i.e. |V¢| = 1, the reinitialization equation

¢t + S(do) (V9| —1) =0 (36)
is iterated for a few steps in ficticious time. The level set function is used
to compute the normal

. V¢

iz 0

7

and the curvature
k=-V-N (38)

in a standard fashion. For more details on the level set function see {6, 12,
17).

3 Numerical Method

A standard MAC grid is used for discretization where p; j x, 0i ks ik, a0d
i ;. exist at the cell centers (grid points) and u, Lk Vil b and w; ; 4.1
exist at the appropriate cell walls. See [9] and {13] for more details.

3.1 Level Set Equation

The level set function is evolved in time from ¢* to ¢"*! using nodal ve-
. %, 1 .k—}-u. 1,',k ‘U.,.Ai,k-k‘u. . 1,k
locities defined by wu; ;5 = 15—12_‘.?23_ JLAmgk SRR and
1w

1
v Vigk = 2
Wik Tk d

Wik = 5 . Detailed discretizations for equations 35 and 36
are given in [6]. Note that the 5th order WENO discretization from [6] is
used to discretize the spatial terms in equations 35 and 36 for the numerical
examples in this paper,

The normal vector can be computed as

- V¢
] 9
using standard central differencing everywhere the denominator is non-zero.
In the rare case that the denominator is identically zero, one sided differences
are used to calculate ¢, ¢,, and ¢, instead of central differencing allowing
at least one nonzero value to be calculated as long as ¢ has been properly
reinitialized to a signed distance function. Once the normal is computed as
N =< n1,ns, N3 >, tangent vectors can be found in the following fashion.
First find the min {|n1|, |nz|, |ns|}. For the sake of exposition, suppose that
n1 has the smallest magnitude (the other cases are treated similarly). Then
choose the unit vector in the direction of the component with the smallest
magnitude, which in this case is < 1,0,0 >, and define
. N x(1,0,0) < ns Tl >
T =-—a—""=1(0, S
IV % (1,0,0) | V3 +nd y/nk+n3
as one tangent vector. The other tangent vector is defined as ’f‘g = N x ’1_‘;
Note that the unit tangent vectors Ty and Tb are not necessarily continuously
defined and care should be exercised when using these vectors.
The curvature at each grid point is defined as

o= — (b — 2608y boy + $2bs0 + ibez — 200dedos + $ibu
20ss — 2y bty + o) [(B B+) (42)

(40)

9

and discretized using standard central differences. In the rare case that the
denominator in equation 41 is identically zero, one sided differences are used
to calculate ¢y, ¢y, and ¢, instead of central differencing allowing at least
one nonzero value to be calculated as long as ¢ has been properly reinitialized
to a signed distance function. Note that the curvature is limited with

1
el < min {Az, Ay, Az}

(42)

so that under-resolved regions do not erroneously contribute large surface
tension forces.

3.2 Projection Method
First, V* = (u*,v*, w*) is defined by

— —
* . YT

FAY;

T AL W
+ |V VIV =4 g (43)
(V-v) p
and then the velocity field at the new time step, V1 = (ymtl g+l gyn+ly
is defined by

— =0 (44)

so that combining equations 43 and 44 to eliminate V* results in equation
5. Taking the divergence of equation 44 results in

Vp __V-V*
v‘(?)“ At (45)

after setting V- V741 {0 zero. Note that equation 45 defines the pressure in
terms of the value of At used in equation 43. Defining a scaled pressure by
p* = p/At leads to

o
yril _yr g m—vf =0 (46)
and
*
v-(v;’)zv-v* (47)

10

in place of equations 44 and 45 where p* no longer depends on At. In the
case of a spatially constant density one can proceed even further defining
P = % leading to

Vi P vp =0 (48)
and
DAp=V-V* (49)

where $ no longer depends on At or p.

Boundary conditions are applied to the velocity and are not needed for
the pressure. In order to apply boundary conditions to V”H, one simply
applies them to V* after computing V* in equatlon 43 and before solving
equatlon 45. Then in equation 45, one sets Vp- .N = 0 on the boundary where
N is the unit normal to the boundary. Since the flow is incompressible, the
compatibility condition

/V*-ﬁ:o (50)
P

needs to be satisfied when specifying the boundary condition on V* in order
to guarantee the existence of a solution. Here, I' represents the boundary of
the compuational domain and N is the unit normal to that boundary. [13]

3.3 Runge Kutta

The projection method is a special splitting method that allows one to ad-
vance a solution forward one time step, /At, with Euler’s method. To simplify
notation, let F define an Euler update so that

vl = g (V) (51)
can be used to describe a temporal updaﬁe using Euler’s method. Moreover,
1~ -

vt = SV E (£ (7)) (52)

is 2nd order TVD Runge Kutta (also known as 2nd order Runge Kutta,
the modified Euler method, the midpoint rule, or Heun'’s predictor corrector
method) [16]. In a similar fashion, one can write

1=

V‘n,—i-l
3

“ym 4 E (fo’“ + %E (E (17”))) (53)

11

for 3rd order T'VD Runge Kutta [16}.

It is obvious that 2nd and 3rd order TVD Runge Kutta can be written
as a convex combination of Euler updates. This is exactly what makes them
TVD as described in [16]. Another interesting fact is that these TVD Runge
Kutta methods can be numerically implemented with a minimal amount of
memory. More specifically, only two copies of the independent variables are
needed for 2nd order TVD Runge Kutta

and only two copies of the independent variables are needed for 3nd order
TVD Runge Kutta

- ~ 2
Ve Va4 -V
30t
which is not true for non-TVD Runge Kutta methods. Note that 3rd order

TVD Runge Kutta is used in the examples section.

3.4 Convection Terms
The MAC grid stores u values at &, Lk Updating u:.*i% ik in equation 43

requires the discretization of V- Vu at 7,1 ik First, simple averaging can
20

be used to define V at ;41 ;5 For example
2’ ¥

Vij-tk t Vil T2k TV 01k

YVirlgk = 4 (54)

12

and

Wigh—t F Wijped T Wigrgh-1 T Yit1ge4

Wirlik = 4

(55)

define v and w at &1 ,;, while u is already defined there. Then the V- Vu
2 ENE]

term on the offset 7, 1 ik grid can be discretized in the same fashion as the
PRV

V - V¢ term on the regular Z; ;x grid using the method outlined in [6] for

equation 35. Note that the 3rd order ENO discretization from [6] is used in

; : ; * *
the examples section. Along the same lines, updating Ui Lk and Wy 1

in equation 43 requires the discretization of V-Voat :Ei,j +1k and V- Vuw at
fz-’j’k:,: 1 respectively. Once again, with the aid of simple averaging to define
1'7, these terms can be discretized on offset grids in a fashion similar to the
V - V¢ term on the regular grid.

Ghost cells are used to aid in the discretization near the boundaries. For

example, if the computational boundary is a solid wall, a reflection condition
is used to populate the ghost cells with the appropriate velocities.

3.5 Viscous Terms - d-function formulation

Updating v}, ; ., in equation 43 requires discretization of

E)jsk
(2pug), + (pluy +vs)), + (plus + ws)), (56)
P
at T, Lk Likewise, updating 'u;‘,j +1k and ij,k £l requires discretization
of
(#(uy + vz))m + (2“Uy)y + (,U:('Uz + wy))z (57)
P
(1 + 2)), + (o, +), +), 59

p
at I, kel respectively. Since the velocities are continuous (see equation
1ty 9

14), the first derivatives are computed directly using central differencing.
For example,

ui'*"l')j}k - ui_l,j’k
(ua)ijh = —7——" (59)

13

Yitd ik T Yitdgk

(Wy)ies g+dp = Ay (60)
and
Uil ikt — %l ik
(UZ)i+%,j,k+§ fnrod 2 Az 2 (61)

are used to compute the first derivatives of u.
Suppose that u~ and p* are the viscosities for the fluid where ¢ < 0
and ¢ > 0 respectively. Then a continuous viscosity can be defined as

(@) = p~ + (wt —p7) H() (62)
where
0 P < —e€
H()={ t+5+%sin(™) —e<p<e (63)
1 €<

defines the Heaviside function based on ¢. Since ¢ is only defined at the

grid points, simple averaging is used to define ¢ elsewhere. For exam-
ple @41 5% = & k—“b'+2¢t+l * and Pirlrdp = ¢M'k+¢1+1’J'kw«l’ﬁhﬁ@ﬂ'ﬁl’k'
Then viscosities can be defined where needed using equation 62.

Since the viscosity has been forced to be continuous, equation 27 implies
that all the first derivatives of the velocity are continuous as well. Therefore,
the second derivative terms in equations 56, 57 and 58 can be calculated

directly using central differencing. For example,

(¢i+~1§,j+%,k) (y +v2)ip s it = # (¢f+-;~,jm%,k) (uy +v2);y

1.1
E?J_E:k

64
Ay (64)

is used to approximate (p(uy +vc)), at ii+%,j,k'
Finally, a smeared cut density profile is computed

p(¢) =p~ + (p* —p7) H(¢) (65)

using the Heaviside function.
For more details on the d-function formulation, see [17].

14

3.6 Viscous Terms - without §-functions

Instead of using equations 62 and 65 to define smeared out versions of 4 and
p, one can simply use the sign of the level set function to determine p as p™
or pt and to determine p as p~ and pt in a sharp fashion. Then one can
consider updating each fluid independently and pay particular attention to
the jump conditions at the interface. In particular, both p and p are spatially
constant on either side of the interface allowing one to write

p (e + Uy + Uszz)

66)
p (
o (Vg + Vyy + V2z) (67)
P
and
p1 (W + Wyy + wsz) (68)

p

in place of equations 56, 57, and 58 with the help of V -V =0. Once again,
since the velocities are continuous (see equation 14), the first derivatives can
are computed directly using central differencing along the lines of equations
59, 60, and 61. However, one must be particularly careful when computing
the second derivatives of the velocity, since the first derivatives are discon-
tinuous according to equation 27. In particular, equation 30 is used to aid
in the computation of the second derivatives. (Note that one could directly
compute the second derivatives ignoring the jump conditions. This produces
a numerical method with some degree of smearing.)

To compute the right hand side of equation 30, the continuous veloc-
ity field is transfered from the MAC grid to the grid points with sim-

1 . e N s TN Y-kt Vit d

ple averagimg, 1.e. U;jp = 3 y Vighk = 5 ; I
wi,j,k—%—}'wi,j.k-l-% . .

Wi jk = 5 . Next, central differencing is used to compute the

first derivatives at each grid point, e.g. (ug)ijr = W Then
these first derivatives can be multiplied by the appropriate components of
the normal and tangent vectors at each grid node to complete the calculation
of the right hand side of equation 30 which can be denoted by J rewriting
equation 30 as

[puz] [puy] [pus] Juo gz g
lwvg] [wwy] [pos] | = JJ 2 g (69)
[hwa] [pwy] lpw] VA

15

at each grid point.

Note that the unit tangent vectors are used to choose a coordinate sys-
tem where discontinuous derivatives are replaced with continuous deriva-
tives using equations 12 and 13. In fact, this is how equation 29 follows
from equation 28. Once the discontinuous derivatives have been replaced,
the results are transformed back to the Cartesian coordinate system. Since
this entire computation is done at a grid node, one need not worry about
averaging values of J since they live in Cartesian space and are not de-
pendent on the particular choice of T} and T at each node. Since J is a
spatially smooth function, spatial averages of J are well defined and can
be used to define J elsewhere. For example, J;, Lik = ﬁm and

1
Jo1..1,= JigretdirrgetJdigrietdivi e
7“%‘573‘}‘5:}“ 4 '
Once J has been computed, the second derivatives can be computed
using the techniques developed in [11] for computing second derivatives of
the variable coefficient Poisson equation. As a specific example, consider

the discretization of puy, at z,, 1 gk USING WAL = Uy gy and its neighbors

UL = Ui Lk and ur = u, 18 ke In addition, we will need the averaged

values of ¢ and J'! at ¢y = ¢i—%,j,kv b = ¢z‘+:_1,~,j,k’ b = ¢z‘+§,j,kv Jr =
J,t.l_1 Lk g = lei 1k and Jg = Jil_i 2k so that they are defined in the
same spatial locations as the corresponding u terms. If ¢z, ¢ar, and ¢r are
all greater than zero, we define

Uy — U
(pug)p = p* (%) (70)
and
UR — U
() = it (M2 (1)
arriving at
ug)p — (pug
(J”um:)i+%,j’k _ (1)RAx(M)L (72)

in the standard fashion. A similar discretization holds when ¢r, ¢as, and
¢r are all less than or equal to zero.

Next, suppose that ¢7, < 0 and ¢pr > 0 so that the interface lies in
between the associated grid points. Then

_ ¢z
0= Toal + o] (73)

16

can be used to estimate the interface location. That is, the interface splits
this cell into two pieces of size #Az on the left and size (1 — 6)Az on the
right. At the interface, we denote the continuous velocity by 1y and calculate

the jump as

Jr = 0Jy + (1 - 6)Jy,

(74)

noting that it is continuous across the interface as well. As discussed in [11],

we discretize the jump condition {pu,] = Jr as

() o (%) -
P \TT—ons) " \Tois !
and then solve for uy to get

~ptup0 + pmug (1 - 6) — Jr(1 - 0)Ax
- pro+pm (1 - 0)

ur

go that we can write

o fum—ur L (UM U aJrf

where

j= ptp
pro 4+ p- (1~ 6)

defines an effective p. Similarly, if ¢z, > 0 and ¢ar < 0,

(u) - _(UM“’UJ)Z,\(UM—U,L)_,&JIB
Hlz)L = (1-6)Nx Az wut

where

P put
pm8+ pt(l-0)

defines an effective pu.
In similar fashion, if ¢g > 0 and ¢pr < 0, then

g __|¢Rl
|$r| + |$nrl

17

(75)

(77)

(78)

(79)

(81)

is used to estimate the interface location with (1—8)Az on the left and 0Az

on the right. Then
Jr=0Jy+ {1 -8)Jr

is used to discretize the jump condition as

yfur—ur\ _f Ur—um \ _
K (N) # (u-4nax) Ir

resulting in

pup8 4+ pTup(l — 8y — J0(1 ~ 6)Ax
pmb + pt(1-0)

Ur =

and

o fur—upm \ . (ur—uM _,&JIL‘)
where

popt
p0+ pt(l—0)

defines an effective p. If ¢ <0 and ¢ar > 0,

. Up UM\ UR — Up pJr0

f =

where

piu
pre+p=(1-0)

b=

defines an effective p.

(82)

(83)

(84)

(85)

(86)

(87)

(88)

For more on the details and motivation behind this method, see [11].

3.7 Poisson Equation

Once V* has been updated with equation 43, the right hand side of equation
47 is discretized using standard central differencing along the lines of equa-
tion 59, 60, and 61. Then the techniques presented in [11] for the variable
coefficient Poisson equation are used to solve equation 47 for the pressure at

13

the grid nodes. Finally, the resulting pressure is used to find V! in equa-
tion 46. One should take care to compute the derivatives of the pressure in
equation 46 in ezactly the same way as they were computed in equation 47
using the techniques in [11}.

The techniques in {11] require a level set function to describe the interface
location. We nse ¢"t1 as opposed to ¢, since we wish to find the pressure
that will make V"+1 divergence free in equation 46. This implies that both
equation 46 and equation 47 should use p"*1 = p(¢"™!). In contrast, some
conventional discretizations of equation 43 use p” = p(¢") and p" = p(¢™)
to discretize the viscous terms. At this point it is instructive to consider
the jump conditions in equations 32, 33, and 34 that keep the interface from
“tearing apart” due to a jump in acceleration. These equations illustrate
that the density used for the Poisson equation and the density used for the
viscous terms should be identical. Therefore, we use p"1! when discretizing
the viscous terms as opposed to p™.

Note that one can set [%] = [%] = [%Z—] == () when solving the Poisson

equation using the method in [11] in spite of the non-zero jumps in equations
32, 33, and 34. Since the full equations 2, 3 and 4 are continuous across the
interface, one can take the divergence of the full equations without consid-
ering jump conditions, and this is exactly how equation 45 is derived. That
is, jump conditions only need to be considered when discretizing individual
parts of the full equations, and can be ignored when taking the divergence of
the full equations themselves, since the full equations are continuous across
the interface. Moreover, the jumps in the derivatives of the pressure in
equation 45 are already balanced on the right hand side by the appropriate
jumps in the viscous terms which have been included in V*. This gives
further justification to the use of p"*! when discretizing the viscous terms.

On the other hand, the jump in pressure defined in equation 19 needs
to be accounted for when solving the Poisson equation with the method in
[11]. Equation 19 is rewritten as

[p*] — 20t 1] (Vu- N, Vo - N, Vo - N)-N = Ator (89)

for use equation 47. The [p*] is computed at each grid node. The deriva-
tives of the velocities are computed with standard central differencing of the
averaged nodal velocities analogous to the way that J was computed when
discretizing the viscous terms. The normals are computed using ¢™ to be
consistent with the velocities and the computation of the viscous terms. In
general, the computation of this viscosity related term is not that sensitive

19

since it is continuous across the interface. The curvature is discretized using
¢n+i

In the case of a continuous or smeared out viscosity, the jump in pressure
reduces to [p*] = Atos. This can be further reduced to {p*] = 0 by using
a continuous surface force (CSF) model for the surface tension [1]. In [17],
the CSF model is implemented by adding a term of the form

sakN
0

to the right hand side of the momentum equations. Here p is calculated
along the lines of equation 65, and the smeared out delta function

(90)

0 $ < —e€
5{d) =< = -+ 5 cos (@) —e<¢p<e (91}
0 e< ¢

is calculated by taking the derivative of the smeared out Heaviside function
in equation 63. Note that ¢™*! is used when calculating all the relevant
terms in equation 90.

After discretizing the Poisson equation for the pressure, the resulting
system of linear equations is solved with a preconditioned conjugate gradient
(PCG) method using an Incomplete Choleski preconditioner [8]. The PCG
algorithm is applied once for every Euler time step, or a total of three times
for a third order Runge Kutta cycle.

3.8 Time Step Restriction

Adaptive time stepping is used in the examples section choosing the overall
time step based on convection, viscosity, surface tension and gravity. The
convective time step restriction is given by

|U§mam |U|ma:r; |'w|max)
<
At(Ao T Ay T A <1 (92)

where |%|maz, |Vlmaz, and |W|mes are the maximum magnitudes of the ve-
locities. The viscous time step restriction is given by

poopt 2 2 2

where the “max” function is defined in the obvious way.

20

Gravity can be included in the convection estimate noting that |v|pas +
|g|At is a linear approximation to a bound on the vertical component of
the velocity at the end of a time step due to the effects of gravity. Then

At (v ma:cA'; QlAt) S 1 leadS tO At S (_lﬂlmam+v |vl$num+4;g|Ay) or

2lg

At [v|maz (|U|mam)2 4lg|
20 | Wmaz lmaz } = 2911 94
2 (Dy + DNy + Ny]~ (94)
as a time step restriction for the velocity in the vertical direction. Rewriting

equation 92 as AtC.p < 1 and equation 93 as AtVep < 1 allows one to
write

At o 4|F| 4Fy| A4|F]
= <
5 ((chl+mf¢)+\/(00ﬂ+mﬂ) + Ao 4 Ay + A, <1 (95)

where F = (Fy, Fy, F,) is the net acceleration due to forces such as gravity
and surface tension. Note that equation 95 was derived along the lines of
the gravity estimates above.

The acceleration due to curvature can be written as 225 where the J-
function has been included since the force only appears on the interface.
In the &-function formulation this term is added to the right hand side
of the equations for velocity. In the GFM formulation, curvature enters

the equations through [p] = ox which contributes to the %?« term in the

equations for velocity. Noting that numerical é-functions take the form —Alg

leads one to % for both forraulations. Equation 95 can then be written as

Corr + Virt) + 1/ (Cor + V)2 + 4(Ges)? + 4 (Sep)?
At((ot Vep) + 1/ (Cepp + Vep)® +2(Gep)” +4(Se) <1 (%)

where
Gopr= 1[0 (97)

and

olk|
Supt = 98
d \/min{p“'“,p“} (min {Az, Ay, Az})? (%8)

21

represent the restrictions due to gravity and surface tension respectively. If
% is replaced by ﬁ in equation 98, one can see a resemblance between this
equation and the time step restriction given in [1}.

In the numerical simulations, a CFL restriction of % is uged. That is,

5 5 (99)

A ((Ccﬂ + Vo) + \/(C'cfz + Vo)t +4(Gep)® + 4 (Scfl)z) 1
-2

is used.

22

4 Examples

In the numerical examples, we use the following constants unless other-

wise specified: g = ——9.8%, o = .0728%, Dwater = 10007%%, Dwoter =
1187 x 107358 pi = 1.22654 and a5 = 178 x 107522 When eval-

uating the smeared out Heaviside and delta functions in equations 63 and
91 respectively, we use € = 1.5Az. In addition, all calculations were per-
formed in a box with standard no-slip solid wall boundary conditions applied
at the edges of the computational domain unless otherwise specified.

4.1 Example 1

Consider a [—.01m, .0lm] x [-.01m,.02m] computational domain which is
initially filed with water except for a circular air bubble of radius ifl}“om
centered at the origin. In order to show the effects of grid refinement, the
calculation was carried out on meshes of size 40 x 60, 80 x 120, 160 x 240 and
320 x 480. Figure 1 shows the four calculations at times of £ = 0 (black),
t = .02 (green), £ = .035 (red), and ¢ = .05 (blue) seconds for the smeared
out delta function method. The area loss for these four calculations was
24.72%, 8.10%, .56% and —.0068% (area gain) respectively. All area loss
results were computed at the final time of ¢ = .05 seconds. Figure 2 shows
the corresponding results for the sharper GFM. Here, the area loss was
17.23%, 5.76%, 1.54% and .0036% respectively.

In order to illustrate the behavior of the method on larger bubbles, the
same calculations were carried out on a [—Im,1m] X [—1m, 2m] computa-
tional domain with a circular air bubble of radius %m centered at the origin.
Figure 3 shows the four calculations at times of £ =0, t = .2, £ = .35, and
t = .5 seconds for the delta function method with area loss results of —1.42%,
.30%, —.82% and —.51% respectively. Figure 4 shows the corresponding re-
sults for the GFM where the area loss was 4.07%, 1.78%, .18% and —.94%
respectively. Note that these large air bubble calculations illustrate both
Kelvin-Helmholtz and Rayleigh-Taylor instabilities.

4.2 Example 2

Consider a [—.0lm, .0lm] x [~.02m, .01m] computational domain which is
initially filled with air except for a circular water droplet of radius 3(1)—0m
centered at the origin. In order to show the effects of grid refinement, the
calculation was carried out on meshes of size 40 x 60, 80 x 120, 160 x 240 and

23

320 x 480. Figure 5 shows the four calculations at times of £ = 0, £ = .02,
t = .035, and £ = .05 seconds for the delta function method with area
loss results of —6.38%, —5.78%, —4.12% and —2.39% respectively. Figure 6
shows the corresponding results for the GFM where the area loss was 2.23%,
64%, .0089% and ~.0091% respectively.

In order to illustrate the behavior of the method on larger droplets, the
same calculations were carried out on a [-1m,1m] x {—1m,2m] computa-
tional domain with a circular water droplet of radius %m centered at the
origin. Figure 7 shows the four calculations at times of ¢ = 0, t = .2,
t = .35, and t = .5 seconds for the delta function method with area loss
results of 5.37%, 3.93%, 2.36% and .38% respectively. Figure 8 shows the
corresponding results for the GFM where the area loss was 21.06%, 3.38%,
6.24% and 6.03% respectively. Note that these large water droplet calcula-
tions illustrate both Kelvin-Helmholtz and Rayleigh-Taylor instabilities.

4.3 Example 3

Consider a [—1m, 1] x [—1m, 1m] X [~1m, 2m] computational domain which
is initially filled with water except for a spherical air bubble of radins %m
centered at the origin. The calculation was carried out on a 60 x 60 x 90
Cartesian mesh using the GFM. Figure 9 shows 12 evenly spaced snapshots

(At = .05) of the solution from ¢ = 0 to ¢ = .55 seconds.

4.4 Example 4

Consider a [—1m, 1m] x [—1m, 1lm] x [~2m, 1m] computational domain con-
sisting of water below z = —1m and air above z = —1m. In addition, a
spherical water droplet of radius %m is centered at the origin. The calcu-
lation was carried out on a 60 x 60 x 90 Cartesian mesh using the GFM.
Figure 10 shows the solution at t = 0, .35, .45, .50, .55, .80, .95, 1.00, 1.05,
1.15, 1.25, and 1.35 seconds.

4.5 Example 5

In order to illustrate the potential of this new method, figure 11 shows water
waves generated by the impact of a solid object. Note that the solid object is
not rendered so that the surrounding flow field can be more easily visualized.
Figure 12 shows the results obtained when a rather large box is filled with
water.

24

levelsat lsvelsst

£0 T 120
50r 100}
40+ ot
or sok
201 1 401
10 20t

o . o . \
g 10 20 30 40 0 20 40 £0 80
lovelset levelset
450+
200t 400+
350+
180 h 300
2501
100 200}
1801
501 100}
50
o . \ . 0 : . .
Q 50 100 150 0 100 200 300

Figure 1: Small Air Bubble - Delta Function Method

25

levelset levalset
60 v 120 r
50 k 100 -
40 au -
30 1 60
20t] 40+
10 20+
o . . . 0 . . .
a 10 20 30 40 0 20 40 50 80
fevelset leveiset
450+
2001 00t
350
150 300}
250}
100 2001
150}
50%] 1001
501
0 . . . o . . .
v} 50 100 150 0 100 200 300

Figure 2: Small Air Bubble - Ghost Fluid Method

26

levelset lovelset

60 T 120
501 . 100t
401 80+
% m 6o}
201 1 4
10} E 20+
0 . . . o L s .
0 10 20 30 49 4] 20 40 60 80
levelset lavelset

450
2001 4001
350t
150t 300%
250
100 200+
1501

50f 1001 1
501

o L . . 0 N . .
0 50 100 150 D 100 200 300

Figure 3: Large Air Bubble - Delta Function Method

27

levelset lovelset

60 120
ser 100}
407 a0t
0r B0}
201] 401
10 201

0 . . R o . N .
¢ 10 20 30 43 4] 20 40 80 80
levelset levelset
4601
200f 400}
350
150% 3001
{23
2501
100¢ 200F
1503
501] 1001
50F
0 . L . o L x .
] 50 100 150] 100 200 300

Figure 4: Large Air Bubble - Ghost Fluid Method

28

levalset levelsat

60 120 v v

B0t 1 100}
40+ ad
30+ 1 60
201 3 40+
07 1 20+
o . . N 0 A .
o 10 20 30 40 0 20 40 60 80
levelset levelsot
4801
200+ 1 400+
3501
150} 1 300+
280
1001 1 2001
150+
B0 100+
0
0 : . . 0 N N .
0 50 108 150 0 100 200 300

Figure 5: Small Water Droplet - Delta Function Method

29

levelset levelset

60 T T Y 120 v
o1 100}
401 Bof
30} 1 80
20t] 40F
10} L 20¢

0) . . 0 N N
0 10 20 30 49 o 20 40 60 BO
levelset levelset
450+
200t 1 4001
350
150 1 300
250+
100F E 200
150F
60} 1 100+
501
0 L k1 1 D 'l 1 i
0 50 100 150 0 100 200 300

Figure 6: Small Water Droplet - Ghost Fluid Method

30

levelsel lovelset

&0 120
sor 100}
40 2 80}
301 80}
201 40+
101 20+

o ; . . ¢ . \ .
0 10 20 30 40 4] 20 40 680 a0
levelset levelset
450+
200+ 4 4001
350
150+ 1 3001
250+
100 1 200+
1501
50+ 1001
80r
a . . . 0 \ . .
0 50 100 150 0 100 200 300

Figure 7: Large Water Droplet - Delta Function Method

31

50f

301

201

101

levelset

levelset

30

2001

1501

501

L

50

Figure 8: Large Water Droplet - Ghost Fluid Method

100

150

120

1001

8o

60 F

201

levalsat

lavelset

80

450¢

400+

3501

3001

2501

2001

150

100F

501

¢

32

100

200

300

Figure 9: Large Air Bubble - Ghost Fluid Method

33

Figure 10: Large Water Droplet - Ghost Fluid Method

34

Figure 11: Water Waves Generated by the Impact of an (invisible) Solid
Object - Ghost Fluid Method

35

Figure 12: Filling a Box With Water - Ghost Fluid Method

36

5 Conclusions and Future Work

The numerical experiments performed in this paper indicate that the our
new numerical method preforms quite well in both two and three spatial
dimensions. Numerical comparisons with the delta function approach pro-
posed in [17] confirm this as well. In this paper, fully two phase water and
air mixtures were considered. In future work, we will consider extending our
approach to treat free surface flows where the air is replaced with a vacuum.
For more information on free surface flows, see [9], [3] and [4] where marker
particles were used to track the free surface. We note that free surface flows
admit a Poisson equation for the pressure which is significantly different
than the one discussed in this paper for fully two phase flow. Therefore, in
the case of a free surface, one may want to consider methods similar to that
proposed in [18] when solving for the pressure.

37

References

[1] Brackbill, J.U., Kothe, D.B. and Zemach, C., A Continuum Method for
Modeling Surface Tension, J. Comput. Phys., vol. 100, 335-354 (1992).

i2] Chang, Y.C., Hou, T.Y., Merriman, B. and Osher, S., A Level Set For-
maulation of Bulerian Interface Capturing Methods for Incompressible
Fluid Flows, J. Comput. Phys., vol. 124, 449-464 (1996).

[3] Chen, S., Johnson, D. and Raad, P., Velocity Boundary Conditions
for the Simulation of Free Surface Fluid Flow, J. Comput. Phys. 116,
262-276 (1995).

[4] Chen, S., Johnson, D., Raad, P. and Fadda, D., The Surface Marker
and Micro Cell Method, Int. J. for Num. Methods in Fluids 25, 749-778
(1997).

[6] Chorin, A.J. Numerical Solution of the Navier-Stokes Equations, Math.
Comp. 22, 745 (1968).

[6] Fedkiw, R., Aslam, T., Merriman, B., and Osher, S., A Non-Oscillatory
Eulerian Approach to Interfaces in Multimaterial Flows (The Ghost
Fluid Method), J. Computational Physics, vol. 152, 1. 2, 457-492 (1999).

[7] Fedkiw, R. and Liu, X.-D., The Ghost Fluid Method for Viscous Flows,
Progress in Numerical Solutions of Partial Differential Equations, Ara-
chon, France, edited by M. Hafez, July 1998.

[8] Golub, G. and Van Loan, C., Matriz Computations, The Johns Hopkins
University Press, Baltimore, 1989.

[9] Harlow, F.H. and Welch, J.E. Numerical Colculation of Time-
Dependent Viscous Incompressible Flow of Fluid with a Free Surface,
The Physics of Fluids 8 (12), 2182-2189 (1965).

[10] Landau, L.D. and Lifshitz, E.M., Fluid Mechanics, Pergamon Press,
NY, 1978.

[11] Liu, X.-D., Fedkiw, R.P and Kang, M., A Boundary Condition Cap-
turing Method for Poisson’s Equation on Irregular Domains, Journal of
Computational Physics {to appear).

38

{12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Osher, 8. and Sethian, J.A., Fronts Propagating with Curvature De-
pendent Speed: Algorithms Based on Hamilton-Jacobi Formulations,
Journal of Comput. Phys., vol. 79, n. 1, pp. 12-49, (1988).

Peyret, R. and Taylor, T.D., Computational Methods for Fluid Flow,
Springer-Verlag, NY, 1983.

Peskin, C., Numerical Analysis of Blood Flow in the Heart, Journal of
Comput. Phys., vol. 25, pp. 220-252 (1977).

Peskin, C. and Printz, B., Improved Volume Conservation in the Com-
putation of Flows with Immersed Elastic Boundaries, J. Comput. Phys.,
vol. 105, pp. 33-46 (1993).

Shu, C.W. and Osher, S., Efficient Implementation of Essentially
Non-Oscillatory Shock Capturing Schemes, Journal of Computational
Physics, vol. 77, n. 2, pp. 439-471(1988).

Sussman, M., Smereka, P. and Osher, S., A level set approach for com-
puting solutions to incompressible two-phase flow, J. Comput. Phys.,
vol. 114, pp. 146-154 (1994).

Tau, E.Y. A Second Order Projection Method for the Incompressible
Navier-Stokes Equations in Arbitrary Domains, J. Comput. Phys. 115,
147-152 (1994).

Unverdi, S.0. and Tryggvason, G., A Front-Tracking Method for Vis-
cous, Incompressible, Multi-Fluid Flows, J. Comput. Phys., vol. 100,
pp. 25-37 (1992).

39

