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Abstract. We prove an abstract convergence estimate for the Algebraic Multigrid Method with
prolongator defined by a disaggregation followed by a smoothing. The method input is the problem
matrix and a matrix of the zero energy modes of the same problem buf with natural boundary
conditions. The construction is described in the case of a general elliptic system. The condition
number bound increases only as a polynomiat of the number of levels, and requires only a uniform
weak approximation property for the aggregation operators. This property can be a-priori verified
computationally once the aggregates are known. For illustration, it is also verified here for a model
problem, a uniformly elliptic diffision equations discretized by linear conforming quasiuniform finite
elements, and under very weak and natural assumptions on the hierarchy of aggregates.

Key words. Algebraic multigrid, zero energy modes, convergence theory, computational mechanies,
finite elements, iterative solvers

1. Introduction. This paper establishes abstract convergence bounds for an
Algebraic Multigrid Method (AMG) based on smoothed aggregation. The bounds
are obtained by invoking the general convergence theory of {6]. Our main result
is a bound on the condition number that grows only as a power of the number of
levels, and requires only a weak approximation property for the aggregates, similar
to the weak approximation condition in classical AMG investigations [9, 20, 26, 35].
Our weak approximation condition can be easily verified computationally, and we
show that it holds for general unstructured meshes and under natural assumptions on
aggregates used to construct the coarse levels. The emphasis of this paper is on the
treatment of unstructured meshes. Robustness of our form of the weak approximation
condition with respect to problem coefficients, degencrated meshes, etc, will be studied
elsewhere. Cf., [42, 43] for the case of two-levels and jumps of Lame coefficients in
elasticty. The results of this paper appear to be the first bound on the condition
number for an Algebraic Multigrid Method, growing only polynomially with the
number of levels.

Unlike classical, geometrical multigrid, where the hierarchy of meshes and the
prolongation operators are defined from finite element spaces, the AMG approach
strives to build the hierarchy of coarse spaces, or, equivalently, the prolongation
operators, from matrix data only, making assumptions about the underlying
differential equation and its discretization [18, 34, 35] or using additional geometrical
information [10, 11]. The smoothed aggregation methods, introduced in [37, 38] and
further developed in [39, 41, 42, 43, 44}, have proved to be efficient tools for the
solution of symmetric, positive definite linear algebraic systems arising from finite
element discretization of elliptic boundary value problems.
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In our AMG method, we build the prolongation operators by first constructing
a tentative prolongator using an aggregation approach and the knowledge of zero
energy modes of the principal part of the differential operator with natural boundary
conditions (e.g., rigid body modes for elasticity), then smoothing its output by
a carefully selected iteration. Our coarsening process consists in the selection of
aggregates, compared with the selection of C-points in classical AMG.

The use of zero energy modes has become a recognized way to capture the essence
of the geometry, the differential operator, and the discretization, needed to build an
efficient iterative method. Zero energy modes are the input of other widely used
iterative methods [15, 16, 17, 23, 27, 28, 30, 31]. For common discretizations of scalar
elliptic problems, zero energy modes are simply constant vectors, that is, multiples of
a vector of all ones. In this case, the use of zero energy modes is an assumption about
the problem rather than the use of geometrical information, and our prolongator
becomes disaggregation followed by smoothing. Prolongation by disaggregation only
{(without smoothing) was advocated, e.g., in [3, 5].

Our bounds are based on existing general regularity-free estimates for multigrid
methods. Since the first attempts to analyze AMG type methods, it was clear that
the classical multigrid theory, which relies on elliptic regularity [1, 19, 29] will not
apply, because this theory requires the use of properties of the underlying finite
element spaces on all levels. The approach based on a strengthened Cauchy inequality
[1, 4], or, equivalently, on the weak approximation property {9, 20, 21, 26], needs only
assumptions that can be verified computationally, but it gives convergence estimates
for two-level methods only. It is not guaranteed that the two level convergence rate can
be made arbitrarily small by increasing the number of smoothings steps [9], and simple
recursive estimates result in a convergence bound that approaches 1 as a geometrical
sequence [25]. This means that the bound on the condition number increases
exponentially with the number of levels. A satisfactory multigrid theory based on
the weak approximation property was made possible by reinterpreting multigrid as a
Schwarz methods [36] during the late eighties. The abstract Schwarz methods have
become a recognized framework for analyzing a large class of iterative techniques in
a unified manner. The early convergence results for additive variants were developed
and used for domain decomposition (2, 12, 14, 13, 24], hierarchical bases {43, 46] and
additive multilevel preconditioners [8]. Based on an estimate for product methods {7},
the first regularity-free polynomial convergence bounds for variational multigrid were
established in [6], relying on a multilevel version of the weak approximation condition
and on other properties of nested finite element discretizations. The bounds of the
additive variants were then improved to be independent of the number of levels by
new techniques using advanced approximation theory tools [32, 33].

We use the classical multiplicative scheme of the multigrid method, including
block Gauss-Seidel smoothers. In in our implementation, parallelism ig then achieved
by coloring. Cf., [32] for theoretical and [18] for practical aspects of additive multigrid
approaches.

To apply the estimates of [6] to a particular multigrid method in a straightforward
manner, one needs to establish that the discrete norms in the artificially constructed
coarse spaces are uniformly equivalent to appropriately scaled L? norms, and establish
the weak approximation property in those norms. We have done this in [40] under
additional (though quite reasonable) assumptions on the supports of the coarse basis
functions. Essentially, we had to assume that the basis functicns in the coarse space
hierarchy are associated with a division of the domain into subdomains that behave
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much like finite elements. Verifying these assumptions is difficult because the process
of building the coarse spaces is recursive and not easily predictable; all we could say
was that our coarsening algorithms were designed so that they would tend to produce
such a coarse space hierarchy, but this could not be guaranteed.

QOur present approach to the theory is to verify the assumptions of the abstract
theory from [6] by algebraic means, without reference to the L? norm and assumptions
on the supports of the coarse space shape functions. We need to assume only a weak
approximation property for the tentative prolongators, rather than to work with the
properties of the final prolongator operators. Thus, the weak approximation property
is easy to verify once the aggregates are constructed. Our analysis requires that the
mesh coarsening ratio be 3 rather than the more usual 2. However, this is inherent
in the smoothed aggregation method, and leads to a method which is very efficient in
practice [41].

The paper is organized as follows. The AMG algorithm is described in Sec. 2.
Sec. 3 contains our principal theoretical result, a multilevel convergence proof using
only a weak approximation property for aggregations. In Sec. 4, we describe the
construction of a tentative prolongator from zero energy modes by aggregation, and
formulate and prove the main convergence theorem. Finally, Sec. 5 contains an
example showing that the assumptions of the theorem are satisfied for a finite element
discretization of a second order elliptic boundary value problem.

2. Description of the algorithm. We are interested in solving the system of
linear algebraic equations

(2.1) Ax=h,

where A is a symmetric positive definite matrix. The smoothed aggregation
multigrid [41] can be viewed as a standard variational mmltigrid method with
prolongators of the form S P} ;, where P}, : R™* — IR™, n; = ord(A) > ng >
... > ny is the full-rank tentative prolongator and 5y : R™ — IR™ is a prolongator
smoother derived from the matrix 4;. The hierarchy of coarse level matrices is defined
by

(2.2) At = (SiPL)TASiPly, A= A

The simplest example of a tentative prolongator will be given at the end of this
section. The construction of a tentative prolongator suitable for solving general elliptic
problems on unstructured meshes will be the subject of Sec. 4. Although we will carry
out some convergence estimates for general prolongator smoothers 5; : R™ — R™,
the form of S we use is

4

(2.3) Sy =1~ Eamizﬂua,mM;"1AE.

Here, AM > o(M; ' A;), ¢ denotes the spectral radius, and
(2.4) M =(PTR!, PB'=pP..P7, Pl=I

The mapping P! : R™ — IR™ is called composite tentative prolongator.

This particular choice of prolongator smoother will be justified by Lemma 3.3.
The parameter 4/3 in (2.3) on level [ minimizes the value of Q(Ml]}lAHl). In
Lemma 3.3 we will show that we can take

(2.5) MM =01ty
3



where X is an available upper bound for o{A4).
One iteration x «+ MG(x,b) of the muitigrid algorithm is as follows:
ALgorrraM 1. Let B : R™ — R™, [ = 1,...,L — 1 be given smoothers and
v,y > 0 be a given smoothing and cycle parameter, respectively. Sef MG = MG,
where MG (-,-), I =1,...,L -1 is defined by:
Pre-smoothing: Perform v iterations of x*+(I — BjA))x' + R;b,
Coarse grid correction:
o Set b = (S1F,)T(b' — AixX'),
o if | +1 =L, solve App1x! ! = bl by a direct method, otherwise set
®!* = 0 and perform 4 dterations of x!*1 — MGy (xHH b,
* correct the solution on level I by x'x! + S Pl x!*1.
Post-smoothing: Perform v iterations of x' (I — R A;)x! + R;b'.
Exampie 1. For illustration, consider the simplest tentative prolongator F} 1
for the 1D Laplace equation discretized on a mesh consisting of ny = 3L ~1nz nodes:

(1

1

—

1
-1
\ S
The columns of PII vy are 0-1 vectors with disjoint nonzero structure. FKach column

corresponds to disaggregation of one IR™+! variable into three R™ variables, n; =
dnge1. So, Pti+1 can be thought of as a discrete piecewise constant interpolation. The

composite tentative prolongator P! = P} ... P;_l is similar in structure to P} 1 each
column corresponds to disaggregation of one IR™ variable into 3!~ IR™ variables.
Here, M; = 3"1I. Since the matrix A; = A is tridiagonal, the choice (2.3} of the
prolongator smoother implies that the coarse level matrices 4;, | = 2,...,L are
tridiagonal as well.

3. Abstract convergence bounds. Define the smoothed composite prolonga-
tor I} : R™ — R™ by

(3.1) I'=8P .. .S.FY I=I

the hierarchy of coarse spaces Vp C V1 C ... C ¥} by ¥ = Range I;l, the norm
on V; induced by the IR™ —norm ||x||m~ = (xTx)'/2,

(3.2) l[all: = min{|lx|[g~ : w=I'x},

and the associated inner product (u,v); = (x,y)m~, u=I'x, v=1Ily, x,y L

Ker I}'. If I} has full rank, we have simply ||I}x|l; = ||x||g~. Note that from (2.2),
it follows that 4, = (I1)TAIl, and

(3.3) 15 xlfa = llx|la, VxeR™,
4



2 I]_ ” 2
(3.4) max (i§11||A) - max (“_t_x_i) = o{A).
ueli \ [[ull; xeR™ \ [|x|gns

The preconditioning by M,™" in (2.3) guarantees that the prolongator smoother
S; posesses the following invariance property: If P! is replaced by P D, where D
is a nonsingular matrix, then I} becomes I} D and M; ' A; becomes DM AD.
Hence, the mapping induced in V; by 5 via generator given by the columns of I} does
not depend on the specific choice of P}, but only on Range P}

Qur estimates are based on an abstract convergence result proved in [6].
Using (3.4), it can be written in our notation as follows:

LEMMA 3.1. (Bramble, Pasciak, Wang, Xu [6], Theorem 1}. Assume there are
linear mappings ;- Vi = Vi, Q1 = I and constants ¢1, ¢ > 0 such that

1. forallu e Vi and every levell =1,...,L

(3.5) IQaila < ciflulla.
2 forallue V) and every level [ =1,..., L —1

C
(3.6) (@~ Quenulle € ———{lull4.
v o(Ar)
Further assume that By are symmetric positive definite matrices satisfying
1
(37) Amin(f—' RiAN >0 and )\min(RI) > —-"mcil Q(Ai)

with a constant cg > 0 independent of the level.
Then Algorithm I satisfies

1% — MGG bYs < (1 - —5-(1?)) IR—xls VxeVi,

where X is the solution of (2.1}, and co(L) = (1 + &1 + cecr)?(L — 1). Moreover,
the preconditioner P defined by the action of MG(0,-) is symmeiric with respect to
(-, Jmn1 and cond(4, P} < ¢o(L).

The following lemma, verifies assumptions (3.5), (3.6), of Lemma 3.1 from the
properties of S; and P} rather than I1. It does not assume the specific form (2.3) of
the prolongator smoother.

LEMMA 3.2. Let for everyl=1,...,L, AM > Q(Ml_lAg) and

Qi -»RY, O1=1I, §:R™ > R™

be given linear operators. Assume that for some C1,05,Cy,Cs > 0 and all
l=1,...,L -1,

" ~ 2
(3.8) 1P} Qra — Pl Quiaulff: < ﬁlluiii Vue Vi,
(3.9) cond(M;) < C%,,
(3.10) I1Sil.a; < 1,
(3.11) 1S < A (MNP xfrns  ¥x € R™,
02
3.12 - 2 < =2 |Ix|i? ™
(3.12) T = Sl < s lels, vx e RY,
(3.13) (M1 ST ALS;) < CENM.
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Then, for every u € Vi, the mappings Q; = I} Q; satisfy

(3.14) iQuafla < ci(lulla, t=1,...,L,
with ¢, {1) = 1+ CsCy (1 — 1}, and
(3.15) Qi — Qe1)ully < e2(Do(A) ™ (lulla, 1=1,...,L-1

with Cg(z) = Cpy + Cg”Qt”A <O Cp + 02(,‘1(1).
Proof. First, for any x € R™,

(3.16) 1Sixll 4, < Csy/ A 1B xlmms -

Indeed,
111, = S0 M2, < o (M7 ST AS M) Pl

where Q(MflﬁSFA;Snglm) = (M 'SFA;S;) is bounded from (3.13), and
1M, *x|lme = [{PAxllmes, since My = (P)T R}
Let u € V4. From the definitions of I}, Q; and the isometry (3.3),
1Qusslla = 17 Qurulla = 1 SFl Qurnulla = 15:P Quaalla
< 181(@Qr — Py Querhulia, + (15:Quul| 4,
Using bound (3.16), assumptions {3.8}, (3.10) and isometry (3.3), we get

iQuauila < Csyf MM || P} Qru— P! Pl Qrirallme: +|Qrull 4, < CsChllulla+iQrulla.

Estimate (3.14) now follows by induction with €3 = I.
To prove (3.15), we use assumptions (3.11), (3.12} and definitions (3.2), and (3.1},
Q1 — Quea)ulle < Q= SiPLy Qurs)ulime
= 151(@: — P}, Quer)u+ (I - S)Quullm
< (191G — Pfya Quendulime + [T = S)Quullmn:
(3.17) < Amia (M)IPQra ~ Pl Querultmes + Cao(A) /| Q..

Now, using the estimate

xTMffl/zAth“lﬂx

Ap) = max
o) xeR™ xT M x
T ar-1/2 —1/2 T
xt M AL M, x x'x
(3.18) < max : it © INAX —
x€R xTx xeR™ xT M, x

< ’—\LMQ(Mz) < /_\IM)\min(Ml) cond (M)

together with isometry (3.3) and assumption (3.8}, inequality (3.17) can be rewritten
as

C; 02
- ull; <
(@ — Q)i < (\//\min(Mi) T + \/Q(AI)HQ.!”A) ||lui| 4
< Cl\/ COHd(M;) +02“Q1”A|§u|§A < CICM '§'02”Q1”14|§u”‘4,
o(Ar) v olA)
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completing the proof of (3.15). O

The key assumption (3.8) of Lemma 3.2 is a weak approximation property for
disaggregated functions. If one has the weak approximation property in the more
usual form

02
(3.19) vue R™ 3y € R™ :  |lu— Plullf= < /—\—g.lﬂlull?q
!

then, with the choice Q; = M;*(P})7, the mappings P} @; are orthogonal projections
onto Range P}. Since Range PL, C Range P, we obtain

e — Pl Qraullis: = lu— P Qrullizn, + 1B Quu — PL 1 Qurullire:
(3.20) > 1P Quu — Pl Qriaullie,

Hence, from the minimization property of the orthogonal projection,

. « « C?
|12 Qra— Py Qryrulfe, < llu—PlyQuprvlfn, < lla—Ph g lfga, < —5\1.,; lluil%,
+3
: . 2 = M
and one obtains (3.8) with Cf = C¥ .
41

The prolongator smoothers enter the approximation property (3.8) only through
the scaling factor 1/AM on its right-hand side. The spectral bound A} can be
interpreted as a constant in the inverse inequality on ¥} and by {2.2), it depends on all
prolongator smoothers Sy, k < [. The role of the prolongator smoothers is to enforce
"smoothness” of the coarse spaces by making the values of A}M small. Obviously, a
smaller AM allows the approximation condition (3.8) to be satisfied with a smaller
constant (.

The columns of a typical tentative prolongator Pf 1 are orthogonal, as we observed
in Example 1. By properly scaling the columns of PEEH, we can obtain M; equal to
the identity matrix even in more general cases (see Algorithm 2). In such a case, (3.9)
holds with Cpy = 1.

Note that from (3.10), inequality (3.13) always holds with Cg = 1; for the
prolongator smoother (2.3) we will have Cs = 1/3, which gives a better bound.
The remaining assumptions of Lemma 3.2 are natural algebraic requirements on the
prolongator smoothers S;, which are easily satisfied.

The next lemma shows that the prolongator smoother (2.3) satisfies the
assumptions of Lemma 3.2, and justifies the choice of )_\iw in (2.5).

LemMa 3.3. Let S; be given by (2.3) with AM chosen as in (2.5). Then,

(321) /_\.{M 2 Q(MJMIAI)s I=1,...,L,
inequalities (3.10), (3.11) hold, and (3.13) holds with Cs = 1/3. Further,
assumning (3.9), (3.12) is satisfied with Cy = (4/3)Cu.

Proof. Since My = I, inequality (3.21) holds for ! = 1. Assume (3.21) holds
for . Using (2.2) and the equation My, = (BL,)TPL, = (PP} )PP, =
(PLH)TMﬂﬂrl, we obtain

I A\TQT !
—1 _ (Pl+}.x) Si AtSI(H+1X)
oMy A1) = xergla'}z{ﬂ xT Mix
o (Ptt-Hx)TS?AtS;(HE_HX)
xerit (P, x)T Mi(F/ %)
< Q(M[—ISFAgSg).
7
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From the definition of S; in {2.3), it follows that

2
M‘;—ISE’AJSI = (I— _lAg> M:mlAg.

A
Hence, by the spectral mapping theorem,

T 4 \* 4 N\ 1.y

o(M;"S; ASy) = team{?ﬁm) (1 - Wt) 1< te?é?):\):;"’] (1 - 3V t) t = §Af .

This proves (3.13) with Cg = 1/3. The statement (3.21) follows from the last estimate
together with (3.22).
From definition (2.3), §; is A;-symmetric, and, from (3.21),

(3.23) o(S) ¢ [-1,1],

which proves (3.10).
To verify (3.11), we estimate for x € R™,
ISexllin = 1822 (347 5,04, 1%) M X e
< oMy )o(0) 2 510, )| M e

mln

Further, it follows from (3.23) that o(M, /%S M,'/*) < 1. Now, (3.11) follows by
direct computation. _
It remains to verify (3.12). Since I — 8, = 4/(33M)M; " 4,, (3.12) holds with

4 | M, A 4 —1 41/2
0= () o0 g, = (57 ) o400l 417,

Since M; = (P!)* P}, we have Q(Ml_ljz) AT2(M)) and ||M1/2x||]Rn, | BLx|imns -

%14, 3AM
where
M
~1 4172y o —1/2y 172 4172 o A _
Q(M Al ) = Q(‘ZVIJ )Q( i L ) = /\min(Ml)
Now, from (3.18), T < (4/3)+/cond(M,;} < (4/3)Cyy, concluding the proof.

We are now reaciy to prove the following convergence theorem. Recall that X is a
known upper bound of p(A) used in (2.5).

THEOREM 3.4. Let the prolongator smoothers Sy be given by (2.3) with AM chosen
as in (2.5). Assume that Cy and Cpy are such that there are linear mappings

QI:TRRIAIR”!) l==1,...,L, @1:

sueh that

. . glﬂl
(3.24) | Qru— Pl 1 Qry1ufhny < CET||u;§i Vvue R™,I=1,...,L—1,

and

(3.25) cond(M;) <C3 1=1,...,L.
8



Further assume that R; are symmetric positive definite matrices satisfying (3.7) with
a constant cg > 0 independent of the level,
Then,

1

i — MG(x, bl < (1 -

Y-l veeme,
where AX =b, and
4 1 4 ?
colL) = {2+ C1Cpmcr + chCR + §01 1+ EOMCR (L-1)) (£-1)

In addition, if P : u— MG(0,4), then P is a symmetric matriz and cond(A, P} <
Co(L).

Proof. By (2.5) and Lemma 3.3, o(M;"4)) < AM = 917'A. Therefore, the
approximation property (3.8) in Lemma 3.2 holds with ¢ from (3.24). From
Lemma 3.1, co(L} = (1 + c1{L) + ca{L)cr)*(L — 1), where, by Lemma 3.2, ¢; (L) =
1+ CsCi(L — 1}, ea{L} = C1Cpy + Cyey{L). From Lemma 3.3, Cg = 1/3,
Cy = (4/3)Cp, and the proof is completed by a direct computation. O

4. Choice of the tentative prolongator. In this section we reformulate the
construction of the tentative prolongators described in [41] and prove the main
convergence theorem.

The problem variables are divided into supernodes. The supernodes on each level
are divided into aggregates by a simple greedy algorithm, cf., [41] for details.

The input data needed for constructing the tentative prolongators P/, are the
aggregates for all levels | < I, and an n: X r matrix Bl, where r is a positive integer.
The range of B* specifies which functions (finest level vectors) should be exactly
representable on each coarse level in the sense that

(4.1) Range B' C Range P!, I=1,...,L- .

The main convergence theorem, Theorem 4.2 below, gives a convergence estimate
based on assumptions on the finest-level matrix A, the matrix B! and the aggregates.
The key assumption of Theorem 4.2 is a weak approximation property (4.4) that is
easy to verify computationally [22], thus providing a guideline for choosing aggregates
and the the matrix B' needed for solving a linear system with given matrix A;.

Both the comstruction of the tentative prolongators and Th. 4.2 are purely
algebraic; as far as A; is (symmetric) positive semidefinite, we do not make any
assumption about its origin here.

Following the considerations in [41], we typically choose B? to be a generator of
zero energy modes. In a finite element context, this means the kernel of the stiffness
matrix obtained from the finite element model with no essential boundary conditions.
Zero energy modes, determined from geometry and element definition, are available
in most of the existing finite element packages.

The objective (4.1} is specified for the composite tentative prolongators P!, To
enforce it during the setup of P_[‘ 1> We create simultaneously the prolongator PfH

and the n;yq X r matrix B'*1 so that
(4.2) Pl B" =B,

where B! has been constructed during the setup of Pf_1 (or, is given if [ = 1),
9



Qur construction is based on the supernodes aggregation concept. On each level,
degrees of freedom are organized in small disjoint clusters called supernodes. On the
finest level, these clusters have to be specified, e.g., as the sets of degrees of freedom
associated with the finite element vertices; the coarse level supernodes are then created
by our aggregation algorithm. The prolongator Pf+1 is constructed from a given
system of aggregates {Ai}i\;’l that forms a disjoint covering of level [ supernodes. A
simple greedy algorithm for generating aggregates based on the structure of the matrix
A; is given in [41]. The property (4.2} is enforced aggregate by aggregate; columns
of P}, associated with the aggregate A} are formed by orthonormalized restrictions
of the columns of B onto the aggregate AL For each aggregate, such a construction
gives rise to r degrees of freedom on the coarse level, forming a coarse level supernode.

The detailed algorithm follows. For ease of presentation, we assume that the fine
level supernodes are numbered by consecutive numbers within each aggregate. This
assumption can be easily avoided by renumbering.

ALGORITHM 2. For the given system of aggregates {Ab ?;11 and the ny X r motriz
B! satisfying PLB' = B, we create a prolongator P}, a matriz B satisfying (4.2)
and supernodes on level [ + 1 as follows:

1. Let d; denote the number of degrees of freedom associated with aggregate A,

Partition the ny x v matriz B' into blocks Bﬁ of size d; x v, 1 = 1,..., N,
each corresponding to the set of degrees of freedom on an aggregate AL (see
Fig. 4.1).

2. Decompose B! = QLR., where Q% is an d; x r orthogonal matriz, and R. is
an r X r upper triegngular matriz.

8. Create the tentative prolongator Pl = diag(Q},...,Q%,), ¢f., Fig. 4.1, and
set

Ry
BI+1 — Rlz
Ry,

4. For each aggregate AL, the coarsening gives rise to v degrees of freedom on
the coarse level (the i—th block column of Pfﬂ J. These degrees of freedom
define the i—th coarse level supernode.

REMARK 4.1. [Zero energy modes and geometric data] In many cases, the matrix
B! can be obtained without any geometric information.

As already noted inthe intorduction, for common discretizations of second order
scalar elliptic problems, zero energy modes are formed by multiples of the vector of
ones, cf., also Sect. 5.

When solving a nonscalar, uniformly V-elliptic second order problem, the
situation is very similar; it is sufficient to build the matrix B so that its range
contains all {discretized) constant vector fields. For commonly used finite element
discretizations, this can be accomplished without geomsetrical data again. The
model problem verification in Sect. 5 can be extended to this case using a standard
I —equivalence argument (that is, using the coercivity and the boundedness of a
bilinear form af-, -} (see (5.1)) in the space

{n:x€Qr ulx) = (ur,up,.. )" : Il 2 (g == Z lfeeill ey < 00})
fields ¢

The convergence estimate then depends on the coercivity constant (Korn’s constant
10
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F1Gg. 4.1. The fentative prolongator Pf+1

in linear elasticity) which is relatively sensitive to problem data, resulting in certain
loss of robustness.

The above equivalence argument can be avoided for tentative prolongators
constructed using all zero-energy modes, which are rigid body modes in the case
of elasticity, as in [41]. This allows one to prove the weak approximation property
with a constant independent of some problem data, such as boundary conditions,
shape of the computational domain, and also, under some restrictions, jumps in
coefficients [22, 43].

Before formulating the convergence theorem, we introduce the composite aggregate
and the associated norm. The composite aggregate A is the aggregate A}, understood
as the corresponding set of supernodes on the finest level. Formally, A”i is defined by

(4.3) A=AV, where A=A, AP = AL
7 i i i 2 k
ke AP?

and the corresponding discrete [2—(semi)norm of the vector x € R™ by
1/2

§}X3§12(,ig) = Z o}

dofs & of AL

We are now ready to prove the main convergence theorem.

THEOREM 4.2, Let the prolongator smoothers Sy be given by (2.3) with M chosen
as in (2.5), and the tentative prolongators P}, are created by Algorithm 2 using the
ny X r maitric B' and the aggregates {Ai}?ﬁl, I=1,...,L—1. Assume there is a
constant C 4 > 0 such that for every u € R™ and everyl=1,...,L -1,

Ny -1
. 9
(44) E :v%%r”u - BlW% ;22(_/1:) < CATHHH?A
=1
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Further assume that By are syminelric positive definite matrices satisfying (3.7) with
a constant cp > 0 independent of the level.
Then,

& — MG(x,b)|ia < (1 - ) 1% — xl]4 ¥x € R™,

o
CQ(L)
where AX = b, and

co(L) = (2+ Cacr + (4/3)er + (1/3)Ca (1 + (4/3)cr) (I — D) (L —1).

Further, if P 1 u — MG(0,x), then P is symmetric in (-, Jmr1 ond cond(A4, P} <
CO(L).

Proof. The proof consists of the verification of the assumptions of Theorem 3.4.
The tentative prolongators Pfﬂ are block diagonal matrices with orthogonal blocks

L, hence orthogonal (see Step 2.) Since the product of orthogonal matrices is an

orthogonal matrix, P} is orthogonal and (3.25) holds with Cpr = 1.

Let us show that (3.24) is satisfied with C; = C 4. For each supernode st on level
{, define the space

Wi={P'x|xeR™, z; =0Vj&s}, i=1,...,N_i.

Note that the number of supernodes on level [ equals the number of aggregates Ny,
on level I — 1. Let dof(Ag"l) be the set of degrees of freedom corresponding to the
aggregate A:;_l. From the nonzero block structure of the tentative prolongators PF L1

and the definition (4.3) of the composite aggregates AL, it follows that (P!x);, j €
dof(AL), depend only on 2, k € st. Hence,

(4.5) W! = {x e R™|3y € Range P :a; = y; if i € dof(A1), 0 otherwise} :
Since the aggregates A~§ form a disjoint covering of the set of the finest level

supernodes, the spaces W} form an orthogonal decomposition of Range P! and the
corresponding orthogonal projections T¢ : R™ — W}, 7' : IR™ -+ Range P} satisfy

T'=T{+T5+...+Th,_,.

From here and from (4.5), we get the following estimate for every u € R™,

Ni1 Ni
0= Tl = 3 hu= (T 4 Tl oy = O Il = Tl i
f==1 i=1
Nia Ny
— ; w2 . o Rlg?
(4.6) = ; we gﬁ)l;e P | W”p(,ztf,-l) < ; ot le —B Wgzz(,ﬁ-l),

using {4.1) in the last step. _

Set @ = (P})T. Since M; = (PHT P} = I, the mapping P} @, = B M, H(PHT is
the orthogonal projection T¢ onto Range P}. Then, using the equation PY Qi1 =
T, estimates {4.6) and (3.20), and assumption (4.4), we obtain

1P Qra — Pl Grerulffey < 17— PY Qe )ullire
X (2 ot e
< ;wﬂé}gﬁ“ -B W||£z(,15) < CAT||11§|A,

proving (3.24) with C; = C4. Now, the proof follows from Cyy = 1, €1 = C 4, using
Theorem 3.4. O
12



5. Model Problem. The goal of this section is to verify the key
assumption (4.4) of Theorem 4.2 on a simple example. The weak approximation
property for problems of linear elasticity has been investigated in [43] For the
verification of the smoothing condition (3.7) for commonly used smoothers we refer
to [6]. Note that for the Richardson iteration given by Ry = p(4;)~*1, (3.7) holds
with eg = 1.

Let © c RY, d = 2,3 be a bounded domain, 7 a quasiuniform finite element
mesh on 2, and V, a P1 or Q1 finite element space associated with 75,. At some of
the boundary vertices, zero Dirichlet boundary condition is imposed for functions in
V. We assume the standard scaling of the finite element basis, ||¢;||~ = 1 and solve
a second order scalar elliptic problem

(5.1) find u € V;, such that alu,v) = f(v) for every v € V4,

where f € H™1(Q) and a(-,) is a coercive and bounded bilinear form on H'({2).

For solving the resulting linear system (2.1), we use Algorithm 1, where the
prolongator smoothers are defined by (2.3) and (2.5) and the tentative prolongators
are created by Algorithm 2. In order to do so, we need to specify the supernodes on
the finest level, the supernode aggregates {.AI -, on each level [ < L, and the matrix
Bl

On level 1, each supernade consists of the degree of freedom associated with one
finite element vertex with no essential boundary condition imposed.

We assume that on every level [ < L, for each aggregate A there is a ball U} C R
such that

1. all finite element vertices of the corresponding composite aggregate Aﬂi are
located within U},
2. diam (U}) < C3'h, where h is the characteristic meshsize of 7, and C is a
positive constant independent of the level,
3. there is an integer constant N independent of the level such that every point
% € {2 belongs to at most NV balls U}, (Overlaps of the balls are bounded.)
The heuristic greedy algorithm described in [41] tends to generate aggregates
satisfying the above assumption.

In order to satisfy assumption (4.4), we need to choose B! so that on each
aggregate, minwer-||n— B*w|| is small compared to the energy norm of u. Therefore,
with the Poincaré inequality in mind, we choose B! to be the discrete representation
of the unit function, the vector of ones.

Let u = (u1,...,14,,)7 be a given vector and v = Uiy + ... + Un, Pp, the
corresponding finite element function. In what follows, € is a generic constant
independent of u, u, the meshsize h and the level [. We mtroduce a domain ' C §
consisting of all elements of the mesh 7, that are not adjacent to a finite eiement
vertex with prescribed Dirichlet boundary condition. Then, @3 + ... +¢; =1 on
and, as all active degrees of freedom are located in Q’, the equivalence of discrete and
continuous L?-—-norms gives

(53:2) Alla— Bl gy < Cllw = plla@ing) < CIBu = pllL2@y, peR

Here, E : H'(0) » HY(R%/R"' = {v : |[v|znme) < 0o} is the extension operator
satisfying Eu = u on £ and |Eu|g1(gey < Clulgie)-

To verify (4.4), we need to estimate the minimum of the expression on the left-
hand side of (5.2} with respect to p € IR'. This can be done using the scaled Poincaré

13



inequality applied to the right-hand side of (5.2): for each ball U}, there is a number
pi = p(Fu) such that || Bu—pl|| 12y, < C diam (U})|Eul g1 gy Here, C is a Poincaré
constant on the unit ball. Hence, for all balls U} it holds that

(5.3) min llw = B9l 1y < e = BYolG gy < Ch™ diam (U3)* | Bulfn gy,

From the assumption that diam (U}) < C3'h, the property |Eu| g may < Cluln(a),
estimate (5.3), the bounded overlaps of the balls U}, the well-known estimate
o{A) < Ch??, and the H*—equivalence of a(, -} we get

Ny I 1 gi—t
(5.4) Z;%%JLHU_BW;(AD R glEulHi(]ﬁd) <C o(A) il“”A:
i=1

completing the verification of (4.4).

Note the very weak dependence of our estimate on the actual shape of the
aggregates; the constant C' in the estimate above depends on the shape of the
aggregates only through the intersection parameter N. Also, the estimate is
independent of the essential boundary conditions.

6. Acknowledgments. The authors would like to thank Caroline Heberton for
reading this paper and many useful comments.
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