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ROBUST MULTIGRID METHODS FOR ELLIPTIC LINEAR
SYSTEMS

TONY F. CHAN * AND W. L. WAN

Abstract. We survey robust multigrid methods in the literature which have been developed in
recent years for solving second order elliptic PDEs with nonsmooth coefficients, We highlight the key
ideas of designing robust multigrid methods which are able to recover the usual multigrid efficiency
for nonsmooth coefficiens PDEs on structured or unsttuctured grids. In particular, we shall describe
various approaches for constructing the interpolation and the smoothing operators, and the coarse
grid points selections,

1. Introduction. Multigrid methods are multilevel techniques for solving partial differential
equations (PDEs} by eliminating errors in different parts of the spectrum on a sequence of coarse
grids, or more generally, coarse subspaces. The basic principle is based on the interplay of smoothing
and coarse grid correction which complement each other; the smooth errors not being reduced by
smoothing are eliminated by coarse grid corrections. These techniques can generally be applied directly
to PDEs but are of most interest when applied to the linear systems arising from their discretizations.
Multigrid methods have been widely used in a broad variety of applications, from Poisson equations to
full Navier-Stokes equations, from two-dimensional square domains to three dimensional unstructured
airfoil grids, etc. Multigrid has proved itself as a powerful and successful numerical technology for fast
and efficient computations. In contrast with many other iterative methods such as classical relaxation
methods, multigrid offers the capability of solving elliptic PDE problems with complexity and storage
proportional to the number of unknowns, and its convergence rate is often independent of the problem
size.

In this article, we survey robust multigrid methods in the literature which have been developed
in recent years for solving second order elliptic PDEs with nonsmooth coeflicients. While multigrid
converges rapidly for medel problems such as the Poisson equation on a square, its convergence rate can
be severely affected by PDEs with highly nonsmooth coefficients, or problems defined on complicated
geometries, and unstructured grids. Unfortunately, these types of problems often arise in industrial
applications, and hence traditional multigrid methods must be redesigned for them. The primary
focus of this paper is in the design of robust multigrid methods which are able to retain the usual
multigrid efficiency for smooth coefficient PDEs on structured grids. In particular, we shall describe
various approaches for constructing the interpolation and the smoothing operators, and the coarse
grid points selections.

General surveys of multigrid methods for solving different kinds of applications can be found in
Brandt [20, 21, 23]. A survey on multilevel methods on unstructured grids can be found in Chan
et al [29]. Also, see Jones and McCormick [66], and McBryan et al [78] for a survey of parallel
implementation of multigrid, which i$ not within the scope of this paper. Surveys on other aspects
of multigrid methods can be found in [24, 58, 65, 105]. We also note that the introductory note by
Wagner [101] contains a lot of the details of the interpolation approaches discussed in this paper.
Finally, we refer the readers to MGNet [80] for a database of an extensive collection of multigrid
papers in the literature.

The germ of the idea of multigrid can be found in the works of Southwell [92], and Wachpress
{100]. The modern idea was introduced and analyzed by Brakhage [15], and Fedorenko [49, 50] in the
1960’s, followed by Bachvalov [5]. Multigrid methods have not been paid much attention in the 1970’s
until the works of Astrachancer [2], Bank and Dupont {6], Brandt [19], Hackbusch [57], Nicolaides
{83], and others showed that multigrid is indeed a very useful technique practically and theoretically.
An enormous amount of progress has been achieved since then. Various multigrid methods have been
developed, ranging from geometry specific to purely algebraic black box methods, and a spectrum
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of methods exist between the two extremes; see Figure 1. We refer to this spectrum of methods as
gray boz methods: they require more information about the problem (e.g. grids, matrix graph, etc)
than a complete black box approach, but on the other hand, they can produce better robustness and
performance.

Close to the geometric dependent end of the spectrum where Cartesian grid was used, Alcouffe et
al [1] was one of the earliest papers to address the issue of nonsmooth coefficient PDE probleras, and
proposed robust interpolation methods for multigrid; see also Kettler and Meijerink [67]. Along this
line were also the black box multigrid method by Dendy [39, 40], and matrix dependent approaches
by de Zeeuw [115] and Reusken [85, 86]. Other related approaches include frequency decomposition
by Hackbusch [60], and filtering decomposition by Wittum [108, 109]. The purely algebraic methods,
on the other end of the spectrum, were first proposed by Brandt, McCormick and Ruge [25], and
then popularized by Ruge and Stiiben [88]. These is a recent resurgence of interest in AMG and
other multigrid algorithms with focuses on parallel implementation and memory hierarchy aspects
[26, 37, 38, 44, 45, 70, 84, 97]. An introduction to AMG is recently given by Stiiben [84]. See also
the algebraic multilevel methods by Axelsson and Vassilevski [3, 4], and an additive version of AMG
by Grauschopf, Griebel and Regler [52] The geometric unstructured multigrid methods were studied
by Bank and Xu [9], Chan, Smith and Zou {33], Guillard [56], Lallemand, Steve and Dervieux [71],
Mavriplis [77], Morano, Mavriplis and Venkatakrishnan [81], and Xu [113]. The recent interest in
energy minimization was studied by Brezina et al {26], Brezina, Mandel and Vanék [74, 98}, Chan,
Xu and Zikatanov [34] with a local minimization perspective, and Wan, Chan and Smith [104] with
a global minimization perspective. Another recent interest is in the direction of bridging the gap
between Gaussian elimination and multigrid; see Bank and Smith (8], and Reusken [87}. Other
multilevel methods include the hierarchical basis multigrid methods proposed by Yserentant [114],
and Bank, Dupont and Yserentant {7], and the BPX method proposed by Bramble, Pasciak and
Xu [17]. In Griebel [53], multilevel methods including multigrid and BPX were viewed as iterative
methods on semidefinite systems. General multigrid references can be found in the books of Bramble
[16}, Briggs [27], Hackbusch [59], Smith, Bjgrstad and Gropp [89], and Wesseling [106]. Finally, we
note that we are not able to survey the many more references in the literature here.

This paper is organized as follows: Section 1 begins with the basic principles of multigrid, and
its classical convergence analysis. The design of robust multigrid will be discussed component by
component. In Section 2, the construction of various sophisticated interpolation operators is described.
Section 3 concerns the robustness and efficiency of smoothers. Algebraic and geomefric coarsening
strategies are covered in Section 4. Finally, Section 5 summarizes the current and future research on
robust multigrid methods for elliptic linear systems.

In the rest of this section, we introduce the model problem and notation used in this paper, followed
by the standard mmitigrid algorithm and the classical convergence analysis for smooth coefficient
problems.

1.1. Elliptic PDEs. Elliptic PDE problems are one of the most extensively investigated prob-
lems in applied mathematics. Their relation to many physical models is well-known and the theoretical
and numerical results obtained in this area are very useful in practice. The design of numerical meth-
ods for such model problems can often be adapted and applied to more complicated situations. Elliptic
problems are also important in their own right, for instance, in the solution of the pressure equation
arising from incompressible fluid problems, implicit time integration schemes, ete.

The model problem of primary interest is the following elliptic PDE which exhibits the fundamental
properties and challenges that the elliptic problems above generally experience:

=V a{z)Vulz) = f(z) z g,
v = 0 x € 69,



where 0 € IR%,d = 2, 3, is a polygonal or polyhedral domain, and a(z), in general, is a d x d symmetric
positive definite matrix whose eigenvalues are bounded uniformly on Q, and its coefficients can be
oscillatory or discontinuous with large jumps across the interfaces. We note that Dirichlet boundary
condition is used just for simplicity, and other boundary conditions are also permissible.

Many of the multigrid methods discussed in this paper apply to the discretization matrices given
by finite element, finite difference or finite volume methods. For easy exposition, we set up notations
based on finite element discretization. Let H'(2) be the standard Sobolov space consisting of square
integrable functions with square integrable derivatives of first order, and Hg(€2) the subspace of H o
whose functions vanish on 6%, Find v € Hj(f) such that

(1) a(u,v) = (f,v) Vv € Hy(9),

where
a(u,v):/a(w)Vu-Vvd:c, (f,v):/fvda:.
a ol

Suppose {2 is triangulated by quasi-uniform nonoverlapping simplexes 7; with size h, Le. = U,
Define the finite element subspace by
VP = 0" € HY{(Q) : o"|., € Pi(m), Vi),

where Pi(7:) is the set of linear functions on 7. The finite element approximation is the function
u® € V* such that

(2) a(u®, o™y = (f,v") vl e Vi
Define a linear operator A" : V* - V* by
(APuP o™y = a(u®,o") ut, 0" e vh
Then (2) is equivalent to
(3) Al = g,
where f* is the projection of f on V. Let {qﬁ?}}‘zl be the set of nodal basis of V. Write u® =
hI phek, and f* = i bj¢}. Then (3) is equivalent to the linear system
(4) Arult =",
where A" is the stiffness matrix, " = (pf, ..., pP)T, 0* = M5, ..., 687, and M" the mass matrix.

It is well-known that the condition number of A" grows in the order of O(h™7), and hence classical
iterative methods converge very slowly for large scale problems. In the next sections, we describe a
fast solution procedure — mulfigrid — for solving (4) whose convergence rate is often independent of
the mesh size h.

Remark: We distinguish A*, a Linear operator on V*, from A", the corresponding stiffness matrix.
The multigrid algorithms discussed in this paper are fast solution methods for solving the matrix
equation (4}.

1.2. Basic principles of multigrid. The idea of multigrid consists of two main components:
smoothing and coarse grid correction. The smoothing process, usually carried out by a few iterations
of a relaxation method, damps away the high frequency error components. The coarse grid correction
process, carried out by a restriction, a coarse grid solve, and an interpolation, eliminafes the low
frequency error components. Hence, the key of multigrid is that smoothing and coarse grid correction
complement each other. As a result, the combination of the two yields a significant error reduction,
resulting in a fast solution procedure. Moreover, we gain efficiency since the coarse grid solves are less
expensive than the fine grid one. The two-grid solution process is made more precise in the following,

We begin with an initial guess p" and we smooth the error by applying a relaxation iteration:

(5) pi =+ RAO — A"y,

where R" is the approximate inverse of A" given by the relaxation method. Then, we improve pu} by
a coarse grid correction consisting of the following steps (eqns (6)-(8)): First, we restrict the residual
to the coarse grid V&

(6) o= Il - A,
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where T} is the restriction operator. Second, we solve the coarse grid error equation:
(7 Al e

where the coarse grid matrix A7 is formed by the Galerkin process: A = TF A"T}. The Gakerkin
approach can be shown to be optimal for symmetric positive definite elliptic problems. Here Ih =

HA\T P Py P e e P Ay aladn aals +n n fna H
(T3 is the interpolation operator. The coarse grid error is then interpolated back to the fine grid

and the fine grid approximation is updated by:

(8) ph = b 7T

Finally, in a V-cycle multigrid, we apply a post-smoothing at the end:

(9 phew = p3 + RMB" — A"pg).

Combining (5)-(9), the entire process can be summarized by the following resnlt.

THEOREM 1.1. The iteration mairiz Mtg of the two-grid method with v steps of pre-smoothing
and v2 steps of post-smoothing is given by:

(10) Myg = (I - RMAMY2 (1 - T (A7) I AP - RE ARy

If we solve the coarse grid problem (7) recursively, we obtain a multigrid algorithm. We use the
following notations for the multilevel methods in the next sections. Let Vy = V* be the fine grid
space, and Vi C Va-- C Vs be a sequence of nested coarse grid subspace of V*. On each level k,
A¥ . Vi = V4 is the restriction of A” = A" on Vi, and R¥ : Vi — W is an approximate inverse of A*
given by the smoother. Their corresponding stiffness matrix is denoted by A* and R, respectively.
Let T%_; : Vi1 = Vi be the interpolation operator and its adjoint I,’:_l : Vi — Vi_1 the restriction
operator. Their matrix representation is denoted by ZF_, and I,’:"l = (ZF_)", respectively.

In addition, associated with each A*, we define the A-inner product by (-, Y4 = (4%, ). Let
Qr - V3 > Vi and B : Vi = Vi be the projection operators with respect to the I? and A inner
products, respectively.

1.3. Convergence theory. Inview of (10), the classical convergence analysis involves the norm
estimates of:

(11— R*A% and lT —ZF (AT 2ZH A

See Bramble {16], Brandt [22], Hackbusch [59], and McCormick [79] for details. Here, we summarize
the results in the literature based on the subspace correction framework developed by Xu {112]. The
convergence of multigrid is governed by two constants Kp and K defined as:

Ky: For any v € V, there exists a decomposition » = Z;.;l v; for v; € Vi such that

{11) Z(R{lvi,v;) < Ko(Aw,v),

i=1
where R; is the approximate inverse operator given by the smoother.

Ej:Foramy SC{l,..., J}x{1,...,Jtand ws,v; e Viori=1,...,J,

J J
(12) 37 (T Tyusda < K> (T, u)) (O (Thes,0)4) 2,

(i.)€s i=1 j=1
where T} = R A; P;.
THEOREM 1.2, Let Myg be the tleration matriz given by the V-cycle multigrid. Then

2—601

2
lmm <1- T 71 1 I” N9t
[1¥4mgla <1 Ko(1+K,)?

where wy = maxi<i<s p{RiA;).
Proof. See [112]. O



By Theorem 1.2, the convergence rate can be improved by producing a smaller Ko or K1. By
definition, it can be easily proved the following result.
Lemma 1.3,

Ki <uwid

Thus, the estimate of Kp is crucial. We analyze K from the domain decompesition perspective, For

second order scaler elliptic PDEs, Ky depends on two inequalities:

J
(13) IQuolh + Y H@r —Qu-1)vlla < Colplfi,

k=2
(14) [Qr — Qre—1)vll < Crhe—1||Qrwlia, k>1,

where Qr : V — Vi is the L” projection. The stability inequality (13) is known as the Partition
Lemma [47, 72, 76] which plays an essential role in the convergence analysis of domain decomposition
methods. It requires that for any given v € V, we must be able to decompose it into v € Vi such
that the total energy of all the pieces v is bounded by a small constant factor of the original energy
of v. In the multigrid context, it can be translated into the following: the coarse grid basis functions
must have small energy. The approzimation inequality (14} requires that the functions on the coarse
grids approximate the fine grid functions to at least first order accuracy. A sufficient condition is that
the coarse subspace contains constant functions.

In conclusion, one major approach of improving robustness is to devise multigrid methods which
lead to a small Ko. For instance, the constructions of the robust interpolation operators described in
Section 2.5 are based on the stability and approximation inegualities.

1.4. Multigrid for nonsmooth coefficient PDEs. The success of multigrid hinges on the
choice of coarse grids, and the smoothing, interpolation and coarse grid operators. In standard
multigrid, full coarsening, Jacobi or Gauss-Seidel smoothing, and linear interpolation are often used.
Classical convergence theory and practice shows that these simple choices are enough to achieve mesh
independent convergence.

For PDE problems with nonsmooth coefficients, the convergence results in Section 1.3 are not
adequate since the convergence constants may depend on the nature of the PDE coefficients. For
example, multigrid converges slowly when the coefficients exhibit anisotropy [59], large jumps in dis-
continuity [1, 19, 39, 40], or large oscillations {48, 73, 95]. Special techniques such as line Ganss-Seidel
[19], semi-coarsening [41, 42, 90], algebraic multigrid [14, 25, 85, 88, 93], frequency decomposition
[43, 60, 95], and homogenization {48, 73], are used to handle some of these cases. In the next sections,
we gurvey the gtate-of-the-art of each individual multigrid components and discuss how they bring
insight into the design of robust multigrid methods.

2. Interpolation. Sophisticated designs of interpolation have been the key in developing ro-
bust multigrid methods. The many different methods can be generally divided into three categories
ranging from geometric specific to purely algebraic. The structured grid approach takes advantages
of the special PDE and algebraic structures associated with the Cartesian grids. The unstructured
grid approach exploits the given grid information to derive interpolations. The algebraic multigrid
approach, on the other hand, focuses on the algebraic aspect and derive interpolation from the residual
equations. A recent approach constructs interpolation based on energy minimization which exploits
the properties of the underlying PDEs while allowing general computational domains.

In the following, without loss of generality, we only discuss interpolation from coarse to fine,
since the Galerkin process will automatically generate a multigrid method; see Section 1.2, Thus,
superseripts h or H are used to denote quantities in the fine or coarse grid. Moreover, we sometimes
describe the construction of coarse grid basis functions rather than the interpolation operators since
they are essentially the same. In the finite element context, the coarse grid space V¥ is often a
subspace of V*. Thus, if {¢}}7.; and {¢{'}72, are the nodal basis for Vh and V¥, respectively, then
we have the following equality:

(¢ - pml = 91 - SRITH,

where Z# is the interpolation matrix. Hence, the set of coarse grid basis functions defines an inter-
polation, and vice versa. In particular, in the subsequent sections on the agglomeration unstructured
grid approach and energy minimization approach, we shall describe the constructions of the coarse
grid basis in place of interpolation. We note that the coarse grid subspaces need not be nested, for
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instance, in geometric unstructured grid mutigrid methods. However, mutigrid methods resulting
from nested coarse subspaces are generally more robust, and hence we shall focus on this case in the
next sections.

Before going on, we first discuss & well-known interpolation technique in one dimension, which
is one of the earliest attempts to construct robust interpolation operator for nonsmooth coefficients.
It turns out the basic design strategies in higher dimensions can be viewed as trying to extend this
one-dimensional approach.

2.1. One dimension. For nonsmooth coefficient PDEs, linear interpolation is not able to ac-
curately approximate the irregular shape of the numerical solutions during the multigrid process. For
example, Figure 2 shows a typical solution of the PDEs whose coefficient is piecewise constant. In the
worst case, linear interpolation can make an O(h) error, which is much poorer than the usual O(h?)
erIor,

true solution u(x)

Xy Xois1 X2

Fig. 2. Linear interpolation makes an O(h) error for a typical solution of the PDEs whose
coefficient is piecewnse constant,

A robust interpolation can be constructed by solving local PDEs [59]. Given the values vy and
vziy2 at the coarse grid points zg; and a4, respectively, the value vgp1 is computed by solving a
homogeneous two-point boundary value problem:

—% a(z) a%'u(:r:) =0 T € {Tei, Taisz)

15
(15) (e} = vai, v(Z2itz) = vaita.

Suppose a(z) is piecewise continuous, for instance, a(zx) = a”, T2 < ¥ < Zzip1, and a(z) = o7,
T2i+1 < T < Eai+2. Then the finite element solution of (15) yields

o
vz +
a—+a‘|‘ 21

16 ipl = b2
(16) Uil P

The new interpolated solution is more accurate at the discontinuities. It is well-known that the
resulting multigrid is very robust and converges rapidly for nonsmooth coefficient a{x).

The local PDE approach has the property of preserving flux continuity. It can be proved [59] that
the interpolated v given by (16} satisfies the jump condition

im a(z)'(z) = lim a(z)'(z)
z—-}:t:z_H_l :z:—)::ltg;._|_1

at T2;+1 which the exact solution does. In fact, the converse is also true; that is, if v satisfies the jump
condition, then it sclves the local PDE (15).

Yet the interpolation can be interpreted by pure linear algebra. Ordering the noncoarse grid points
pr and then the coarse grid points p¢, we can write the permuted matrix, still denoted by A" in a

2 x 2 block form:
A A pe | br
Az Az Ho be |

where A11 is a diagonal matrix. After eliminating pw, we obtain the Schur complement equation for
fLlep
(17} Spo = bo — Azl.Al_be,
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where § = A — An A;ll Aiz. Define the interpolation and restriction matrices respectively by

_A=-1
(18) Th = [ Az A ] cand  IH = (Ih)T = [—An AT, ).

Then § = Z; AMT}; is precisely the coarse grid matrix A7 in the multigrid context, and (17) is the
usual coarse grid equation for po with the right-hand side given by restriction: ragd [Br, bC]T. The

noncoarse grid values pp are obtained by backward substitution:
(19) pr = — A7 Awzpo + Aji be.

Using (19), we can write [ur, pc]? as:

-1
BF | _ ok 0 3 Rk
(20 [ ] =i+ (4575 0 - 4Thn).
Thus, the backward substitution can be interpreted as applying a Jacobi relaxation smoothing on the

noncoarse grid points to the interpolated solution Ihuo.
‘We note that the block Gaussian elimination can be also written as block LU form:

Ap o | An A | I 0 Az 0 I AtA
T A Az || Amd T 0 A" 0 I ?
wheze the interpolation I% and the restriction If operators are related to the upper and lower
triangular factors, respectively.

To summarize, the block Gaussian elimination process is a two level multigrid with Z% and Z
defined as in (18), and a post-smoothing step {20). Furthermore, the inversion of the Schur complement
in (17) can be done by recursively applying the previous procedure to &. The resulting algorithm
is known as cyclic reduction, and the corresponding multigrid method is a backslash cycle {112].
Moreover, it can be easily verified that the particular matrix-dependent interpolation matrix defined
in {18) is precisely the one obtained by solving local PDEs.

These three interpretations of the same interpolation: local PDE solve, flux continuity, and the

Schur complement, form the basic design principles of constructing the robust interpolation discussed
in the following sections.

2.1.1. Convergence analysis in 1D. Convergence analysis of robust multigrid methods in
general is very limited in the literature since the interpolation operator is usually complicatedly
defined. However, in one dimension, we have the following result [103].

THEOREM 2.1. If the interpolation operator discussed above is used together with demped Jacobi
or Gauss-Seidel smoothers, the resulting multigrid convergence is independent of the mesh size and
the PDE coefficient o(x).

The proof uses the fact that the coarse grid basis functions from all the levels form an A-orthogonal
hierarchical basis, and hence the damped Jacobi and Gauss-Seidel smoothers give an optimal con-
stant bound for Ky and K which are the essential elements for estimating multigrid convergence by
Theorem 1.2. Details can be found in [103}.

2.2. Structured grid approaches. Structured grids, in particular, Cartesian grids, have been
very popular in applications for their regularity in geometry and in the algebraic structure of the
resulting discretization matrix. Thus efficient numerical methods can be easily derived and employed.
This approach also includes nested finite element grids obtained by recursive refinement where the
discontinuities of the PDE coefficients are aligned with all the coarse grids. As a result, according
to the domain decomposition theory [18, 46, 111], it can be proved that the convergence rate is
independent of the size of the jumps in the coefficient using even the linear interpolation. However,
in general, the discontinuities do not align with some of the coarse grids. Then other approaches are
needed; see Section 2.3, 2.4, and 2.5.

Assuming Cartesian grids, the structured grid multigrid methods can generally be categorized into
two: the stencil and Schur complement approaches.

2.2.1. Stencil. The one-dimensional local PDE technique cannct be applied directly to higher
dimensions. Consider a portion of the fine grid with coarse grid points denoted by circles as shown in
Figure 3. In contrast to one dimension, the noncoarse grid points are not enclosed by only coarse grid

7
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Fic. 3. A portion of a fine grid with coarse grid points denoted by circles, and noncoarse grid
poinits by crosses.

points, and hence a local boundary value problem similar to (15) cannot be set up. The challenge of
extending the one-dimensional technique to higher dimensions is to set up local PDEs appropriately.

Alcouffe et al. [1] used special harmonic averaging techniques to construct operator-induced in-
terpolations, and in black box multigrid, Dendy [39, 40] simplified the interpolation procedure by
considering the stencil of the discrete operators. The key of the stencil approach is to first define
interpolation on edges, i.e. noncoarse grid points lying on coarse grid lines (nodes 1, 2, 3, 4 in Figure
3), and then the interpolation at the interior (node 5) can be defined by a local PDE solve. In partic-
ular, black box multigrid defines the interpolation on the edges by preserving the continuity of flux
across the interfaces. Thus, this multigrid method is efficient for PDE problems with discontinucus
coeflicients; the convergence rate is often independent of the mesh size and the size of the jumps.

The construction is as follows. Consider the nine-point stencil ai the noncoarse grid points, for
instance, node 1 (Figure 3) lying on a horizontal edges:

W 0 LW

o) o) G

1 3 1
ol o of)

The first and third rows are lumped to the second row, thus producing a one-dimensional three-point
stencil. The flux preserving interpolation {16) yields:

1 H 1 1 1 1
oy el o el el
2i41,25+1 341 (1}+ {1)+ (;) i+1,5+1-

oD 4 ad 1 ol

The lumping is used to preserve the continuity of the flux on the average along the vertical segment
through nodes 1 and 2. The interpolation on vertical coarse grid lines (nodes 3 and 4) are defined
analogously. Finally, since all the values on the edges are known, the interpolated value at node 5 can
be obtained by solving a local PDE problem as in (15} where the solution is given by:

4(’\5'%4" iy 0(5) o {5) a(5) "
Boit1,2j4+1 = (5) Ui j+1 + (5} —mUzit1,25+2 T+ (5} 'U1+1,;+1 e (5) Ug;,2i4+1 T
Dl B,
(22) NE) —=Uniys,zi41 + (5) —==v;; + TE VA% + —(5) Ykl
Oy Qo Qe

Another stencil based method is the matrix-dependent prolongation proposed by de Zeeuw [115].
It differs from the previous method in that the interpolated values on the edges are defined based on
a decomposition of the nine-point stencil. Viewing the stencil as a 3 x 3 matrix, it can be written
as a linear combination of nine basis matrices, or equivalently, stencils. De Zeeuw considered a
particular set of basis stencils corresponding to the discretization of the first and second derivatives.
The interpolation formula which depends on the coeflicients of the linear combination is very technical,
and we refer the interested readers to [101, 115] for details. This approach coincides with the black
box maultigrid of Dendy [39] for solving the model equation (1}, and can be directly applied to certain
nonsymmetric problems such as convection diffusion equations.



2.2.2. Schur complement and lumping. In this approach, we exploit the special algebraic
structure associated with the discretization matrix arising from Cartesian grids. As in one dimension,
the five-point stencil matrix in two dimensions can be written in a 2 x 2 block form:

| A Az
A _[Am Azz]’

where A;; is diagonal if the red-black ordering is used. However, the coarse grid matrix A¥ = 8§ =
Azz — Az1 A7} A1z now corresponds to a nine-point stencil instead. Thus the algorithm cannot be
repeated recursively.

In order to recover a five-point stencil structure, Reusken [85, 86] applies a lumping strategy to the
nine-point stencil coarse grid operator as follows. He reptaced the nine-point stencil at a noncoarse
grid point by a five-point stencil:

ONW ON ONE 0 fBw O
aw (277} oF — Bw ,66’ ﬂE )
Gsw s OsE 0 f[s @

where

An = an +anw +axg, fw = aw +avw + asw,
o = ac — (enw + ang + asw + asg), fg = ag +ane + ase.
Br = as + asw + ase.

The Ilumping procedure essentially substitutes the unknowns v 15+1s v{_‘;l‘ FIeH 'ufil,j_l, and Uf{hl,jm 1
by the unknowns ufj_l, Uf};“'“ v{illj, ﬁf,_l,j, and vf_,— in the finite difference equatign corresponging
to the coarse grid point (=} ,yf ) based on a linear approximation; for instance, vil; ;11 & —vi; -+

vfj+1 + 'vf{l,j. In matrix form, the resulting discretization matrix becomes:

e A A
A= o R
[ Az Az }

where 211 is now a diagonal matrix. Moreover, the interpolation and restriction operators given by
(18) are local, and the entire procedure can be repeated recursively.
Another strategy by Fuhrmann [51] is to approximate 411 by its lower or upper triangular part.

2.3. Unstructured grid approaches. Unstructured gridding, which has a high fHexibility
of capturing complex geometrical shapes and providing adaptive local refinements, are useful for
solving problems involving rapidly changing solutions, irregular boundaries, and multiscale geometries.
However, as a result, the computational grids do not have any particular nested grid hierarchical
structure to be exploited. Thus the structured grid multigrid methods must be redesigned to handle
the irregularity without losing too much in terms of complexity and performance.

The two main difficulties of designing multigrid methods on unstructured grids are the extraction
of & hierarchy of coarser grids from a given fine grid, and the definition of the interpolation operators
between grids. In the following sections, we describe several approaches of solving the two problems
with increasing mathematical structures and decreasing intuition.

2.3.1. Independent grids. The first approach [77] is based on independently generated coarse
grids and piecewise linear interpolation between the grids. Thus, one can use the grid generator which
generates the unstructured fine grid to generate a sequence of coarser grids. Moreover, since the coarser
grids comsist of the usual finite elements, for instance, linear elements on triangles, linear interpolation
and the coarse grid operator can be easily defined.

The advantage of this approach is convenience; the coarse grids can be generated by using the same
grid generator which produced the original fine grid. The disadvantage is that the construction of the
interpolation operator is very expensive since one has to identify which coarse triangles the noncoarse
grid points are in. Thus, an algorithm of complexity O(n?) is often resulted. Another disadvantage
is the non-blackbox nature of the coarse grid construction; the user is required to manually generate
the grids.

2.3.2. Node nested grids. An alternative approach [30, 33, 56] is based on generating node-
nested coarse grids, which are created by selecting subsets of a vertex set, retriangulating the subset,
and using piecewise linear interpolation between the grids. This provides an automatic way of gener-
ating coarse grids and a simpler implementation (O(n}) of the interpolation. The main disadvantage
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is that critical geometrical details may be lost through the coarsening and retriangulation process,
and hence special treatments are needed to preserve the important geometric features of the fine grid.
Moreover, the coarse grid boundaries may not match that of the fine grid, and hence the boundary
conditions must be incorporated properly, especialty for Neumann boundary condition [31]. Another
drawback is that in three dimensions, retetrahedralization can be problematic.

P N e man ] o o e e ey we e Py

Remark: Both the independent grid and node nested grid approaches are not designed to be robust
for PDE problems with nonsmooth coefficients since linear interpolation is used.

2.3.3. Agglomeration. To avoid the problem of losing geometrical details, a promising ag-
glomeration technique [69, 71, 99] motivated by finite volume based methods is introduced. Instead
of regenerating the coarse grids, neighboring fine grid elements are agglomerated together to form
macroelements; see Figure 4. For first order PDE problems, Venkatakrishnan and Mavriplis {99] used
piecewise constant interpolation. More precisely, let 7; be a macroelement and 7 = Ujen; 'rjh, where
N; is the set of neighboring nodes. Then

fu;‘ = ¢; = constant JjEN;.

However, their constant interpolation approach leads to slow convergence for second crder PDE prob-
lems since the basis is not stable. Within each macroelement, we need more robust weightings which
mimic linear interpolation on structured grids.

In general, the coarse space V¥ can be defined as the subspace spanned by a set of coarse grid
basis functions {¢} constructed as foows. For each coarse grid point 4, define

ko h 3
(23) oF = Z wiz b7 + @,
e,
where wf; are appropriately chosen constants for robust interpolation, and

Ny ={j: A}; #0, and line segment [z;,2;] is an edge of a macroelement}.

Thus, the coarse grid basis functions are linear combinations of the fine grid basis, and V¥ is a subspace
of V", that is, we obtain a nested sequence of subspaces by recursive construction. Moreover, the
interpolation weights are given by the coefficients wf; To summarize, the construction of V¥ consists
of two parts. We agglomerate the fine grid elements to form macroelements, and then we define robust
coarse grid basis functions on the macroelements.

Fic. 4. Typical macroelements in o computational domain.

Smoothed aggregation. For second order PDEs, the piecewise constant basis functions are not
effective since they possess large energy norm due to the discontinuities. Vanék, Mandel and Brezina
[98] proposed the smoothed aggregation approach which applies a relaxation method to smooth the
piecewise constant basis, and hence reducing the energy norm. More precisely, similar to agglomera-
tion, the computational nodes are aggregated into disjoint aggregates based on the AMG coarsening
technique (cf. Section 4.2}, Trying to achieve the approximation property {14), one defines a tentative
interpolation operator as the piecewise constant prolongator:

= 1 ifier
(Ift})ij={ 7

0 otherwise,
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where 1; is the jth aggregate. Since the induced piecewise constant basis functions exhibit large
energy, the stability property (13) is violated. One may smooth the basis by applying a damped
Jacobi smoother to 23 and obtain

Ik = (I - w(D*) T AT,

where AT is the fillered matriz of A" defined as
h - - - .
- A}:i?' . . ifjeNi(e), i3
71 + v
Ay = A — jm,#,-(Aij —A;) i=7
0 Otherwise,

and Ni(e) = {7 : |AY%] = e/ Al AN} Basically, AT is obtained by lumping the small entries in
A" to the diagonal, thus controlling the number of nonzeros in the interpolation and coarse grid
operators. Due to the smoothing effect of damped Jacobi, it smears the sharp edges of the coarse grid
basis functions obtained from the piecewise constant prolongator, and hence the energies are reduced.
Moreover, it can be proved that I;"} preserves constant if I} does.

2.3.4. Others. Other unstructured grid multigrid approaches have also been proposed. Bank
and Xu [9] developed an effective coarsening and interpolation strategy using the geometrical coor-
dinates of the fine grid. The basic idea is to treat the fine grid as if it is came from a refinement
procedure, and then recover the refinement structure through a symbolic Gaussian elimination. An-
other multigrid method based on incomplete Ganssian elimination was proposed by Reusken [87].
Hackbusch and Sauter [61] constructed a triangulation for the computational domain by adaptively
refining a coarse triangulation of a rectangular domain covering the computational domain. Thus,
a hierarchy of coarse grids is naturally embeded in the fine triangulation. Another geometric and
algebraic coarsening strategies can be found in Braess [14].

2.4, Algebraic multigrid approaches. The structured and unstructured grid approaches
make use of the grid information either explicitly or implicitly and hence are geometry dependent.
The algebraic multigrid (AMG) approach [88], on the other hand, exploits the algebraic information
of the discretization matrix. This approach was first introduced by Brandt, McCormick and Ruge
[25] and later popularized by Ruge and Stiiben [88]. Other related work have been studied by Huang
[63], and Chang et al [35] to extend AMG to matrices which are not symmetric M-matrices.

‘The success of AMQ is that for symmetric positive definite M-matrices, for instance, matrices aris-
ing from discretization of the Laplacian operator, AMG is able to identify algebraically the smooth
errors obtained from standard relaxation methods such as Gauss-Seidel, and then construct interpola-
tion operators accordingly to eliminate such errors. In the following sections, we describe a definition
of algebraic smooth errors and discuss how they motivate the construction of an interpolation operator.

2.4.1. Algebraic smoothness and strong connection. Let G" be the iteration matrix of
the relaxation smoother. In AMG, an error e” is smooth if it is slow to converge with respect to Ggh,
ie.,

G el = [le™]la.

One may also interpret the algebraically smooth errors by the spectrum of AP, Suppose Richardson
is used as smoother:

h 1 h
R G
G nA,

where A, is the largest eigenvalue of ,A". Let »! be the eigenvector corresponding to the smallest
eigenvalue A;. Then

A
IG* o} la = |I(1 - A—I)U?“A ~ vt la,

since A1 /A, = 0. In other words, the algebraically smooth errors essentially consist of eigencomponents
corresponding to small eigenvalues. We note that an error is smooth in the algebraic sense does not
necessarily mean that it is smooth in the geometric sense [28, 88]. It all depends on at which part
of the spectrum of the matrix that contains smooth eigenvectors in the geometric sense. For elliptic
PDEs, small eigenvalues correspond to smooth eigenfunctions,
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The Richardson smoother example suggests, and actually can be shown [88], that an algebraically
smooth error e® is characterized by a small residual

P o At 0,
in the sense that the residual norm is small compared to the error. Suppose =0, ie.

(24) P=Alel 4 S Alel =0,

JEN;

where N; = {j # 4 : Af‘j # 0}, the set of neighboring nodes of i, For symmetric M-matrices, the
smooth error e often satisfies:

lle*l|la < lletilo,

where ||e™]|} = (e", D"e*), and D" is the diagonal of A", Note that ||e"||4 essentially measures the
norm of the residual. We have the following inequality:

(25) Z A p wej) -+ Z(Z.A )ef)? <« ZAﬁ(eh)z

If EJ #i .A?J| m A% for instance, AP=Laplacian, then (25) can be written as

Al (ef —ef)’

(26) A @y

<1,

d#i
on the average for each i. Thus, if |AL/AL| is relatively large, then e} and e must be close, and
hence el is not negligible compared to e}, The nodes i and j are called strongly connected if | AL J AL

is relatively large. The strongly cormectedness forms the basic notion for algebraic smoothmg and
interpolation.

2.4.2. Algebraic interpolation. Suppose A" is a symmetric, weakly diagonally M-matrix.
The derivation of the algebraic interpolation of Ruge and Stiiben [88], again, stems from the the
idea of the one-dimensional interpolation, and has a strong connection with the stencil approach for
Cartesian grids (Section 2.2.1). We start with the residual equation (24) corresponding to algebraic
smooth errors where i is an index corresponding to a noncoarse grid point. Let ¢ be the set of coarse
grid points, and C; C N; N C the set of coarse grid points in a neighborhood of i. If € is selected such
that ; = Nj, then

(27) of = whef, wh=-

keC;

h
A
3

leads to an ideal interpolation since r; = 0. This is indeed equivalent to solving a local PDE with
the ith node as interior noncoarse grid point and its neighbors as coarse grid points. However,
such selection of C' yields a dense coarse grid operator. Hence, in general, one has C; C N; and
D; = Ni\C; # 0. For example, on a Cartesian grid with standard full coarsening {Figure 5), the two
set of variables in C; and [J; are indicated by their superscripts.

Consider again the residual equation with respect to a noncoarse grid point i

(28) 1€; Z kek -+ Z A
ked; jen;

The value ef to be mterpolated can be obtained by (28) provided ef’s and e 's a.re known. Given the
coarse grid values el o the idea is to first interpolate the noncoarse grld values eJ , J € Di, by the ek ’s,
k € C;. For j € Dy, e is approximated by a weighted average:

(29) ef m (D A/ Al
kCO; kel

This local interpolation formula (29) is nothing but the one-dimensional local solve technique. Con-
sidering ef) in Figure 5, by formula (29), we have

h o
(30) e 'An.kle-h +A11,k26k2
R h h
'A 11k + A;m k2
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F1G. 5. A portion of a fine grid with coarse grid points denoted by cireles, and noncoarse grid
points by crosses. The coarse and noncoarse grid point connections with respect to el are denoted by
the superscripts.

Comparing {30) with (21), and using the stencil notations, we note that the one-dimensional inter-
polation (29) used by AMG is obtained by the second row of the stencil at the node eg whereas the
one used by the black box multigrid in Section 2.2.1 is obtained by the average of the three rows of
the stencil. Once e;-”s are known, the interpolated value e? is then given by (28), which is the same
as the local PDE solve formula (22) used by Dendy’s black box multigrid.

In general, the computation of (29) may still be too large. We want to interpolate e by only
those e’s which are significant. In view of the discussion after the formula (26}, the complexity can

be reduced by the notion of strong connectedness. A peint ¢ is strongly connected to j if

wAf} > fmax{—A%},
[P,

with 0 < # < 1 as an input parameter. One only considers strong connections in the construction.
Specifically, dencte by S; the set of all strong connections of point 7. Define C; = C' N S;, and let
Df = D; N S; and D} = D;\S;. For the weak connections (§ € DY), e;} is simply replaced by e;
i.e. lumping the weak entries to the diagonal. For the strong connections (j € D? 1, e? is defined as
in (29).

Other variants of the algebraic interpolation are discussed in [88]. See also the recent survey by
Stiiben [94].

2.5. Energy Minimization Approaches. The AMG approach is purely algebraic and po-
tentially applies to more general problems than the other methods, but the underlying PDE and
geometry information, if exist, may not be fully utilized. In this section, we discuss another approach
based on energy minimization which bridges the gap between the two extremes: geometry dependent
and purely algebraic. It exploits the properties of the underlying PDEs while allowing general com-
patational domains. The essential idea is motivated by the classical multigrid convergence theory, in
particular, the stability and approximation inequalities (13) and (14) described in Section 1.3. The
key is to construct coarse grid basis which has minimal energy while preserving the zero energy modes.
Vangk, Mandel, and Brezina [98] identified altogether seven objectives the coarse grid basis should
satisfy:

1. Compact support.

Coarse supports should follow strong couplings.

Reasonable geometry of supports.

Bounded intersections among the coarse supports.

Polynomial (kernel) preserving property.

Small energy of coarse basis functions.

7. Uniform {? equivalence with L2,

Based on these objectives, we try to construct coarse grid basis to achieve them, in particular, small
energy, and null space preserving. For our model equatien (1), the null space consists of constant
functions.

SN

2.5.1. Smoothed aggregation. In the smoothed aggregation method described in Section
2.3.3, one begins with the piecewise constant basis, which has high energy, and then smooths (or
reduce the energy of) the basis by applying a relaxation method such as damped Jacobi to the
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interpolation operator. Thus, the energy of the basis is minimized locally. Moreover, it can be shown
that the resulting basis preserves constants.

‘We remark that the smoothed basis may not necessarily have the minimal energy. One may further
reduce the energy by applying more damped Jacobi steps which, however, increases the supports
of the basis functions. Consequently, the coarse grid operator becomes denser for more smoothed
interpolation operator.

2.5.2. Harmonic extension. A graph and agglomeration based techunique was proposed by
Chan, Go, Xu, and Zikatanov (29, 34]. The supports of the basis functions compose of macroelements
formed by agglomeration. The basis fanctions on the edges are first constructed, and then they are
extended by harmonic extension to the interiors. This procedure can be viewed as a local energy
minimization. Moreover, if the basis preserves constant on the edges, it will also preserve constants
in the interiors. There are several strategies to define the basis functions on the edges as well as in
the interior with small energy. They are made more precise in the following.

et

Fic. 6. Basis defined on macroelements. (Left) H'/* minimization on edges and hermonic
extension inside. (Center) Graph distance weightings on edges and harmonic extension inside. (Right)
Graph distance weightings on edges and inside.

HY? norm minimization+harmonic extension. One defines the coarse grid basis functions on
the edges as Hnear functions which are minimized in the H /2 norm-the interface analogue of the
energy norm. More precisely, consider the coarse grid basis ¥ on a macroelement with coarse grid
points denoted by the black dots; see Figure 6. Suppose ¢f7 = ¢, a linear function, on the edge
formed by o, 21,2 and z3, ie.

¢o =ax+by+c

With two boundary conditions: ¢o{xe) = 1, ¢o(zs) = 0, and hence one degree of freedom, one requires
that ¢o minimizes the fanctional (discrete H'/% norm):

hihy;

h

Flgo) =Y > =3 (doles) — dolz))’,

fmml fumigl W

where h; is the length of the edge (x;, i+1) and hi; = |z; —«;]. After incorporating the two boundary
conditions, the one-dimensional minimization of F'(¢o) can be solved analytically. The same procedure
is applied to the other edges, and the values at the interior points are obtained by harmonic extension.

Graph distance+harmonic extension. The H /2 iorm minimization combined with the harmonic
extension approach is robust but the entire procedure may be too complex. A simplified variant is to
use a simpler boundary interpolation based on graph distance. Note that z: is distance 1 from zo, z2
distance 2 from zp, etc. Define

3_;
oF () = TJ

on the edge formed by zo, 1,22 and #3. As in the previous approach, the values at the interior are

given by the solution of a local PDE.

Pure graph distance. One may simplify the construction further by substituting the local PDE
solve by a technique similar to graph distance. Suppose the macroelement has m number of coarse grid
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points on the boundary. Then the value of the coarse grid basis function at each of the interior point
is 1/m. Thus, in our example, ¢¥ (x) = 1/3, s=interior points. Note that constants are preserved.

2.5.3. Energy-Minimizing Interpolation. The previous approaches construct basis which
first satisfies the approximation property, followed by minimizing the energy locally. Anocther ap-
proach proposed by Wan, Chan, and Smith {104] is to prescribe the energy minimization and constant
preserving explicitly into the formulation of the interpolation operator while fixing the size of the sup-
ports. As opposed to all the previous approaches, we determine the interpolation values on the edges
and in the interior at the same time by a minimization formulation, and hence we do not actually
identify edges nor interiors. Meanwhile, the constant preserving property is enforced by a constraint
setup which globally couples all the individual basis functions.

The idea is based on another interpretation of the one-dimensional interpolation now described.
Consider the two-point boundary value problem (15) again. The equivalent variational formulation is
given by:

(31) min “(ﬁ‘tHHA (if:gh $3i+2)
subject to ¢ (z5;) = 1, ¢i' (z3i52) = 0.

Thus, the local PDE formulation in one dimension is precisely minimizing the energy of the coarse
grid basis functions. Moreover, if constant functions are in the kernel of the differential operator, the
minimal energy basis will automatically preserve constants [103, 110].

The extension to higher dimensions, however, is not obvious. First, the basis {$#7}, each of which
has minimum energy, does not preserve comstant functions. Second, the boundary of the support
of each ¢F, in general, consists of both coarse and noncoarse grid points and hence the houndary
conditions of (15) need to be modified. A clue is provided in the two level setting. Let IIf; be the
usual nodal value interpolant. By the Canchy-Schwarz and Poicaré inequalities, we obtain an rough
estimate:

(32) o™ lla = 113w (ef gl < [%(Zugbf ni)”?} 17 L,

where (7 is a constant independent of k. Comparing (32) with the stability inequality (13), we see that
the constant Co in {13} depends on the total energy of {¢f }. Thus, the formulation is to minimize
the sum of energies of {¢f} so that the constant Cp and hence the multigrid convergence will be
improved.

Write the coarse grid basis function ¢F as in {23). We determine the coefficients 'wf;- by solving a
constrained minimization problem:

" m
(33) min %Z 16713 subject to > ¢F(z)=1in .
i=1

i=]

LEMMA 2.2. An equivalent formulation of (15) and (81) is the global minimization

m m
min %Z 114 subject to E ¢F(x) =1 on[0,1]

=1 (el

Thus, we see a way to naturally generalize the approach for generating a robust interpolation from
one dimension to multiple dimensions.

Remarks: (1) The values of the basis functions are defined implicitly by the solution of (33) and
are not known explicitly in general. However, for the Laplacian, we recover exactly the bilinear
interpolation on Cartesian grids [103], which is known to lead to optimal multigrid convergence for
Poissen equations, (2) Like algebraic multigrid, the construction is purely algebraic. In other words,
geometry and in particular the grid information are not needed. However, if the additional knowledge
of the geometry is useful, for instance, semi-coarsening on Cartesian grids for anisotropic problems,
we can still apply the same formulation. In fact, the coarse grid points can be provided geometrically
by semi-coarsening or interface preserving techmiques (cf. Section 4.3), or algebraically by AMG
coarsening. Moreover, the formulation of the interpolation remains valid even if the coarse grid points
do not form an independent set. (3) Mandel, Brezina and Vanék [74] generalized this approach fo
solve systems of elliptic PDIs arising from linear elasticity problems.
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Solution of the Minimization Problem. A detailed solution procedure is described in [104], and we
only discuss the main steps here. It can be shown that the minimization problem (33) can be written as
a constrained quadratic minimization. Thus, Newton's method only takes one iteration to convergence,
which, however, need to invert the Jacobian matrix. Since the solution of the minimization problem
is used as an interpolation operator for multigrid only, we do not need an exact solution. An efficient
approximation can be obtained by a preconditioned conjugate gradient method. Empirical evidence
shows that in most cases, only a few iterations suffice, except for oscillatory PDE coefficients. In
[74], Mandel st al showed that the interpolation obtained from the first step of the steepest descent
procedure in solving (33) yields the same result as the smoothed aggregation with a single smoothing
step.

2.5.4. AMGe. The use of energy minimization in the formulation of the interpolation operator
has shown to be powerful in the energy-minimizing interpolation approach. AMGe, algebraic multigrid
based on element stiffness matrices, proposed by Brezina et al [26], uses the local measures of algebraic
smoothness derived from multigrid theory to construct the interpolation operator. The key observation
is that the interpolation must be able to approximate an eigenvector with an error bound proportional
to the size of the assoclated eigenvalue. More precisely, the interpolation must be defined such that
either of the following measures are bounded:

((I—Q)e", (I — Qe™)

Mi(Q,e") = (Aeh,em) ’
AL — Q)e", (I - Q)e”
Mm@ = W=De L)

where {J is a projection onto the range of the interpolation matrix Ik Note that Q is related to I
by

Q= [0 II};' ] s
if the unknowns corresponding $o the noncoarse grid points are ordered before the coarse grid points.
The boundedness of M; or M; requires €} to accurately interpolate the eigenvectors corresponding
to small eigenvalues, but not necessarily as accurate as for the eigenvectors corresponding to large
eigenvalues. In addition, the quantities My or My, as opposed to the matrix entries used in standard
AMG, give a potentially better measure of strong connectedness, especially for non-M-matrices.

In the previous approaches, the interpolation matrix is constructed by defining the coarse prid
basis whose coefficients w;; (cf. {23)) are the entries of the j-th column of Z%. Hence, the matrix Z}
is constructed column by column whereas in AMGe, T} is constructed row by row. Let ¢; be the ith
row of (). Then, ¢; is defined as the solution of the following min-max problem:

(34) min  max  Miy(ge"),
qi ethuil(.A?)

for p=1 or 2. Here, M; (g, e") is a local measure derived from the corresponding global measure
M,{(Q, e which is practically inaccessible, and A? is the sum of local element stiffness matrices
connected with 7. It can be shown {26] that the solution of (34) is to fit the eigenvectors of A? subject
to the constraint that constants are preserved. Hence, it can be considered as another local energy
minimization strategy.

Finally, we note that AMGe requires the knowledge of the element stiffness matrices which some-
fimes may not be conveniently availabe. Thus, this approach is less algebraic than the other energy-
minimizing approaches.

3. Smoothing. Interpolation alone is not enough for fast convergence as the success of multigrid
requires different components complement each other. The interpolation is effective only when the
smoothers produce smooth errors either in the geometric sense, or in the algebraic sense (cf. Section
2.4). A classical example in the literature where smoothing plays an important role in improving the
multigrid convergence is when solving PDEs with anisotropic coefficients, for instance:

(35) —€Ugpy — Uyy - _f in Q,
w = 0 on {2.
Assuming standard coarsening, it can be shown by Fourier analysis [19, 106] that point relaxation

methods as smoothers are not effective for small ¢ since the errors are only smoothed in the y-
direction, and the errors in the z-direction can be highly oscillatory, leading to slow convergence of
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multigrid. In the next sections, we discuss the use of block\line relaxation methods, incomplete LU
(ILU) factorization preconditioners, and sparse approximate inverses as smoothers for anisotropic as
well as other types of elliptic PDE problems.

3.1. Block\line relaxation. A well-suited smoother can be derived from considering the lim-~
iting case when ¢ — 0. The resulting PDE is a decoupled system of elliptic equations along the
vertical lines, suggesting the use of block Gauss-Seide! as smoother where the blocks arc associated
with the lines in the y direction, or equivalently, the direction of the anisotropy. It can be proved
[19, 59] that the two-grid method with this smoother converges independently of €. In the case of
variable coefficients where the anisotropy direction may change from y to z at different locations, one
may alternate the direction of the line relaxation. Another option is to use the alternating direction
implicit method [75].

The disadvantage of this approach is that the smoothing is most effective when the anisotropy is
either in the x or y directions. Another problem is that it is essentially a Cartesian grid technique.
Although similar idea can be adapted in unstructured grid computations [81], the determination of
the lines or planes of anisotropy in three dimensions is complicated. Besides, it is expensive to invert
a line or a plane.

3.2. ILU. One needs a direction free and robust iterative method as smoother for solving aniso-
tropic problems, and we shall discuss two possibilities in this and the next section. An incomplete LU
factorization based on the stencil pattern was studied by Wesseling [106]) and Wittum [t07]. Given a
five-point stencil matrix, for instance, one may use the stencil pattern for the incomplete L, T factors.
Specifically, an incomplete LU factorization can be written as

Ar = chut 4 gh,

where the incomplete lower triangular factor L" has a three-point stencil structure corresponding to
the lower triangular part of a five-point stencil matrix, and similarly for the upper triangular factor
i*. Similar ideas can be applied to other stencil patterns. The resulting ILU smoother is robust with
respect to the direction of anisotropy. More precisely, suppose the model equation (35) is rotated by
an angle #. Hemker [62] showed that ILU is an effective smoother for /4 < 8 < =, but may lead to
divergence for 0 < 8 < w/4. In the latter, however, the line relaxation smoother is still effective since
the angle is small. One may combine both ideas and derive an incomplete line LU {ILLU) smoother
[91] which uses block triangular factors for £* and 24",

3.3. Sparse approximate inverse. The drawback of ILU smoothers is the lack of parallelism,
since the (incomplete) LU factorization process is sequential in nature. Another class of direction free
smoothers, which are inherently parallel, are sparse approximate inverses (SAI).

Most sparse approximate inverse (SAI) approaches seek a sparse matrix M?" so that the error of
the residual is minimized in some measure. One of the earliest approaches was the Frobenius norm
approach proposed by Benson [10] and Benson and Frederickson [13}:

min ||A* M® — I||%,
M

subject to some constraints on the number and position of the nonzero entries of M*, The minimiza-
tion problem is equivalent to n independent least squares problems:

(36) min ||A"m; — e 2, i=1,...,m,
Lice

where m; and e; are the jth column of M” and I, respectively, and they can be solved in parallel.
For efficient construction, the sparsity pattern may be selected as banded diagonal [68], for example,
or determined adaptively by heuristic searching algorithms [36, 55] whick, however, may decrease
parallelism.

Several SAI smoothers have been studied. Huckle [64] experimented with a SAI smoother by
approximating the inverse of the lower triangular matrix used in Gauss-Seidel smocthing, Benson
[11] and Benson and Banerjee [12] also used a sparsity pattern based on graph neighbors. Grote [54]
recently used the SPAI approximate inverses which adaptively search the nonzero pattern.

In the following, we describe the approach proposed by Tang and Wan [96]. Since the major cost of
multigrid algorithms is smoothing, it is important to derive simple and yet effective sparsity patterns.
In addition, the least squares problems (36) must be solved efficiently. It turns out that a pre-defined
pattern based on neighbors of the matrix graph is sufficient for effective smoothing {96]. Giver a node

17



7, define L (§) as its k-level neighbor set in graph distance. For instance, Lo(f) contains simply the
set of stencil points in case of PDE problems. Furthermore, one modify the Frobenius norm approach
(36) and introduce the (%, I)-level least squares approximation:

min || 4" m; — ez,
Ty

where AR = A*(Li(4), Ii(5)) is the {k,I}-level local submatrix of A", The sparsity pattern is
determined by the l-level neighbors, and the size of the least squares matrix is controlled by the
selections of k and I. Hence, the two main issues of SAI smoothers are handled. Moreover, it can be
proved that high frequency errors will be damped away efficiently for k=1 and I=0 [96}.

More importantly, SAI smoothers have the flexibility of using larger values of k and [ to improve
the smoothing quality for difficult PDE problems. The potential higher computational cost can be
reduced by dropping strategies. For anisotropic coefficient PDEs, the matrix AP and its inverse
typically have many small entries. Thus, one may drop the neighbors with weak connections in Ak
before computing the approximate inverse. This is essentially the same idea as line relaxation which
only applies to structured grids. One may further reduce the cost by discarding small entries in MP,
It has been shown empirically [96] that the resulting complexity is only twice as expensive as point
Gauss-Seidel for the anisotropic problem (35). In addition, since the determination of the lines or
planes of anisotropy is done algebraically and automatically, SAI smoothing is applicable to both
structured and unstructured grid computations in higher dimensions.

Other SAI smoothers have also been studied. Huckle [64] experimented with a SAI smoother by
approximating the inverse of the lower triangular matrix used in Gauss-Seidel smoothing. Benson
[11] and Benson and Banerjee [12] also used a sparsity pattern based on graph neighbors, Grote [54]
recently used the SPAI approximate inverses which adaptively search the nonzero pattern.

4. Coarsening. The design of interpolation and smoothing operators has been the main focus in
improving multigrid performance. Coarsening, the selection of coarse grid points, can be as important
as interpolation and smoothing, for instance, AMQ coarserning [88] and semi-coarsening [41, 42, 90]
are both eritical components in their respective algorithms, The former selects coarse grid points
algebraically according to strong connections and is robust for discontinuous and anisotropic coefficient
FDEs. The latter selects coarse grid points geometrically according to the direction of strong coupling
for anisotropic coefficient PDEs. A recent approach, interface preserving coarsening [102], selects
coarse grid points geometrically according to the shape of interfaces. These three approaches will be
discussed in the next sections.

4.1. Semi-coarsening. For anisofropic coefficient problems, special smoothing techniques are
discussed in Section 3 to improve multigrid efficiency. Coarsening has also shown to be another
approach to recover fast multigrid convergence. The failure of standard multigrid is that the errors in
the direction of weak anisotropy are not smoothed. Thus, they cannot be solved on the coarse grid.
In the case of structured grids, one can apply standaxd coarsening to the direction of strong coupling
only, i.e. y direction for the model problem (35}, and select all the grid points as coarse grid points
in the other directions, resulting in alternating y—constant lines of coarse grid points. The drawback,
however, is that the overall cost of multigrid will increase.

A related coarsening technique is the use of multiple semi-coarsened grids proposed by Mulder [82].
For nonlingar PDE problems where the direction of anisotropy changes from time to time, Mulder
performed the coarse grid correction on two semi-coarsened grids in both z and y directions on each
level of grid. The complexity of the resulting algorithm turns out still to be proportional to the
number of unknowns. Frequency decomposition multigrid, proposed by Hackbusch [60], is another
method nsing several coarse grid corrections. Three additional fully coarsened grids are formed by
shifting the standard coarse grid by one grid point in the = and/or y direction. Moreover, special
prolongation and restriction operators are used to include also the high frequenicies on the additional
coarse grids so that the union of the ranges of the prolongation operators is the same as the fine grid
function space. The filtering decomposition by Wittum [108, 109] is another coarse grid correction
method. Instead of including all the high frequencies, the coarse grid operator is required to have the
same effect as the fine grid operator on a selected set of vectors, for instance, discrete sine functions
with different frequencies. This principle is similar to the probing method proposed by Chan and
Mathew [32} in domain decomposition.

4.2. AMG coarsening. In algebraic multigrid {88], the selection of coarse grid points ties
strongly with the algebraic multigrid interpolation. Divide the fine grid points into the set of coarse
{C) and noncoarse (F'} grid points. In the ideal case where €' is chosen such that for each noncoarse

13



grid point ¢ € F, its neighbors are all coarse grid points, i.e. N; = C; (Section 2.4), the algebraic

interpolation defined in (27) is exach; it is just Gaussian elimination as described in one dimension.

Otherwise, the interpolation needs to approximate the values at the noncoarse grid point connections

as given in (29). On the other hand, the notion of strong connectedness is introduced to maintain

sparsity by ignoring weak connections. Moreover, the approximation in {29) is more accurate if many

strong noncoarse grid connection neighbors of j are actually in €;. Summing up, there are two criteria

for algebraic coarsening:

1. For each noncoarse grid point ¢, each strong connection § € S; should either be a coarse grid point
{4 € C;), or should be strongly connected to at least one point in C;.

2. The set of coarse grid point should form a maximal independent set with respect fo strong con-
nections.

The two criteria, in general, are conflicting with each other. Usually, the second criterion is used to

select a potential small set of coarse grid points. Then noncoarse grid points may be added to satisfy

the first criterion.

4.3. Interface preserving coarsening. Algebraic coarsening selects coarse grid points based
on matrix entries. A recent approach, the interface preserving coarsening, can be considered as its
geometric counterpart which is specifically designed for discontinuous coefficient PDEs. For this class
of problems, multigrid is typically improved by a sophisticated interpolation such as those described
in Section 2 which captures the discontinuous behavior of the derivatives of the solution along the
interfaces. This is particularly important since the interface may not necessarily align with the coarse
grids as usually demanded by theory [18, 46, 111]. However, linear interpolation can be just fine if
the interface aligns with all coarse grids. The key idea of interface preserving coarsening [102] is thus
to select coarse grid points which resolve the shape of the interface.

The basic idea of the interface preserving coarsening is very intmitive. In one dimension, the
points on the interfaces are first assigned as coarse grid points, and then standard coarsening is
applied between the interface points. This idea can be easily extended recursively to coarser grids.

Fi1G. 7. Regular interface preserving coarsening on (a) requlor interfoce, (b) less regular interface.

In two dimensions or higher, one wants to resolve the shape of the interface while maintaining
the coarse to fine grid point ratio to be 1:4 as closely as possible. For interface of simple shapes as
shown in Figure 7, it can be done by applying the one-dimensional technique to the ¢ and y axes.
The coarse grid points are then obtained by tensor product. However, this method cannot be applied
to irregular interface since too many coarse grid points may be resulted; see Figure 8(a). In this case,
the points where the PDE coefficient is large are identified. Then standard coarsening is applied to
these points, followed by the remaining points where the PDE coeflicient is small. In addition, some
of the noncoarse grid points near the interfaces are converted to coarse grid points so that the shapes
of the interfaces are better resolved. The new set of coarse grid points is shown in Figure 8(b).

‘We note that the algorithm can be done purely algebraically based on the observation that the
large entries in the discretization matrix indicate the regions with large PDE coefficient.

For regular interfaces (Figure 7), linear interpolation can be used and the resulting multigrid
convergence is independent of the mesh size and the size of the jump in the coeflicient. For irregular
interfaces {Figure 8), linear interpolation cannot be defined since the Cartesian grid structure is lost
by coarsening. The unstructured grid multigrid or algebraic multigrid interpolations are used instead.
Numerical results in [102] indicate that the multigrid convergence is also independent of the size of
the jump.
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Fic. 8. {a} Regular interfoce preserving conrsening on irregular interface, (b) irregular interface
preserving coarsening.

5. Conclusion. Significant advances have been made in robust multigrid methods for elliptic
linear systems in recent years. The variety of techniques developed have been steadily maturing,
but we still have not quite reached the holy grail for multigrid methods that is algebraic and easily
parallelizable, with complexity proportional to the number of unknowns, and with rate of convergence
independent of the mesh size, the nature of the PDE coeflicients, and the computational grids. The
gray box philosophy may ultimately lead to a more flexible approach to developing multigrid algo-
rithms which can make optimal use of any available information. Qur discussion has been confined to
the alporithmic developments. Parallelization and theoretical issues are nonetheless essential for the
practical and intelligent use of multigrid in large scale numerical simulations.

There is still plenty of room for improvements in every aspects of robust multigrid to come in
the years ahead, and we hope that this survey article will provide further knowledge and insight for
future developments. For instance, it is likely that the energy minimization principle will continue
to be useful in constructing robust interpolation operators as new techniques are developed. On the
other hand, the interplay between coarse grid basis and interpolation provides another perspective for
constructing robust interpolation, for instance, through the use of special finite element basis recently
developed for discontinuous and oscillatory coefficient PDEs.
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