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SPECTRAL VANISHING VISCOSITY METHOD
FOR NONLINEAR CONSERVATION LAWS *

Guo Ben-yut Ma He-ping?! and Eitan Tadmor }

Abstract We propose a new Spectral Viscosity (SV) scheme for the accurate solution
of nonlinear conservation laws. It is proved that the SV solution converges to the unique
entropy solution under appropriate reasonable conditions. The proposed SV is imple-
mented directly on high modes of the computed solution. This should be compared with
the original non-periodic SV scheme introduced by Maday, Ould Kaber and Tadmor
in [20], where spectral viscosity is activated on the derivative of the SV solution. The
new proposed SV method could be viewed as a correction of the former, and it offers
an improvement which is confirmed by our numerical experiments. A post-processing
is implemented to recover the spectral accuracy from the computed SV solution. The
numerical results show the efficiency of the new method.

Keywords. Spectral method, vanishing viscosity, conservation law.

Subject classification. AMS{MOS): 65M70, 35165, 35L50.

1 Introduction

Spectral methods employ various orthogonal systems of infinitely differentiable functions to represent
an approximate projection of the exact solution sought for. The resulting high accuracy of spectral
algorithms was a main motivation behind their rapid development in the past three decades, e.g.,
Gottlieb and Orszag [10], Canuto et. al.[4], Bernardi and Maday (3], and Guo [14]. The high accuracy
of the spectral algorithm hinges on the global smoothness of the underlying solution.

Here we discuss spectral approximations to nonlinear conservation laws whose solutions may develop
spontaneous jump discontinuities, i.e., shock waves. In this context, “physically relevant” entropy
solutions must be admitted. Due to the presence of shock discontinuities, spectral approximations of
entropy solutions experience spurious Gibbs’ oscillations, which in turn lead to two related difficulties
— to loss of accuracy overall the computational domain and, in the nonlinear case, to instabilities. To
solve both difficulties, the Spectral Viscosity (SV) method was introduced in the context of Fourier
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approximation to nonlinear conservation laws by Tadrzor {26]. The main ingredient of the SV method
is the use of high frequencies diffusion which stabilize the spectral computation without sacrifice of
spectral accuracy. Further results on the periodic SV method can be found in [19, 27, 28, 6]. A
more robust periodic (hyper-)SV based on hyper-diffusion of high-frequencies was introduced in
[29]. Maday, Ould Kaber and Tadmor [20] were the first to consider the nonperiodic Legendre
pseudospectral viscosity method for an initial-boundary value problem, and Ma [17, 18] recently
developed the non-periodic Chebyshev-Legendre approximation, based on the ideas of hyper-Spectral
Viscosity. For recent applications consult [2, 16, 22, 8|.

In this paper we propose a new form for the nonperiodic Spectral Viscosity method, The proposed
SV, presented in §2, is implemented directly on high modes of the computed solution. In their original
non-periodic SV scheme, Maday et. al {20}, advocated a spectral viscosity which is activated on the
derivative of the SV solution. Here we point out a correction to [20]. Indeed, compared with the
spectral viscosity operator in [20], the correction proposed here offers an improvement which is
confirmed by the numerical result in §4.

The question of convergence addressed in §3 below, deals with the second difficulty of spectral
methods mentioned above — the issue of stability. We conclude our introduction referring to the first
difficulty regarding their loss of accuracy in the presence of shock discontinuities. As we argued before
[20, §2.1], the SV solution should be viewed as a more faithful approximation to the projection of the
exact solution, rather than the solution itself. The computations of Shu and Wong in [24] confirm
the high accuracy of the computed SV solution as an approximation to the appropriate projection of
the exact solution. The spectral content of SV solutions in the context of propagating singularities
in linear transport equations, was proved in Abarbanel et. al. [1]. Thus, the convergence rate of
the SV solution is limited to the first-order convergence rate of the oscillatory exact projections.
To accelerate their convergence, thus recovering the full content of the exact solution with spectral
accuracy, one needs to post-process the SV solution at its final stage. Such post-processing filters
were devised in [13, 21] away from the edges of the shocks, consult [20, §2.1] for the non-periodic
framework, and [12, 11] up to the shocks. For a recent study which combines an effective edge
detectors together with spectral post-processing we refer to [7, 8]. In §4 we use the Gegenbauer
polynomial partial sum advocated in [11] to post-process the SV solution, so that spectral accuracy
can be recovered.

2 The Spectral Viscosity scheme

2.1 Entropy solutions of nonlinear conservation laws

We consider the nonlinear scalar conservation law over the finite interval A := (—1,1),
Spulz,t) + 8, f (uz,t)) = 0, (z,t) € A x [0,T, (2.1)
with HL_[0, 7] boundary values prescribed at the inflow boundary points along {1} x [0, 7],
w(El,t) = g(t), =f(u(xl,t))<0,t>0, (2.2)
and subject to H'(A)-initial conditions given at t == 0

u(z,0) = up(z), ze(-1,1), ze{kl} (2.3)
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An entropy weak solution of (2.1) is sought, i.e., a bounded measurable u(z,t), which assumes
the prescribed initial and boundary data in the proper sense, and admits the following entropy
condition. For all convex entropy pairs, (U, F), U’(-) > 0 satisfying the compatibility relation
F'(:y =U'(-)f'(), there holds

AU (ulz, 1)) + B F(u(z, 1)) <0, (z,t) € A x [0,T]. (2.4)

The entropy inequality (2.4) is sufficient, in the scalar case, to single out a unique, physically relevant
solution. This so called entropy solution, could be realized by the vanishing viscosity limit, u =
lim. u*(z, t), where u® satisfies the regularized vanishing viscosity equation

Byu(z, t) + B f(ué (2, 1)) = €8,(D8é(x,t)), D >0.

We note in passing that the regularized viscosity equation admits an equivalent weak formulation,
namely, for all ¢ € C§°(A x R})

f . u¥(z, 1)0p(z, t) + f(u®(z,1))0u(z, t) + e DOyus (x,1)0r¢(x, t) dadt = 0. (2.5)
AxIRY

For the classical theory of such entropy solutions we refer to Lax [15] and Smoller [25]. Tar-
tar [31] introduced compensated compactness arguments to study the existence and stability of such
solutions. In this context, one seeks a sequence of approximate weak solutions with entropy pro-
duction compact in Hj;! (A x [0,T]); an L™ weak-star convergence of the corresponding fluxes then
follows. Following Tadmor in [26],[20], we shall use compensated compactness arguments to answer
the stability question of the SV method discussed in this paper.

2.2 The discrete framework

We let Py denote the space of algebraic polynomials of degree < N, and we let {L)x>0 denote the
orthogonal family of Legendre polynomials in this space

2
Lp) = —— 6.
(L L) = g ok
Here, (-,-} and ||-|| represent the usual L*(A)-inner product and norm. Next we let {fj};-\j—mo denote the

zeroes of (1 — z2)Lh (z) with & = ~1 < £ < ... < &y = L. In the sequel we shall use the Legendre
Gauss-Lobatto quadrature rule, stating that there exists weights, w;, such that V¢ € Poy..1(A) we
have, see e.g. [4]

1 N
[ d@xs =3 w6, (26)
-1 !
This suggests to define a discrete inner product, (.,.)n,

- N
(&) = > wid(E (),

=0

and we let || - || denote the corresponding discrete norm. Indeed, this discrete norm is equivalent
with the usual L?-norm over Py (A):

191 < ol < /2 + 11l V9 € Py (27)
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and of course, due to (2.6) we obtain

($,9) = (¢, )N, if degp +degy <2N — 1. (2.8)

Associated with the N'+1 points of the Legendre Gauss-Lobatto quadrature rule, {£ } , Is a unique
IP y-interpolant which we denote by Iy:

In($)(z) = Z(ﬁfﬁ%% @), In@NE) =) F=0,1,...,N.

The projection Iy can be viewed as an ’approximate identity’ in the IPy-space; in this context we
recall the result of [3] which provides us with the estimate

IIB Ing|| + N -|l¢ —Zndl <CII-—qaﬁII (2.9)

‘We note in passing that similar estimates hold for some other ’approximate identities’ in the IPy-
space. Clearly, (2.9) applies to Py — the usual L?(A) projection into IPy. For instance, (2.9) remains
valid if we replace Iy¢ with Jn¢,

Tnéi= f P15

Indeed, using standard estimates of the latter (consult [4]}, we obtain
I el + N -l = Tl < Ol (2.10)
oz N O =15y '

Finally, using (2.8) with ¢ = Ty_1¥ + (¢ — Iny_19) followed by (2.9), imply that the error of
Gauss quadrature for IPoy-polynomials does not exceed

[(#,%) — (8, 9)n] < Clivp — Ina9llie] < %llaﬂbll ell,  veé,9 e IPn(A) (2.11)

2.3 The spectral viscosity scheme

We seek an N-degree approximate solution, un(z,t), which approximates the interpolant of the
exact entropy solution, Inyu(z,t). Initially, we set un(z,0) = InUp(z). To evolve in time, we
introduce the following Spectral Viscosity operator, Q. Expressed in terms of the Legendre expansion
v =3 oo UiLy, the spectral viscosity operator, @, takes the form

N fos)
Quiz) = qiklz), v=) tli(z). (2.12)
=0 =0

Here, gy are the so called viscosity coefficients,

g =0, for i <m,
2 (2.13)

@zZl—T—Q, form <I< N,
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which are at our disposal. Observe that the spectral viscosity operator is activated only the high
mode numbers, > m. In particular, if we let m T oo, then the SV operator is spectrally small (in the
sense that ||Qu||g-s < em™%|[v]|). We shall occasionally highlight the dependence of the SV operator
on this cut off of high wave numbers, writing @ = Q.

Equipped with the SV operator (2.12)-(2.13), we now turn to construct our Legendre viscosity
approximation of the initial-boundary value problem (2.1). To this end we let un(z,t) € IPy for
t > 0 be determined by the moment condition — a discrete analogue of the weak formulation (2.5)
requiring that for all ¢ € Py, £t > 0, we have

(Ouuw (t) + Buln Fun (£)), )y + e (0:Qun(t), 8:Q0)y = (B (un(®), #)y, Yo ePy. (214)

Here, B{(-) is a penalty boundary operator,
B(un(t)) = (M) — 2) + p(t)(1 + 2)) O Ly (z),

where the free pair of "Lagrange-multipliers’, (A, p), are chosen to match the inflow boundary
data, un(z,t) = g+(t), prescribed at z = 1 whenever f'(un(1,t}) < 0 and at = —1 whenever

flun(=1,t)) > 0.
The spectral viscosity method depends on two free parameters: the vanishing amplitude of the
viscosity € = ey, and the size of viscosity-free spectrum, m = mpy. As in [20] we choose

e=en~eN"® m=my~cNP, 0<4f8<a<l. (2.15)

In particular, an increasing portion of the spectrum of size my ~ N¥® remains viscous free, thus
retaining the (formal) spectral accuracy of the SV scheme (2.14) with the underlying conservation
law (2.1).

Remark. We do not claim the parameterization in (2.15) to be optimal. In particular, arguing
along the lines of [30, 17, 18], one can use hyper-viscosity regularization to increase the size of the
viscosity-free modes, my, thus obtaining better resolution of the resulting SV scheme.

We close this section by explaining how the SV method (2.14) can be implemented as a collocation
method. We first realize the spectral viscosity in terms of an N-degree polynomial, Vy, such that

(0e(Qun), 0:(Qe))N = (VN,9)n, Ve Py. (2.16)

Recall that the discrete inner product (-, -) iy involves the Gauss-Lobatto weights, W = diag(wo, . .. ,wn)-
If we let D¢ denote the (N + 1) x (N + 1) differentiation matrix associated with the derivative of
the SV so that (Dg¢)(&;) = 82(Q#)(&;), 0 < 7 < N for all ¢'s € Py. Then (2.16), expressed in
terms of the corresponding N +1 vectors, reads < Doun, WDg¢ >=< VN, W¢ >, and hence, Vy =
WLDLW Dquy. Actually, we have Do = LpQLTW, where Q := diag(do|| Loll5", -- L an | Lallnd)
and L, Lp are the (N + 1) x (N -+ 1) matrixes with the elements:

(L)jk = Lk(Ej)a (LD)jk == (amLk)(é'J)) j:' k= G: 1: e :N'

Thus, by denoting D= QL};WLDQ, Vy = LDL¥Wuy. Since, for 0 < k& <! < N, we have from
(2.6) that

= 1

=

14+ (—D)Fk(k + 1), (2.17)
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it follows that

. - < = k(k+1 irdt, <k<I<N, k+leven,
(D) = (DYt = QQu(BnLy, BuLy) = {0( yvended, m N

otherwise ,

where y; = ||Lg||52 = (k+1/2) for 0 < k < N and ’YN N/2. Another way to reach this expression
is to put ¢ = Ly in (2.16) so that, for un(z) = Zl ot Ly(z),

N
V@) =3 (0:(Qun), bs (QLk)) ZZ (6182 L1, qx0zLli) L)

]
I Lkl e Ll
N N i
=33 QuQu(aLy, B L) | Lill 3 Li(z) = Z Z(D)M”Ll“?\fﬁll'k(x)
k=0 1=0 k=0 1=0

= (Lo(@), Li(a),- -, In(@)DLTW (un (€o), un (1), - un (6n))"

Remark. To gain a better insight into the SV operator we observe that the SV operator @ is self-
adjoint with respect to the discrete inner-product (-,-), and thanks to (2.8), one can integrate by
parts. Consequently, the SV expression on the left of {2.14) takes the form

en(0(Qun), 02(Q)N)N = enda(Quy) - QB[EZL) — en(QO2,(Qun), d)n. (2.18)

The realization of the SV operator here shows that Vv is an approximation to Q82,(Quy) which takes
into account the boundary terms, thus preventing spurious boundary layers. Specifically, comparing
(2.16) with (2.18) with ¢ = ¢;, t;f)z(fj) = 07 ylelds

V(&) = —QO2,(QuNn){(&) + 8.Quy - Qil L.

The SV operator here is different than the original SV method introduced in [20].

Let us “test’ ((2.14) against ¢ = ¢;, where ¢; is the standard characteristic polynomial of P (A)
satisfying ¢;(§;) = &;;, 0 < 4,7 < N. At the interior points we obtain

%UN(&'J) + %fo(uN)(ﬁi,t) =enVn (&it), 1<i<N-L (2.19)

At the outflow boundaries, say at x = +1, (2.14) yields
d a
Ei‘uN(+1:t) + %INf(uN)(“'_l:t) =EN VN (+1&t)' (220)

We note that the last term on the right of (2.20) defined via (2.16) prevents the creation of a boundary
layer. Equations (2.19)-(2.20) together with the prescribed inflow data (say g—(t) at £ = —1), furnish
a complete equivalent statement of the pseudospectral (collocation) viscosity approximation (2.14).

3 Convergence of the SV method

To establish the necessary a priori estimates for up, we first prepare
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Lemma 3.1 Consider the spectral viscosity operator @ = Qu, (2.12) with the parameterizalion in
(2.18). Then for any ¢ € Py,

8:41% < 2012:(Qe)||? + em? In Njg|I?,
10:(Qe)|* < 28:0]1% + cm* In Nijjg||*.

Remark.. The lemma shows the equivalence of the H! norm before and after application of the
spectral viscosity operator, @ == Q,,, for moderate size of my << N 1/4 This holds despite the fact
that for m = my ~ ¢N¥? 1 co, the corresponding SV operator, Qp, is spectrally small.

Proof. Let qAbg be the coeflicients of the Legendre expansion of ¢(z), and
In={j1+1<j< N, l+jodd}.

Then by the relation between the coefficients of the Legendre expansions of ¢(z) and those for

B () (see [4]),

N—-1

ap(z) =Y VL), Y =@+1) Y 4

=0 jeh,n

Next set #; = 1 — §;, and let R denote the corresponding low modes filter
N ~
Re(z) =Y FidrLi(z).
=0

Clearly # = 1 for [ < m, and # < m2l™2 for | > m. Since 9;¢(z) = ,(Qd(z)) + 0(Re(z)), it
suffices to prove that
162(Re)||* < em* In Nil¢l|*.

We decompose Oy (Hé(z)) = Aj{z)}+ Az{x) where

m N
Ai(z) = 0:0_hidilu(e)),  As(z) = 8:( DY Adila(e)).
P

l=m+1

By standard inverse inequality, e.g., [4], ||8z¢] < cN?||¢ll, VYé(z) € Py, and hence lALI? <
cm4“¢,uz. Further let Jyym = {j|j € Sin, 7> m}. Then

2
N-1
1420 =D (21 +1)? ( > ﬂ'qgj) IL?

1=0 Jetinm

N-1
gzz(zm)( 2 |fjs2nLjn-2) ( > |qu;2||.r,j|.z)
=0 JERNm ied,nm
N-1

<emflgf? do@+1) Y, i

=0 jed nm

m N1
< em?||$}|? (m“22(25+1)+ > (2z+1)z"2)
{=0

I=m+1
<em*In Nj¢|?,
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and the desired estimates follow. M

The following lemma is in the heart of matter.

Lemma 3.2 Consider the SV scheme (2.14) with H[0,T] boundary values, (2.2), and H* initial
conditions, (2.8). Assumne that the SV solution remains uniformly bounded,

qmax fuy (5 8)llze < Aco. (3.1)

Then there exists a constant (depending on Ax) such that the following H L_bound holds

en 10 [Eaqozmy zacay + OellunllFagom oy < Comst. (3.2)

Proof. To simplify the presentation, we shall deal with the prototype case where one boundary, say
x = —1, is an inflow boundary, while z = 1 is an outflow one. Then

B (un(t)) = A(t)(1 — 2)8, Ly (z).

Recall that &; are the zeros of 8,Ly(z),1 < j < N — 1, so that the boundary operator B(uy)
vanishes at all but the inflow boundary point £ = —1, where it involves the corresponding values of
w0 = 2/N(N + 1) and 8,Ly(~1) = (-1)N I N(N +1)/2. Thus

(B(un(2)),v)y = 2(=1)V T ME)(-1,1).
Let ¢ =1 in (2.14). Since Inf (un(z,t)) € Py, we deduce in view of (2.8) that
By (un (), 1) + [ (un(1,1)) — f (un (~1,1)) = 2(=1)"FAQ). (3.3)
Consequently,

A = \/—HatUN(t)”“*"m&Xﬂf(uN(l SO | F G (=1,200) - (3.4)

Further, set n(t) := fa A(s) ds; then, integration of (3.3) yields for t < T,
1 1 ¢
In(®)] < “‘/—“2*||UN(‘¢)|| + W““N(D)il +tmax|f(e), nlt) = /0 A(s) ds. (3.5)

Next we recall the SV parameterization in (2.15), ey ~ ¢N™%, m~ecNP, 0<48<a<l To
get the desired H'-energy bound, we integrate the SV scheme against uy. That is, we set ¢ = un
in (2.14). Let F(u) = ["wf/(w)dw denote entropy flux corresponding to the quadratic entropy,
U(u) = 42/2. Using (2.11) followed by Lemma 3.1 we find

2dtll'uw(?f)llzv"l“F(UN(l t)) — Flun(-1,1))
+ en(0x(Qun (1)), 0x(Qun(£))) + 2(—1)M Mtun(-1,2)
= (Ouf(un (), un(®)) — (OcIn f(un (D)), un{t))y
—{((I = In) f(un(t), Bzun(t))
< %!Iawf(u;v(t))ll Nun @) < % (10 (Qun (I +m* I N|lun ()13 -
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Here and below, ¢4 stand for various constants depending of the uniform bound A = max {|un||zee.
Thus for any £ < T,

Fan 1 +2 (o = %) [ 10:(Quy (eI ds

Cop+2 /0 (%—ﬁl‘—"ﬁuw(s)nz + 2 max [F(2) - 2(—1)”)«(s)g_(s)) ds

y (3.5),

A(s8)g—(s)ds
0

1
_ ;g_(t)n(t) - o= OO~ [ o (s ds

t
< |lg- O] (Juw (Ol + ca + o) + fo 9" ()| (llun ()| + c4 + o) ds.

Putting the two estimates above together, we have from (3.1} and the SV parameterization in (2.15}
that

1
v P + e [ 10:QuuNI do < e (lo-inon +4+1) +eo

Using Lemma 3.1 and (2.15) again, we arrive at

enllBsunllts ooy < ca (||9||%ri(o,:r) +T+ 1) + co. (3.6)
Next, we set ¢ = Quun in the SV weak formulation (2.14). By (2.9), (2.7), and (3.4),

en d

WPaun @O + 5=

2 |ouQur NI < caldeun O + 5 1un @I +ea | Z9-®)] +ea

Temporal integration of the above inequality followed by (3.6), implies

I8¢ 720 71.22(ay) = €4 (||3zuN 1220220y + 19— 0.y + 1)
CA 2
Sy (||94{H1(0,T) +T+eo+ 1) : (3.7)

The inequalities (3.6) and (3.7) conclude the proof. B

Equipped with the H! bound Lemma 3.2 we are now ready to the main stability result of this
paper, stating

Theorem 3.1 Let uy be the solution of the Speciral Viscosity scheme (2.14)-(2.15). Assume that
it remains uniformly bounded so that (3.1) holds. Then uy tends (strongly in LY (Q) 1 < p < co)
to a weak solution, u, of the initial-boundary value problem (2.1).

If, in addition, the SV amplitude is sef ey ~ N~ with o < 1, then u is the unique entropy solution.

Remark. One can follow the lines of Tadmor [28], and Chen et. al. [6] to derive the uniform bound
assumed in (3.1).
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Proof. Let &= A x [0,T] and define (-, )o and || - |lo as before, Let

T
(v, w)an = /0 (w(), () dt.

We still use ¢4 to denote, as before a constant depending on A., with possible dependence on 1.

We want to show that the entropy production of uy is compact in Hgi (©). To this, we consider
for an arbitrary convex entropy pair, (U, F'},

5
(BT (un) + B F (un),w)g = Y G (U'(un)9) - (3.8)
i=1

We decompose the entropy production to the five terms on the right given by

G1(¥) = (Bun + 0 Flun), ¥ — ¥n)a,

Gao(v) = (0o f(un) — OzIn f(un), ¥n)a,

G3() = (Opun + Odn flun), ¥n)a — (Owun + Ozdn flun), ¥n)an,
Gy(y) = en (0 (Run), 99N )a + en (Oxun, Ox(RYN) o

Gs5(p) = —en(Ozun, BN )a — en(8:(Run), 8z (RN ) )a-

The last identity holds for arbitrary vy € IPy. Following Maday et. al. |20, §5] we specify

U = T = [_ P12, 0.

This specific choice will play an essential role in derivation of the entropy condition below. Observe
that ¥y € Py with ¢ (—1,t) = 0. We recall that the operator R above denote the complement
operator, @ + R = Id, associated with symbols #; = 1 — §;. We proceed with upper bound on the
five terms on the right of (3.8).

By (2.10), (3.6), and (3.7),

|G1(¥)] < 1021 |52-

\/_ B \/—
According to (3.6),

|Go()| = |(f (un) — INflun), Buon)al < — ||5' Flunlalltenlla < N\/”‘ [Nl
By virtue of (2.11) and (3.7),
|G (%) = |(Bsun, ¥iv)a — (Brun, ¥i)an| < ““Hatuzvﬂnllam%bzvﬂ@b < N\/—Ilaﬂbzv!

To proceed, we utilize Lemma 3.1, |0:(Ré)||q < cm?vInN||¢|lq. Applied with ¢ = un,¥n we find

1Ga()| < envem?VIn N ||luw|lal|8x¥nlla + enl|8sun|| 4|8 (Ren) o
(3.9)

< cam*Vn N(en|0zn]lo + van lenlla)-
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Similarly
IGs(¥)| < Venealldxynlla + enmiln N|vn|la-

The previous statements, with ¥ = U'(un)@, tell us that

5
ZGJ lrj”’("‘if\f)‘}5 ‘

<o (i

< ea (1ol + (

L N +eym*VIn N +\/—) (l8zunlialiélle(ay + calldzdlla)

N\;ﬁ +enymiVIn N + \/ﬁ) ||5‘mq5||g) .

Thus, the entropy production 8:U{upn) + 0, F(uy) can be written as a sum of two terms — the first
tends to zero in H™1(0) and the second is bounded in L{). In view of Murat lemma, consult
(5], bounded sequences in W1P(IRN) N L(RY), 2 < p < oo form a compact subset of H1(().
We conclude that the entropy production of the SV solution is H~l-compact, which in turn, by
compensated compactness arguments, [31], implies that uy converges strongly (in IX._(Ax R}),p <
o0) to a weak solution, u, of the conservation law (2.1).

loc

It remains to show that the u is indeed the unigue entropy solution. To verify the entropy
condition for ey ~ eN™%, « < 1, we proceed as follows. It is easy to see that

3
2165 (U m)] < g7 = 119 (U)o
=1

< N\/— cun ol @l Lem) + lunllzee ) 10z¢l0)

<ca (N gy + NE0u8lla) — 0.
By the choice of the SV pararmeters in (2.15), together with (3.6) and (3.10),

|Gy (U (um)) | < caenm®VIn N |8, (U (un)w)||q, + cavenm®vIn N [|U' (un)d|lg,
< caveEM®*VIn N (||¢lla + [182¢lla) — O.

Finally, let (' (un)®)n denote our usual projection, (U'{uy)é)n = In(U'(un)¢. It is here that we
take advantage of our special choice of projection, Jny. Indeed, for any nonnegative test function,
¢(z) > 0, we find

Gs (U (un)) = —& (Bpun, Pn—180; (U{(un)d) ), — en (0(Run), 8s (R(U"('z,u\g)qb)N))Q
= —EnN (65UN, U”(UN)wamuN)ﬂ - EN (3m'LLN, U’(uN)Bmw)ﬂ
—en (Oz(Run), 8z (R(U' (un)d)n))
< —en (Boun U (un)B:0) o, — en (8 (Run), 8z (RU (un)d)n))q,
< eavEn|l8zdlla + casym* In Nljgllo — 0.

It follows that u satisfies the entropy inequality (2.4) in the sense of distribution, and so it is the
unique entropy solution. MW
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Remark. Maday, Ould Kaber, and Tadmor {20] introduced the non-periodic SV scheme with spectral
viscosity of the form

& (Qaa:uN (t); 8:6¢)N 3

parameterized with viscosity coefficients [20, equation 2.2]

{cj;x{), , for | < m,

3.10
G21-50, frm<l<N. (3.10)

Observe that the spectral viscosity operator is applied here once to the first derivative of the SV
solution. Thus the ’amount’ of high-modes smoothing introduced in (3.10) is comparable to the
amount of SV introduced here in (2.13) which is activated twice — before and after differentiation.
The main difference between these two approaches, however, lies in the activation of high-modes
diffusion to the SV solution rather than to its first derivative as in (3.10).

In the proof of the main result of that paper, Corollary 3.2 plays an important role, analogous
to Lemma 3.1. According to [20, Corollary 3.2], for any ¢ € [Py, we have

186117 < 18s01i%) + em* In N|6]*

where 1133:?5”(29 stands for the weighted norm ||6$¢||2Q = (Q0:¢, 0z¢). The argument based on dyadic
decomposition of ¢, fails, however, precisely because the additional terms introduced by differentia-
tion of each dyadic bloc. Indeed, let us take ¢(z) = Ly(x), so that

N-1
Bupz)= 3 @+ D),

=0
14N odd

and let §; = 1, for m < ! < N. Then on the one hand,

188112 — 102015 = > @+172L]F=2 Y (2+1)=0(m?;

i=0 =0
I+N odd +N odd

on the other hand, however, ||¢||> = (N + 3)™L. To establish the a priori estimates (3.6) and (3.7),
therefore requires m%, < c¢In N which is much stronger than condition (2.15) imposed in [20]. Thus
the result of the present paper is a correction and an improvement of the result in Maday et. al.
[20].

4 Numerical Results

In this section, we give some numerical results of the scheme (2.19)-(2.20). We consider the Hopf
equation {or inviscid Burgers’ equation)

Aulx, t) + dpu(x,t)/2 =0, (z,t) € 2,

with initial values i
w(0,z) =1+ asin'fr:c, z e [-1,1]
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and boundary conditions u(~1,t) = g{t), where the inflow data are taken from the outflow boundary,
ie., g(t) = u(l,t).

1.8 . i . 1.8 . ; ;
1.6} ' 1 1.6t
1.4} 14
1.2} 1.2t

1 1

0.8 0.8+
0.6 0.67
0.4 . 1 0.4}
0-2 Il 1 1 . 1 1 3
-1 ~0.5 0 0.5 1 0 —21 -0.5 0 0.5 1

Figure 4.1: Solution of the pseudospectral viscosity method with (a) N = 64 modes on the left and
(b) IV == 128 mode on the right.

1.6 T T T 1.6
1.4f 1 1.4p
1.2f 1 1.2
1 1
0.8+ 1 0.8f
0.6; 1 0.8f
O'f‘l -0I.5 0 0i5 1 0.111 —0:5 é 015 1

Figure 4.2: The SV solution in Figure 4.1 after the post-processing,.

This is the example presented in Maday, Ould Kaber, and Tadmor [20]. We compute the same
problem for the purpose of comparison. For time discretization, we use the forth-order Runge-Kutta
scheme with time step At = 1075, After the Legendre pseudospectral viscosity solution is obtained
at time t = 1, it is post-processed using the Gegenbauer reconstruction method to recover the
accuracy . As described in Gottlieb and Shu [11], we expand uy in the Gegenbauer series based
on the Gegenbauer polynomials C)(x), for 0 < n < m in the smooth regions [—1,0] and [0, 1].
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In Figure 4.1 (a) and (b), we show the numerical results of the Legendre viscosity method with
N = 64 and N = 128, respectively. The parameters in the viscosity term are taken as € ~ N —1
and M ~ N%25  Figure 4.2 (a) and (b) are the corresponding results after the post-processing with
A =m ~ 0.06N. It is clearly seen that the results given here enjoy better resolution than those
reported in {20].
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