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The digital TV filter and nonlinear

denoising

Tony F. Chan, Stanley Osher and Jianhong Shen

Abstract

Motivated by the classical TV (total variation) restoration model, we propose a new non-
linear filter — the digital TV filter for digital images, or more generally, data living on a graph.
The digital TV filter is a lowpass filter, capable of denoising data without blurring jumps or
edges. We show that such local filters in iterations solve a global total variational optimization
problem. Applications are given in the denoising of 1-D irregularly sampled signals, 2-D (color)
images and data with complicated topological structures, and non-flat image features such as

chromaticity.
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I. INTRODUCTION

H e digital filter is a frequently used tool in signal and image processing. De-
T noising via filtering is perhaps the oldest and still the most common applica-
tion. What makes denoising so challenging is that a successful filter also must preserve
characteristic singular features of images such as edges. Preservation of important sin-
gularities is absolutely necessary in image analysis and computer vision since digital
“objects” are very much defined (or detected) via edges (i.e. segmentation) and other
singularities (e.g. the corners of eyes and lips). Linear filters inevitably smear edges
or jumps and create ringing artifacts. Therefore, nonlinearity plays a crucial role in

image restoration.
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ONR. under N00O014-96-1-0277. S. Osher was supported by NSF Grant DMS-9706827. The authors
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The digital 'T'V filter we propose here is a nonlinear filter which can denoise images
without blurring edges. It has a simple and fixed structure (i.e. a 5-point rectangular
stencil at the target pixel for digital images). The filter coefficients change adaptively,
based on the local information near the target pixel, and are given by a deterministic
{as contrast to statistical) formula (see Section 4). In addition to its simplicity, the
digital TV filter is also very flexible in the sense that it applies to general data living on
a graph, vectorial signals such as color images, and even non-flat image features such
as chromaticity (see Section 6).

The edge information enters the filter coefficients in a very special way (see Eq. (8)).
The formula allows an intuitive interpretation as far as the edge adaptivity is concerned
{see Remark 2). Unlike other conventional filters such as the median filter, the formula
is not derived from a qualitative awareness of edges, but rather, from the precise dig-
ital translation of the classical TV restoration model invented by Rudin, Osher and
Fatemi [21] and Rudin and Osher [20].

The digital TV filter can be considered as the digitized TV restoration model {(see
Osher and Shen [16]). The latter will be surveyed briefly in the next section. The TV
restoration model is one of the most successful tools for image restoration (including
both denoising and deblurring) and edge enhancement (see Rudin and Osher [20],
Rudin, Osher and Fatemi [21], and also the monograph by Morel and Solimini {15}).
It is a special yet perhaps the most frequently applied case of the general anisotropic
diffusion model proposed by Perona and Malik [18], mainly due to its connections to
mean curvature motion and interface evolution. (The latter subject is now attracting
an enormous amount of attention throughout computational science.)

The TV restoration model (or general variational models) is defined for analog (i.e.
continuous) signals. The Euler-Lagrange equation associated with the TV functional
is a nonlinear partial differential equation (see next section). When applying it to
a digital image, one has to carefully choose numerical schemes [20] to take care of
the nonlinearity. Therefore, Osher and Shen [16] established a self-contained “digital”
theory for the PDE method, in which knowledge of PDEs and numerical approximations
is not required. {We should mention that a different approach taken by Coifman and
Sowa [6] [7] also avoids PDEs by incorporating wavelets.) Similar digitizing work on the

evolving Fuler-Lagrange equation (i.e. the diffusion equation instead of the equilibrivm
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equation) can also be found in Weickert [26]. However, the mathematical foundation
of the latter is still the numerical discretization of PDEs on rectangular grids.

In the digitized formulation of the PDE method (and variational method) [16], the
restoration equations are nonlinear algebraic ones instead of PDEs. Techniques such
as linearization and the iterative method in numerical linear algebra typically lead to
simple and local digital filters [16]. The digital TV filter is constructed in this way
from the classical TV restoration model.

In what follows, we first survey in Section 2 the classical TV restoration model. In
Section 3, we compare the digital TV filter with some closely related ideas and discuss
the former’s special attributes. Section 4 details the digital TV filter, and filtering
process and their properties. Section b discusses specifically the digital TV filter for
color (or vectorial) images and for one of the most important non-flat image features —

chromaticity. The last section is devoted to issues of implemention and to applications.

II. THE TV RESTORATION MODEL OF RUDIN, OSHER AND FATEMI

Let u%(z) be a signal which is assumed to be the noise contaminated version of a

clean signal u(z), i.e.
u®(z) = ulz) + n(z).
Here n(z) denotes random noise with
En(z) =0, E n?(x) = o2 (1)

Linear time-frequency method leads to the distortion of important singularities since
both the noise and singularities share high frequency modes. Researchers are thus
led to nonlinear operators. One recent approach is to use wavelets to decompose the
signal into many resolutions and keep (or modify) more details where singularities are
detected (see Donoho and Johnstone [10] and Donoho [9], for examples). Another
important approach is based on the PDE point of view, and takes advantage of the
locality and anisotropy of certain differential equations. {Besides these two relatively
modern methods, the third important class consists of various nonlinear digital filters
which we shall discuss in the next section.)

Among all differential operators, the diffusion class is the most widely applied in

current image analysis. For the reason discussed above, although linear homogeneous
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diffusion may smooth out noise successfully, it could also blur edges and jumps. There-
fore anisotropic diffusion attracted the attention of researchers (Perona and Malik [18],
Rudin [19]).

The TV anisotropic diffusion model was invented by Rudin, Osher and Fatemi [21],
Rudin and Osher [20], and is now one of the most successful tools for image restoration.
Compared with least squares restoration models [12], the major difference of the TV
model is the transition “from 2 to 1.” That is, one minimizes the total variation (the

L' norm of the gradient instead of its L? norm)

TV[] = [ﬂ Vulde. ()

The simplicity of implementation of L? models is lost and complexity due to nonlin-
earity emerges. But the gain of this transition is enormous, both in image processing
and in mathematics. The latter is due to its deep connection to nonlinear functional
analysis (e.g. function spaces of bounded variations) and geometry (i.e. mean curva-
ture motions and interface evolutions), and the former because of its effectiveness in
restoring images.

The assumptions on the noise (1) now lead to two constraints for the minimization

of the TV norm:

/udmm/uada:, —1—/(u—u0)2d$=02. (3)

Here 2 denotes the continuous signal domain, |Q] its area, and Vu the gradient. There-
fore, (2) and (3) define a constrained optimization problem.

Because of the translation invariance of the TV norm: TV([u + ¢] = TV[u] for any
constant ¢, the first constraint is in fact automatically encoded (see Chambolle and
Lions [3]). Therefore, typically, we need only consider the second fitting constraint. By

introducing a Lagrange relaxation parameter A, one can define a new energy functional

Ju] = /g |Vu|dz + —;—/ﬂ(u — u%)dz. (4)

The Euler-Lagrange equation of J is

_y. (Y +Au—u’) =0, (5)
()

and the infinitesimal steepest descent evolution gives

ou Vu 0
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Setting A = 0, or considering no fitting constraint, we get the famous Osher-Rudin TV
diffusion or the weighted mean curvature motion {see Morel and Solomini [15], Rudin

and Osher [20]):

du v./i"f_)
ot~ ¥ vl )

To avoid singularities in flat regions or at extrema, {Vul in Eq. (5) is regularized to

|Vuls = +/|Vul|? + a2,

for some small positive parameter @ (107 for instance). Then the modified Euler-

Lagrange equation {5) in fact minimizes the regularized energy functional

Jo[u] = ]9 (Vul|.dz + %fn(u — ul)ida.

The TV model has also led to successful schemes for deblurring images, which is
usually beyond linear traditional methods since inverse problems like deblurring are
highly ill-posed. Let 7 be the blurring kernel. For simplicity, assume it is spatially

homogeneous. Then a noisy blurred image is modeled by

u’ = jxu+n

To restore u is to find u from u°®, and the TV model is one of the most powerful tools for

this multi-task restoration (see Rudin and Osher [20], Rudin, Osher and Fatemi [21}).

ITI. SOME RELATED NONLINEAR DIGITAL FILTERS

As mentioned above, the major problem for a linear constant filter {or weighted
averaging with fixed weights) is that in iterations it blurs intrinsic singularities such
as jumps or edges (just as the Gaussian does during diffusion processing.) But the
good news about these filters is that they are simple — with fixed filter supports and
uniform filter coefficients. So for a long time, researchers have been asking the following

question:

“For fixed filter support, is there an explicit formula for the averaging weights so that

the filter can avoid blurring intrinsic singularities?”

This long-standing question now gets an answer from our digital TV filters. We shall

give a simple formula for the filter coefficients h,g in the next section. The filter has
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the simplest structure, as far as we know, among all filters designed to preserve edges
or jumps.
In this section, we briefly review and comment on some existing work closely related

to the digital TV filter.

A. Digital TV filters v.s. the edge adaptive filters of Lev, el. ol

As early as two decades ago, Lev, Zucker and Rosen {13| proposed a possible way
to choose the filter coefficients. The support of their filter is the 3 x 3 neighborhood
centered at the target pixel. The filter has twelve different versions Dy, Da,--- ,Dq2
corresponding to twelve different patterns of local variations of the image. For instance,

for the seventh case (see [13]),

1 10

JD7=l 110
6

110

For their type of filters, essentially one needs an edge detector first to check which
particular type of local variations one is encountering at the target pixel. One of the
authors’ important ideas — that one should never average across the edges (see [13]} —
is also critical in the modern practice of anisotropic diffusion (see Perona and Malik [18],
Rudin {19] and Weickert [26]). The digital TV filter we present here combines the two
steps, i.e. edge detection along with an automatic modification of the filter coeflicients.
The simple formula of digital TV filters given in the next section achieves this two-fold

goal.

B. Digital TV filters v.s. median filters.

Median filters are the well-known tool in the denoising and restoration of both grey
level and color images (see Glasbey and Horgan [11], Gonzalez and Woods [12]}. They
are based on the local histogram or local order statistics of the image. To get the
filtering output at a target pixel «, one needs all the image values {grey level values
or RGB vectors) within a window around ¢, typically a 7 x 7 or 5 x 5 square window
(see [11}). Then the new output at « is the median of these sample image values.
This means that the output is one of the existing values inside the window. From the

viewpoint of weighted averaging filters, the median filter is an ezclusive filter in the
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sense that the filter coefficients hy,g = 0 or 1. Because of the lowpass condition, one

and only one filter coefficient can be non-zero. Therefore, for the median filter, all the

filter coefficients are constants and the non-linearity resides in the way of determining
the unique neighboring pixel 8 such that h,s = 1. The median filter and digital TV
filter differ in three aspects:

(a) For the digital TV filter, the filter coeflicients h,g’s are given by a fixed explicit
formula {see Eq. (8)). Median filters are exclusive as mentioned above.

(b) The window {or, filter support) for the digital TV filter is small. For image process-
ing, it can be simply the standard rectangular 5-node stencil, instead of 25 or 49
nodes for median filters. The large size of a median filter is due to to its statistical
origin — no realistic statistics can be obtained from a small sarmple of data.

{c) The median filter is designed so that a single step of filtering minimizes an [ ! norm
based cost function inside the window (see Trahanias et. al. [24] [25]). The digital
TV filter, on the other hand, is constructed with a global I' minimization problem

in mind and is applied in an iterative fashion.

C. Digital TV filters for chromaticity v.s. the VDF of Trahanisa et. al.

The digital TV filter is universal in the sense that it applies to grey level images,
multi-channel color images (vectorial), and even one of the most important non-flat
image features —chromaticity (see Tang, Sapiro and Caselles [23], [22], Chan and
Shen [5]). In particular, the digital TV filter for chromaticity (see Section 5) will be a
potential competitor for the VDF (vector directional filter) invented by Trahanisa et.

al. [24] [25], which is closely connected to spherical median filters.

D. Digital TV filter: no need for stopping time

To the best of our knowledge, for the most existing digital filters, the raw noisy image
u? is “abandoned” right after the first iteration. That is, the filtering process can be

described as

At step k, v depends solely on uw%*~1)_ The ignorance of u® at later steps causes
intrinsic singularities to be smeared step by step (the discrete scale-space filter is an

extreme example [26]. Therefore, a stopping time is required for such fillering processes.
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It is often a difficult task to determine an optimal stopping time. This is avoided by
the digital TV filter since it recycles u® at each step (see next section):

L0 20 e

The presence of u® at each step constantly reminds the filter not to forget the noisy
image, which has information about the original singular features such as jumps and
edges. We should point out, however, although the stopping time is unnecessary for
the digital TV flter, the difficulty goes into the determination of the degree of influence
that u® should impose at each step. Fortunately, simple ways do indeed exist for making

a nearly optimal decision (see the last section on applications).

IV. Grarus AND THE DicrrAL TV FILTER

In this section, we introduce the digital TV filter and study its properties.

A. Graphs and edge derivatives

The digital domain is modeled by an undirected graph [, E] with a finite set Q of
vertices (or nodes) and an edge dictionary E. (The necessity of the graph model in
data analysis can be found in Osher and Shen [16], Alpert et. al. [1]}. If & and § are

linked by an edge, we write a ~ 8. A digital signal u is a function on f:
u: — R,

The value at node « is denoted by u,. The local variation or strength |Vau| at any

Vaul = /3 (g — )2 (©)
B

[A Note. There are a couple of other definitions existing in the literature. For example,

node « is defined by

the wirelength definition inspired by the network cell-placement problem in Alpert et

al. [1]. The one we propose here corresponds to the direct generalization of

Vul = \fud, +u2, o+,

in the n-D continuous case. |

For any positive number o, the regularized local variation is

|Vatle = /| Voui? + a2
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Next, we define the edge derivative. Let e denote the edge o ~ . Then the edge

derivative of u along e af « is defined to be

@
de

= UG — Ug-

o

Apparently,

du

W_Gu
de

e

H
8

o

where e |- o« means that « is one node of e.

B. The digital TV filter

The digital TV filter contains two tunable parameters:
— a small positive parameter a called the regularization parameter,
— a positive parameter A called the fitting parameter.
{In Section IV, we will address on how to choose these two parameters in applications.)
For a given noisy signal u®, the digital TV filter F* is a nonlinear data-dependent

filter:
Fhe gy

Here u is any existing signal on 2 and v the output. For simplicity, we shall denote
FM® by F. For any node o € €,
Vo = Folu) = Z hop(u)ug + haa{u)ul. {7)
Broa
Here the filter coefficients h,g5 are given by

. Wap (‘UL) - A
hap(u) = T3 () haal) = < Y Vo) 8

w (u)— 1 + 1
b Vatila | |Vguls

Apparently, h is a lowpass filter in the sense that at any node a,

hon + Z hag = 1.
Brox

The complete algorithm at node « is therefore

TV Filtering at o
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Fig. 1. The digital TV filter at node o

Compute the local variation |Vul, at o and all its neighbors 3,

Compute the weights wqg;

Compute the filter coefficients hqoo and hag;

Filtering: Fo(u) = z hagts -+ haatd.

B
Assign a linear order to all nodes:

o < og < - < Up.

Then the process of TV filtering is defined as follows

TV Filtering Process:

o Initialize u(® (by setting u(®) = o0, typically but not necessary).
o Fork=1,2,---
For oy < ap < -+ < ap
ugﬁ) = Fa, (u(’“_l));
End
End
For the TV filtering process, the computational cost can be reduced by noticing that
the local variations at oll nodes can be worked out in the beginning of each k-loop and
utilized for all a-subloops.
For image processing, the underlying graph can simply be taken to be the rectangular
net. Therefore, only five immediate neighbors are involved in one step of filtering. This

i the locality of the digital TV filter, which makes parallelization easily.

Thoerem 1 If the above TV filtering process converges to some signal v, then u sat-
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isfies
g -1 ou
ZEEWE& F Al —uy) =0, acf (9)
eta @ o

Here e - « means that a 15 one node of e.

Proof: The limit apparently satisfies
Uy = Fulu), a € Q,

or equivalently,

(A+ Z WaB)Ua == Z Woglig + Aup; (10)
Brea Broa

Z Wap(tg — Ua) + A1) — ug) = 0. (11)

B

Therefore, it suffices to show that

-1 du
o — 12
gw o Z de |V, 86 (12)
We leave this verification to our readers. [ ]

Remark 1 Eq. (9) is the digital version of

iv wm_grad(u) u? —u) =
av || + 0~ =0

in the classical continuous case, where the first term geometrically means the curvature
of the level curve of w when Q is o domain in R?. (Notice the sign difference between

the graph curvature term and classical curvature term.)

Corollary 1 If the TV filtering process converges, then the limif signal v is the unique
minimizer for the fitted TV energy
FTV] =) |Vavla + % > (va — ud)”. (13)
ach) agQl
Proof: 1t suffices to notice that the left hand side of Eq.(9) is exactly the negative
gradient of FTV at o, and FTV is strictly convex (see Chambolle and Lions [3], Osher
and Shen [16]). |

Proposition 1 In a TV filtering process with the fitting perameter A = 0 on a con-

nected graph, the limit signal must be a constant.
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Proof: Since A = 0, we have hyo = 0 for any node a. Therefore, if v is the limit

signal, then
Uy = Z hapug.
Bra
Since h is a lowpass filter with positive coefficients (regardless its nonlinear dependence
on the data itself), we therefore have the mazimum principle:
Iﬁnjguﬁ Ly < max ug,

and any of the two equalities holds if and only if u is flat at o, Le. ug = u, for all
B ~ «. This implies that any peak or valley (local or global) of » must be flat. Since
the graph is connected, it i now easy to see that u must be a constant signal. This

completes the proof. |

Remark 2 {(Adaptivity of the TV filter) The adaptive property of the digital TV
filter can be easily understood quolitatively as follows. Consider those u*)’s that are
near the limit. Suppose the local variation IVgu(k)| is very large (and large enough to
be distinct from noise) near a node «, then we can interpret it as the evidence of an
intrinsic jump (or edge) inherited from u® af this location. We surely do not want it

to be distorted. The digital TV filter achieves this goal since
large [Vul®)| = small weg (compared to A) =  hgq is nearly 1.

Now if on the other hand, the local variation |Vu| is small, which implies that the u(®
is nearly flat at that location, then we think of it as the denoised version of @ and
we certainly do not want it to go back to the original noisy data. Therefore, we expect

a small hyo and a pure lowpass filtering on u(®) (i.e. }: hap is nearly 1), which makes
B

u®+1) eyen flatter. This is precisely the work done by the TV filter since
small [Vu®)| = large wag (compared to A) = hgq is nearly 0.

The exact (quantitative) balance is encoded into the formulae of digital TV filters.
Nevertheless, this qualitative interpretation does add more “readability” to the digital

TV filter, like many other existing ones.
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V. DicrTAL TV FILTERS FOR COLOR IMAGES AND CHROMATICITY

In this section, we discuss the natural extension of the digital TV filter to color

images and chromaticity.

A. Color images or vectorial signals

A color image takes values in the RGB R® space:
I: Q- R,

I, is then the RGB value at pixel «. Let |- | denote the Euclidean norm. Then the

local variation is again well defined:

VoIl = | Y |15~ Lyf?
Bra

Since the digital TV filter essentially only depends on this scalar quantity, it naturally
applies to color images (or more generally, vectorial signals). The formulae in the

previous section for the scalar case are all valid.

Proposition 2 If o convez set ¥ contains all vectors 1 (the initial signal) and 15,

(the noisy signal) for all o € Q, then for all k and o € 2, I¥) e ¥,

Proof: It follows easily from that fact that the digital TV filter is a lowpass filter
with positive coefficients. | |
In particular, for color images, the limit image I will also reside in the first octant in
the RGB space if we start the filtering process with a color image. This makes perfect
sense since negative values do not correspond to RGB values.

In the literature of color image processing, there exist many important non-linear
filters, such as Vector Median Filters (VMF) and Vector Directional Filters (VDF) (see
[24] [25]). These filters are designed based on statistical considerations. They solve
a local 1! optimization problem within a sampling window. The digital TV filter is
also a local filter, yet the filtering process solves a global or functional ! optimization
problem. This is the fundamental difference between the digital TV filter and most of

the existing nonlinear digital filters.
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B. Digital TV filter for chromalicity

Several authors have recently studied the denoising and restoration of non-flat image
features (Perona {17], Tang, Sapiro and Caselles [22], {23]), Chan and Shen [5]). Non-
fat image features are those that live on non-Fuclidean manifolds. Orientation (i.e.
the unit circle 8'), alignment (i.e. the real projected line RP*), and chromaticity (i.e.
the sphere S2) are typical examples of non-flat image features that are important in
pattern analysis, study of optical flows, and restoration of color images. The TV {or
L'} model performs better than the L? model for non-flat image features as well, as
expected from the classical literature {see Chan and Shen [5]). In this section, we
discuss the digital TV filter for chromaticity.

Let

I: QR = {{r,g,b) : 1,9,b> 0}

denote a color image, and | - | the Euclidean norm in R*. Then B = |I| encodes the
brightness (or luminance) information, while u = I/|I| records the color saturation of
the image. u is therefore called chromaticity in image processing. Apparently, the
manifold for chromaticity is the sphere 82.

There are many distinet ways of measuring the distance between two chromaticity
“points” u and v, among which the familiar and convenient two are:

— Geodesic distance (or intrinsic ) d;:
dz'(u: V) = COSMI(“?")a

where {(u,v) is the Euclidean product. d; is the length of the shortest arc of the big
circle that links the two points.

— Embedded distance d,:
de{u,v) =|u—v|

Infinitesimally, they are equivalent to the first order. Experiments also suggest that
they make no distinguishable difference to human visual perception when applied to
denoising and restoration. Therefore, in what follows, we shall apply the embedded

distance d, only, which is relatively easier to work with.
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Define the local variation of a chromaticity signal u to be

2
Vou| = | Y d2(ua,ug)| -
Brooe

(Generally, one can replace d, by any reasonable distance d, see Chan and Shen [5]).
Similar to the scalar case, we can define the weights was and filter coefficients h,g.
Then the digital TV filter F for chromaticity is defined accordingly. Let u® be the

target noisy chromaticity signal u®. For any chromaticity u,

— W = Z hagug + hwug,
Bt

— Fafu) = wy/|Wql.

Notice that w, cannot be zero for chromaticity since chromaticity in fact lives on
the positive octant of the sphere and the TV filter is a lowpass filter with positive
coefficients. The normalization step (i.e. the second step) is not accidental at all. It is
a part of a whole global non-flat optimization process. This is stated by the following
theorem. The asserted link is valid only when we choose the distance function to be
the embedded distance. The proof is similar to Theorem 1, or see Chan and Shen [5].

Starting from an initial chromaticity distribution ul®, we can iterate the TV filter

as in the scalar case. Set
ug:fa(u(k—-l)), k=1,2,"' , aGQ.

Thoerem 2 Suppose that the TV filtering process converges to some chromaticity sig-

nal u: - 82, then at any o € 2,

[8 -1 0
U u

de |Vul, de

- )\(ug - ua)] =0,

a2

where Il denotes the orthogonal projection onto the tangent space of S% at w, i.e.
Oy (v) =v —{v,w) w.

Therefore, 1 is an equilibrium signal with respect to the fitted total variation functional

on all chromaticity distributions v : Q — 82:

A 2 0
FTViv]= Z |Vav|+ 3 Z ds(Va,uy)-

el e}
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VI. APPLICATIONS

In this section, we present four applications of the digital TV filter and filtering

process. First, we address on some issues regarding implementation.

(a)

(b)

(c)

One attribute of the digital graph model is it does not require any artificial “bound-
ary” condition. In the classical literature, the continuous anisotropic diffusion equa-
tion is usually accompanied by the adiabatic Neumann condition (see Rudin and
Osher [20]). In the digital model, the boundary condition has been encoeded into
the structure of the graph and the definition of the local variation |V,ul. For in-
stance, each of the four corner pixels has only two neighbors and a typical boundary
pixel has three neighbors. A simple checking on our definition of the local variation
|V qu| verifies that the above boundary structure of the graph indeed corresponds
to a flat outward extension of u, or the discrete outward Neumann condition.
The regularization constant @ is purely for the purpose of computational stability
(to avoid a zero denominator). It has no significant influence as long as we set it
very small. For applications in image processing, one can choose a typical order
of 1074, Its influence has been further controlled in our digital model, since the
digital TV filter is a lowpass filter and thus the computation is always stabilized.
The regularization constant X is important for the restoration effect. Practical
concerns and estimations are discussed in Rudin and Osher [20], Blomgren and
Chan [2]. In terms of the digital model, an estimation of the optimal A from a
current signal u is by (see [20])
S B st i =)

Here,
~ ¢? is the variance of the noise, which is known or can be estimated from homo-

geneous regions in the data.
— wag are the weights in the definition of the digital TV filter.
- |€}] is the size of the graph, i.e. the total number of nodes.
The formula suggests that ) is comparable to 1/0%. Therefore, a good economic
strategy for the digital TV filter is to start the filtering process with A = 1/0?, then
after every K steps (K = 10, say), A is updated according to the above formula.

Typically, one needs only about 6 updatings in one application. Our experiments
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suggest that human vision seems to be insensitive to the accuracy of A. Therefore,
in what follows, we simply fix some value close to 1/¢? for the entire TV filtering
process.

(d) For those who wonder what will happen if one replaces the fitted TV energy (see
Eg. (13)) by the fitted /2 energy

1 A
FL*u] = 5 3 [ Vaul + 5 > (ua — ud)?, (14)
e iy

we introduce the fitted linear filter flaﬁ. For any o € £, let d, denotes its degree

(i.e. the total number of edges from «). Define

2 . A

hos = ————) hpg = e, 15
fag X+ 2d,, b = N¥ 2d, (15)

Then it is not difficult to show that an A-filbering process minimizes the preceding
fitted {2 energy (or see Osher and Shen [16]). Such a linear filter is doomed to
smear edges and/or create oscillations, as one can see from the first example.

{e) We do not address the convergence issue in this paper. Our experiments have
shown that usually 60 or 80 rounds of TV filtering are satisfactory enough for
human vision. For related convergence analysis, we refer to Dobson and Vogel [§],

Chan and Mulet [4], Marquina and Osher [14].

A. Digital TV filter applied to a I-dimensional signal

In Fig. 2, the top one plots the “shape” of a one-dimensional landscape with two
“cliffs.” Plotted right below is the “measured” height data at irregularly sampled spots.
Due to the error of measuring tools and human factors, the set of measured data are
noisy, which is modeled in computers by polluting the height data with a random noise.
To compare with the digital TV filter, in the third figure is plotted the restoration
result by the fitted linear filter (see Eq.(15)). One observes that the two cliffs have
been artificially expanded. The last one shows the restoration and denoising by the
digital TV filter with A = 3 and a = 0.0001. The noise is successfully diminished
without significantly degrading the intrinsic jumps in the clean data. The TV filter

clearly performs better than the 12 fitted linear filter.
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B. Beyond image processing: date on a Sierpinski graph

In our second example, the digital TV filter is applied to data living on a level 3 Sier-
pinski graph (Fig. 3). (For possible applications of similar graph models in oceanogra-
phy, see Osher and Shen [16]). In order to visualize the noisy data and the restoration
effect by the TV filter, we have labeled the 42 nodes in a linear order.

The subplot on top in Fig. 4 shows the noisy data u® according to the labeling in
Fig. 3. The digital TV filtering (A = 4,a = .0001) is applied to u°, and the restoration
result is plotted in the bottom. Notice that we apply the digital TV filtering to the
original graph topology, not the labeled linear chain. As a result, we may easily inter-
pret the overshooting at node 25, which is the “boundary” node between the right and

left wings of the Sierpinski graph.

C. Digital TV filter applied to a color image

In Fig. 5, the vectorial digital TV filtering (see Section V-A) is applied to a noisy
color image of stones. Notice that the noise has been successfully removed without

smearing the sharp edges of the stones.

D. Digital TV filter applied to chromaticity restoration

In Fig. 6, we apply the digital TV filter modified for chromaticity to a clown image
with Gaussian noise (the top image). We first separate the vector RGB image °
into the brightness component B = |I%|, and the chromaticity component u® = 1%/B.
Then we apply the digital TV filtering process to u” and get the optimal restoration
u. Finally, we keep using the original brightness value B to assemble the new image
Inew = B x u, which is shown in the bottom subplot. {One can also apply the scalar
digital TV filtering to the scalar field B along with the chromaticity restoration. See
Tang, Sapiro and Caselles [23].)

The restoration is quite successful. The visible noisy red and green dots have been
swept out. The eyes and dark lines resume their original black color, and the nose and

lips are now smoothly red.
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Fig. 2. The TV filtering on a 1-dimensional signal (see Section VI-A).
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The Sierplnski

graph  at  level 3

Fig. 3. The 42 nodes of the Sierpinski graph at level 3 (see Section VI-B).
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Fig. 4. The restoration result of the digital TV filter on the Sierpinski graph.
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The noisy image
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Fig. 5. The digital TV filter applied to a noisy color image (see Section VI-C}.
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The raw image with Gaussian nolse
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Fig. 6. The digital TV filter applied to chromaticity restoration (see Section VI-D).



