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Abstract

The Bose condensate model is used to analyze the superfluid flow around
an ion {modeled as a solid sphere) and to elucidate the mechanism of vortex
ring emission from the sphere that occurs if its velocity exceeds a critical value.
An asymptotic expansion is developed for the steady subcritical flow, using the
ratio of the healing length to the radius of the sphere as a small parameter.
This expansion allows for the compressibility of the condensate, and converges
well enough for the critical ion velocity to be calculated accurately. The flow
for supercritical ion velocities is computed numerically. Particular atiention
is paid to the question of where and why the vortex rings are emitted at a
preferred location on the sphere’s surface.



1 Introduction

This is the seventh in a series of papers devoted to the Bose condensate as applied to
superfluid helium and especially superfluid vortices; see Roberts and Grant (1971),
Grant (1973), Grant and Roberts (1974), Jones and Roberts (1982}, Jones, Putter-
man and Roberts (1986), and Berloff and Roberts (1999).

Vortex nucleation by an impurity such as a positive ion *HeJ moving in superfluid
helium at low temperature has been studied experimentally and theoretically (see,
e.g. Donnelly, 1991), and has uncovered some interesting physics. The flow round an
ion that is moving with a sufficiently small velocity, v, is well represented by one of the
classical solutions of fluid mechanics, namely the flow of an inviscid incompressible
fluid around a sphere. In this solution, the maximum flow velocity, u, relative to the
sphere is 3v/2, and occurs on the equator of the sphere (defined with respect to the
direction of motion of the sphere as polar axis). Above some critical velocity, v, the
ideal superflow around the ion breaks down, leading to the creation of a vortex ring
(Rayfield and Reif, 1964). The critical velocity can be roughly estimated by arguing
that the vortex will be nucleated from the point where the relative velocity of ion
and superfiuid is greatest (the equator), and will occur when that velocity reaches
the Landau critical velocity, vy. If, using the incompressible model, we estimate
the relative velocity as 3v/2, we find that v, = 2v;/3, in rough agreement with
experiment; see Table 8.2 of Donnelly (1991). Because 2vz/3 is only about 15%
of the speed of sound, ¢, it appears that the incompressible model should perform
reasonable well, and that an allowance for the compressibility of the superfluid is
not a high priority. This was the basis of the original paper by Strayer et al. (1971)
and the later developments of Muirhead et al. (1984), who created a theory of vortex
nucleation that allowed them to calculate v, the form of the potential barrier that
must be overcome for the creation of vortices both as encircling rings and vortex
loops, and the nucleation rate. These calculations were carried out for a smooth
rigid sphere moving through an ideal incompressible fluid.

The Bose condensate offers a different insight into the nucleation process. The

condensate is a weakly interacting Bose gas that, in the Hartree approximation, is



governed hy an equation for the single particle wavefunction ¥(x,t) that was first
derived by Ginsburg and Pitaevskii {1958) and Gross (1963); see (1) below. Using this
equation, Grant and Roberts (1974) studied the negative ion (the electron bubble)
and a positive ion, modeling the latter as a spherical, infinite potential barrier, on the
surface of which 1 vanishes. Their solutions were derived by expansion in v/c, so that
their leading order flow is incompressible. They did not observe vortex nucleation.

As a model of superfluidity, the condensate suffers from the defect that its dis-
persion relation does not possess a roton minimum, so that vy, = ¢. To observe
vortex nucleation therefore, Grant and Roberts (1974) would have had to develop
expansions appropriate for a compressible flow in which u = O(c), which they did
not do {although we do so in §3 below). It is possible to make the condensate model
more realistic by replacing the é—function interaction potential between atoms, on
which it is based, by a nonlocal potential. This restores the roton minimum and a
realistic v; but only at the expense of considerable complexity; see Berloff {1999).
As for most recent research on our topic (e.g., Frisch et al., 1992; Winiecki ef al.,
1999), we shall employ the condensate model in its original form.

An important scale defined by the condensate model is the ‘healing length’, a,
defined in (10) below. This determines the radius of a vortex core and the thickness
of the ‘healing layer’ that forms at a potential barrier (such as the ion surface in
our model). The radius, b, of the ion is large compared with e, and asymptotic
solutions for € = a/b — 0 become relevant; see §3. Such a solution has two parts,
an interior or ‘boundary layer’ structure that matches smoothly to an exterior or
‘mainstream’ flow. In the mainstream, quantum effects are negligible at leading
order, and the condensate becomes effectively a compressible inviscid fluid obeying
the simple equation of state, p o p?, where p is pressure and p is density; see (8)
below.

There is some similarity between the flow of the condensate past the ion and the
motion of a viscous fluid past a sphere at large Reynolds numbers, the healing layer
being the counterpart of the viscous boundary layer. There are, however, important

differences. At subcritical velocities, the flow of the condensate is symmetric fore and



aft. of the direction of motion, and the sphere experiences no drag. In contrast, the
viscous boundary layer separates from the sphere, so evading D’Alembert’s paradox,
destroying the fore and aft symmetry, and therefore bringing about a drag on the
sphere. Moreover, when v > v,, shocks form at or near the sphere, but shocks are
disallowed in the condensate since they represent a violation of the Landau criterion
and a breakdown of superfluidity. When v > v,, the condensate evades shocks
through a different mode of boundary layer separation. The sphere sheds circular
vortex rings that move more slowly than the sphere and form a vortex street that
trails behind it, maintained by vortices that the sphere sheds. As the velocity of the
ion increases such a shedding becomes more and more irregular. Each ring is born
at one particular latitude within the healing layer on the sphere. As it breaks away
into the mainstream, it at first contributes a flow that depresses the mainstream
velocity on the sphere below critical. As it moves further downstream however, its
influence on the surface flow diminishes. The surface flow increases until it again
reaches criticality, when a new ring is nucleated and the whole sequence is repeated.
The vortex street trailing behind the ion creates a drag on the ion that decreases as
the nearest vortex moves downstream, but which is refreshed when a new vortex is
born.

Frisch et al. (1992) and Winiecki et al. (1999) have solved the condensate equation
for flow past a circular cylinder, and have confirmed the main features of the scenario
just described. In this paper, we present analogous solutions for the more realistic,
geometry. By employing a convergent series expansion suitable for u = O(c), we
determine v, for € = 0 more accurately than before. We confirm this value through
numerical integrations at finite ¢, at the same time obtaining indications of how
v, depends on e. (We should observe here that the criterion v = ¢ for criticality
applies only for ¢ = 0. The velocity in a healing layer can exceed ¢ without implying
nucleation. For example, v in a vortex core actually becomes infinite, according to
the condensate model!) We also show how and why the vortex ring detaches, not
from the equator of the ion, but from a latitude downstream of it. We find how this

latitude depends on v.



2 The condensate equation

According to the Bose condensate model, 1/(x, ) in an assembly of N bosons of mass
M , is governed by the nonlinear Schrédinger equation

; - h?

ot 2M

where V} is the strength of the §—function interaction potential between the bosons

vy — (B4 300 - Vi), (1)

and F is the single particle energy in the laboratory frame, where the ion moves with
velocity v in the positive z—direction through fluid at rest at infinity. Equation (1)
is written for the ion reference frame, in which the fluid at infinity is moving with
velocity v in the negative z—direction and the ion is at rest. Thus we require that
iMvz
h

Y ¥ Yoy €XP [— }, for X ~¥ 00, (2)

where Yo = (E/Vp)1/2.
The ion is modelled as a sphere of radius b that is an infinite potential barrier o

the condensate, so that
P =0, at 7 =h (3)

We have here introduced a spherical coordinate system (r, 8, ¢), with origin at the
centre O of the ion, and with § = 0 as z-axis. The wavefunction is required to obey
the normalization condition on the total number of the bosons N = [ |4|*dV. The

mass density and flux are

p= Mgy, J= gV - V). @
Equation (1) can be written in hydrodynamic form through the Madelung trans-
formation,
b = RS, (5)
so that
p=MR?  j=pu=pVe,  ¢=(R/M)S (6)



—+V- =0, 7
5 TV (ou) (7)
and an integrated form of the momentum equation
dp 1., 1, ofp R V2pt/?
R B £ 1) - 2P - 8
5 + U~ 5v e . 1 YERrE 0, (8)

the lagt term of which is often called the “quantum pressure” although it is dimen-
sionally a chemical potential. Also appearing in (8) are the density at infinity peo

and the speed of sound ¢
b = MRy, ¢ = E/M. (9)

We also define the healing length, a, as

h

The boundary conditions (2) and (3) give

2 = Poo, u - —ovl,, for X — 00, (11)

p =0, =0 on r=b, (12)

where 1, denotes the unit vector in the direction of increasing coordinate g. There is
no requirement that u, = 0 on r = b; indeed, the problem would be overdetermined

if we applied that condition.

3 Asymptotic expansion for velocities up to crit-
icality

In this section, we develop the asymptotic expansion of solutions for small € = a/b.

We suppose that the speed of the ion is comparable with the speed of sound c, so that
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acts of compressihility cannot be ignored. The appropriate non-dimensionalization

— = o

x—+bx, t— (abM/B)t, v (BlaM)U, o — oo (13)

Suberitical flow is steady in the ion reference frame, and the Madelung equations are

therefore

VIR — R(VS)? = (R? - 1-U®R, (14)
RV:S +2VR-VS=0. (15)

The quantum pressure term, ¢ V2R is negligibly small in the far field but is of major
importance in the boundary layer, for which we set r = 1+ €£, and expand R and §

as

R(£,0) = Ro(£,0) + Ry (£,0) + ERy(€,8) + - - -, (16)
S(€,0) = 5o(£,0) +€51(€,0) + E5,(6,0) + - - - (17)

Equations (16) and (17) give 85,/8¢ = 85, /0¢ = 0, so that
So=500),  5i=51(0) (18)

where Sy(8) and 5;(0) are to be determined by matching to ug on r = 1 in the
mainstream. After we substitute the Sy into (14}, it becomes to leading order

%?—E+%PH7($@ﬂ=Q (19)

so that
By = g(0)tanh(g(6)/V2), (20)

where
9(0) = VI1+U? — (5, (9))] (21)



The equation governing S, is
8 (=208, 1 0 [g2 . ,d5
— IR =21 = — — ey 22
BE (R" B¢ ) sin 6 09 [R" Sind g } (22)
This gives §2 as
" 1 8 45,
T (h(§= g) sin 9“’“&"9“) + (a(8), (23)

where

C A T2 g gen L VL 9(0)C
(g,e)mfom/ Ra'(e",0)dg" = 3¢t = Yoo (228), 29

and (,(#) is a function of integration that can be determined by matching to the
mainstream.
To leading order, the mainstream flow is the classical inviscid compressible flow

past a sphere, and is governed by

R?=1+4U? - (VS5)% (25)
R*W?2S +VR?.-VS =0. (26)

We substitute the first equation of this system into the second to obtain an equation
for S alone. We then expand S as in (17) and then expand Sp, S, - - - in powers of
U, eg.

So = US11(r)Py(cos 8) + U*(Ss1(r) Py (cos 8) -+ Ss3(r) Ps(cos 8)) 4 - - -. (27)

For U close to the speed of sound, ¢ = 1/v/2, we do not expect (27) to converge
fast enough to be useful, but the critical U which we are trying to determine is ap-
proximately 2¢/3 and for such values of U the expansion (27) converges fast enough.

We expand S to the U'! term in order to get an estimate for the critical velocity of



(28)

(29)

(30)

Gy

2

nueleation, I7., accurate to 0.1%. The first few equations for the mainstream are
d?Sh 2050 25u _
dr? ror re
d2831 n gdSﬂ _ 2531 _ g(d811)2d2511 28?1 d2811
dr? r dr 72 5\ dr dr? r2  dr?
6 sdS;1\% 25 7dS11\2 88%1
ST(dT) + 5r2(dr) Bt ?
d2533 gdSQ,g _ 12533 _ ﬁ(dSn)deSu . 28% dZS]_l
dr? r dr 72 5\ dr dr? hr? dr?
4 7dS;;\3  125; (dSi\2 853
+5T(d’l‘) 5r2(dr)+5r4'
Solving these, we obtain
_ 1 - 3 3 3 4 . 1 2
= (""+ 27"2)’ o= —ggm T 55 TEa T ST Ty T

(31)

To carry out the asymptotic matching, we substitute » = 1 + € in the expressions

for Slla 331: 333: ot

., expand the solution in powers of ¢, and match it to the boundary



laver solution. The first few terms of the resulting mainstream solution are

3 3 54 3
L A S C IR
*’[ 888 T 58 55r4'+'5r2] B(COSB))

1739
-+175([ 1901 5589

T 18480714 " 2310711 2117510

1766 972 776 1470911
~ T1550 T 19257 52518 1016400T2] cos
179 7256 2274 523
+P@mwu+8%wﬂ_3mww_zmﬁ
624 152 72781521 106
+ + - +
275r7 | 75r%  23823800r%  75r2
1945 2291 87 295
[" 1404481 T 9240r1L 385710 18278

240 51393 68 24 10
+ + }&(cos@)) 4.

] Py(cos 6)

e 43472006 2175 117t 2172

From this we can determine the first function of (18):

81 .
mU P3 (COS 9)

14693 1560249 31857
5[ 22099 g 9) —
+U [ 51500 < T 310330072 ?) ~ 317380

The maximum flow velocity is attained on the equator and is

So(8) = —gU cosf — -Z%Ue' cosf + (33)

Ps(cos 9)] SRR

ug(l, 1) = 3U/2 + 0.626136U° + 1.56961U°

34
+5.18161U7 + 19.9015U° + 26.89510 + - . -, (84)

where we have here included terms up to order U!. The flow (34) reaches the speed
of sound if the far field velocity U is approximately 0.415. An idea of the accuracy
of this value of U, is obtained by comparing it with the final term of (34}, which for

U, == 0.415 is 0.0017. The result also agrees very well with the numerical calculations
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of §5 for small . By comparing .415 with 2¢/3 = 0.471, we gain an impression of
the importance of compressibility in determining U, in the condensate model.

The O{¢) contribution to the mainstream solution satisfies the following equations

RyR; = -V S, - VS, (35)
YRR V2Sy + R2VES) + 2V (RgRl) . VSo+ VR VS, =0. (36)

We substitute the first equation of this system into the second to obtain the equation
on S; along and expand S) as in (27) to the U® term.The first few terms of the

resulting mainstream solution are

Si(r,8) = Uﬁ cos @ + U?

X 2L 2 cosd
r T

(37)

[901 ].201 601

Cs
s B B "i“ﬁ]P?’(COSH)) e

The unknown constants are found by matching the boundary layer solution (23) to
(37). We substitute » = 1 + € in (37), expand the solution in powers of ¢, and
notice that the last term in (24) is O(€) for £ — co. We expand the corresponding
term of S, for large £ in powers of U and in the Legendre polynomials, and set the
coefficients of the resulting expansion equal to the corresponding coefficients at the
order ¢ in the expansion of (37). This defines the constants in (37) as

3 13v/2 | 1863
C) = ——=, Cy=—-o, Oy = ——,
T 2 5 5T T 990V
4414007 1352579157 | 24662449 (38)
4T 3388004/2 5T T 476476002 S 760760v2

On the equator of the sphere the € term of the expansion for the velocity becomes

oo By 197 5 186422556609 5
TV a2 11380969600+/2 '

(39)

The interesting question is whether the S; term increases or decreases U,. This
raises the philosophical point touched on in §1: is the Landau criterion precise when

we go beyond the leading term in the u expansion if the mainstream by including
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¢ term associated with the quantum pregsure? We are enconraged to believe it
is; because of the upward curvature of the dispersion curve associated with the
condensate model, the speed of long wavelength sound plausibly sets the stability
limit for all disturbances. We therefore now set ug(137) = ¢, where uy includes (34)
and (39). We find that the S; decreases U,. For example, for € == 0.1 the flow reaches
the velocity of sound if the far field velocity U is approximately 0.37, which agrees

very well with our numerical calculations of §5.

4 Asymptotic expansion for the cylinder

In considering the shedding of line vortices from a moving cylinder, Frisch et al.
(1992) gave an argument for the critical velocity that we shall now test through an
expansion of the same type as that of the preceding section. Instead of (27), we now
use a Fourier expansion in 6, which is one of the cylindrical coordinates (r, #, z), with
# = 0 along U:

Sp = US11(r) cos @ + U(S31(r) cos § + Sa3(r) cos 36) + - - -. (40)

The mainstream solution is found to be

Sp(r,8) =— U(r + %) cos

1 1 13 1 1
3 - - - o -
4 U [( 52 + e 67’) cosd + ( pe + 27‘) cosSG}

7 3 43 35 479
N (S B ALy PP
* [( 500 T 27 " 125 1 618 60’!‘) co8 (41)

+ L +—4 3 + 13 + 19 cos 39
367 1577 275 0 3078 127

7 1 1
L S gl +--
* (207"5 273 47") cos5 } +
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The boundary layer function corresponding to (18) is

So(8) = ~ 2U cosf + U® (—% cos§ + % 00839)

3
67 79 2
5 —_—— RS, —_——
+U ( 15 cost + E cos 30 3 00559)
251 203933 80113 11
[ # - —cos 76 %.
+U { T cos @ + 18900 cos 3 1890000859+14cos }—i—O(U)
(42)
The maximum flow velocity, which occurs on the cylinder equator, is
ug(1, 1) = 2U -+ 70U /3 + 176U° /15 + 79.9809U" (43)

+552.1810° 4 4471.18U + - - -

This reaches the velocity of sound for U = U, = 0.30. (To illustrate the convergence
of (43), we note that the UM term is only 0.0066 for U = 0.30.)

According to Frisch et al. (1992), criticality is reached when, in our nondimen-
sional units, the velocity exceeds p/2 anywhere in the mainstream. In the present
problem, this predicts that the critical velocity is attained first at the equator of the
cylinder, and (43) gives U, ~ 0.26, which is significantly less than our value, and is
also less than the value U, =~ (0.45 % 0.01)c¢ = 0.318 £ 0.007 for a finite €, obtained

by Winiecki et al. (1999} from their numerical integrations.

5 Numerical calculations

In this section we present some results from a numerical calculations for the axisym-
metric flow around the sphere and the nucleation of vortex rings from it. We used a
third non-dimensionalization of (1):

x—sax, t-(@M/B,  vo (laM)U, - (qpooe—wz)w, (44)
the last of which removes a uniform flow —v1, everywhere, so that

w—1 as 1 —=o0. (45)
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Equation (1) becomes

89 P
—21'5-“ + 210 — 37

the solution to which must satisfy (45) and

= Vi +9(1 - 9], (46)

p=0 on r=b/a. (47)

We employed a finite difference scheme to solve (46) in the axisymmetric case in

which 2 depends only on r and 8, and in which therefore

2
52 | iU cos by, — 2iUSln9¢3 oY | 200
Bt a2 T ror (48)
cotd dp 1 0%
OO0 4 T8 vl ).

The integration box was chosen as [b/a, 1] % [0, 7]. One of the main considerations in
choosing the integration scheme was that outgoing sound waves should escape from
the integration box. We used the Raymond-Kuo (1984) radiation boundary condition
on r = r1. In time stepping the leap-frog scheme was implemented with a backward
Euler step every 100 steps to prevent the even-odd instability. In space we used
a 4th order finite difference scheme together with a 2nd order scheme close to the
boundary r = r;. The code was tested against the asymptotic solutions of §3. The
initial condition for velocities slightly larger than U, was chosen as ¢ = tanh(£/v/2).
The numerical scheme does not conserve energy but the dissipation of energy is very
small. When the reflective boundary conditions were used instead of the radiative
ones, the energy loss due to the dissipative character of the scheme did not exceed
10~*% per 1000 time steps.

Our numerical work strongly suggests that the value of U, (= 0.415) obtained in
§3 for € = 0 is correct. We also found that U, decreases slowly with increasing €, in
agreement with the results of §3.

Figure 1 shows the formation of the ring from a sphere of radius 10 moving with
the supercritical velocity U = 0.42. After the ion emits a vortex ring, the flow

associated with the ring at first makes the total fluid velocity subcritical everywhere.
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The self-induced velocity of th

e ring is less than the velocity of the ion, so that the
ring gradually falls astern of the ion and the total fluid velocity builds up until it
again reaches criticality on the surface of the ion. The vortex ring emission follows
the same scenario as that observed by Frisch et al. (1992) for vortex pair nucleation
from a cylinder; see §1. What came as a surprise is that, although the maximum
velocity of the compressible flow is always attained on the equator of the sphere,
the vortex ring nucleates from the sphere downstream of the equator, at 0. > %w.
This is clearly seen in Figure 1(a), which shows the birth of the first vortex after
the motion of the ion has been initiated. The first nucleation seems to be the result
of an instability of the critical flow {(obtained from §3, as described above). The
second nucleation is influenced by the presence of the first ring; see Figure 1(b). It
is therefore takes place at a different location on the ion surface, as is readily seen in
Figure 1(c).

It is difficult to extend the theory of §3 to cover the time-dependent supercritical
state that arises when vortices are nucleated. It is however comparatively easy to
generalize (18)-(21) for the healing layer. We find that

§0 - §0(67t)7 (49)
where
PRo 53 [ o (08%\2 057 _
e~ o + Ro[1+U —(a—g) —2%0] =0, (50)
The relevant solution is
Ry = g(0, t)tanh(g(0, 1)¢/V2), (51)
where now
85,\2 5
90,1y =v/[1+0° - ( 6‘50) . 3;’] (52)

The 85,/8t term in (52) is highly significant: the nucleation of a vortex ring at

latitude 8, occurs at time £., when

g(0.,t.) =0, (53)
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with g > 0 for all other # in 0 < # < w. Thus, the nucleation of a vortex ring
represents a breakdown of the healing layer. This may be traced to the growth in
importance of the first term in (8) at 0. and the concomitant decrease in significance
of the final, quantum pressure. This decrease implies that, at nucleation, dR/0¢ at
8, is no larger than VR in the mainstream, i.e., the mainstream and healing layer
have become temporarily connected. This provides the channel through which the
vortex escapes from the ion. It may be noted that the breakdown (g = 0) of the
healing layer in supercritical ion is not directly linked to the criterion (|v| = ¢) used
to determine the critical state for the steady subcritical solutions for € = 0. This
explains why 6, > %w, even though the maximum us on the sphere still occur on the
equatorial plane (§ = x/2).

As it is impractical to expand the theory of §3 for the mainstream to the time-
dependent case, and then to determine S, and g by matching to the healing layer,
we must determine Sy and g from the numerical results for small e. Figures 2 show
how g evolves for ¢ = 0.1 and the velocity of the far field U = 0.42. The first vortex
begins to be formed when g becomes zero at 8, =~ 120° at {, ~ 35; see Figure 2(a),
where a second minimum in g can also be seen on the t = 35 curve near , = 110°.
This second minimum develops, and becomes zero when the next vortex is nucleated;
see Figure 2(b). The breakdown of the healing layer is very evident in Figures 2, and
is responsible for the two blips seen on the sphere in Figure 1(a) and, at different
§—locations, in Figure 1(c). It is also clear that, as the healing layer thickens at &,
it provides the core of the nascent vortex. The angle 8. at which the first vortex is
nucleated, changes with U/, as shown in Table 1.

Table 1

U 0.39 0.40 0.42 0.45
0. 100° 111° 120° 126°

6 Conclusions

We have used the Bose condensate model of superfluid helinm to clarify the process

through which a moving ion generates vortices if its velocity, v, exceeds a certain
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critical value, v, of the same order as the Landan critical velocity (which for the
condensate, which has no roton minimum on its dispersion curve, is the speed of
sound, c¢). To some extent, v, depends on ¢, the ratio of the healing length fo the
sphere radius. We have determined v, analytically to leading order in ¢ by equating
to ¢ the flow velocity at the equator of the ion. This does not mean, however, that the
vortex ring is emitted from the equator when v > v,, as was supposed by Strayer et
al. (1971), Muirhead et al. (1984), and Frisch et al. (1992). This was demonstrated
through direct numerical simulations for small but finite . We have shown, through
asymptotic analysis, that the vortex rings emerge from singularities that develop
periodically in the healing layer at some particular latitudes .. We have found that
g, increases with v, i.e., the point of detachment moves towards the rear stagnation
point (# = ).

The development of the singularity is intimately linked to the time-dependence of
the mainstream supercritical flow, which fluctuates as the vortices move downstream
to join the train of rings following the ion. We have not analyzed what happened
the first time that vortex is created, but we surmise that in this case the singularity
develops as the result of the instability of the mainstream flow. Thereafter, time-
dependence is assured through the ring (and later rings} trailing behind the ion.

The breakdown of the healing layer is the analogue for the superfluid of boundary
layer separation in high Reynolds number viscous flow, and this explains the choice

of subtitle for our paper.
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Figure 1: The density plot of cross section of the solution of (48) for the flow around
a sphere of radius 10 moving to the right with velocity 0.42 at (a) t = 68, (b) t =
134, and (c) t = 223. Vortex rings appear as white circles close to the sphere and
gradually fall astern of the ion.
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Figure 1(b)
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Figure i{c)
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Figure 2: Time evolution of g(#)? defined in (52) for the flow around a sphere of radius
10 immediately before the nucleation of the first (a) and the second (b) vortex rings.

g(6)? 0.6 |

0.4 |
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