Ph.D Qualifying Exam APPLIED DIFFERENTIAL EQUATIONS Fall 2003

Do all of the following 6 problems

1. For the ODE

$$u_t = v - u^3$$

$$v_t = u - v$$

- (a) Find stationary points and their type.
- (b) Draw the phase plane and find all connections between the stationary points.
- 2. (a) Let Ω_1 and Ω_2 be two smooth sets in R^2 with Ω_1 a (strict) subset of Ω_2 . Let $-\lambda_1$ and $-\lambda_2$ be the smallest (i.e. least negative) eigenvalues for the Dirichlet problem on Ω_1 and Ω_2 , with eigenfunction ϕ_1 and ϕ_2 , respectively. That is

$$\Delta \phi_1 = -\lambda_1 \phi_1 \quad \text{in } \Omega_1 \tag{1}$$

$$\Delta \phi_2 = -\lambda_2 \phi_2 \quad \text{in } \Omega_2 \tag{2}$$

$$\phi_1 = 0 \text{ on } \partial\Omega_1$$
 (3)

$$\phi_2 = 0 \quad \text{on } \partial\Omega_2 \tag{4}$$

Show that $\lambda_1 > \lambda_2 > 0$. Hint: Use the variational characterization of the smallest eigenvalue λ for a set Ω that $\lambda = \min_u \int_{\Omega} (\nabla u)^2 dx dy / \int_{\Omega} u^2 dx dy$

- (b) Suppose Ω is a smooth set in R^2 with mirror symmetry about the y axis; i.e. if $(x,y) \in \Omega$ then $(-x,y) \in \Omega$. Let ϕ be the eigenfunction for the Dirichlet problem on Ω with the smallest eigenvalue. Use the result in (a) to show that $\phi(x) = \phi(-x)$.
 - 3. The function

$$h(X,T) = (4\pi T)^{-\frac{1}{2}} \exp(-X^2/4T)$$

satisfies (you do not need to show this)

$$h_T = h_{XX}$$
.

Using this result, verify that for any smooth function U

$$u(x,t) = \exp\left(\frac{1}{3}t^3 - xt\right) \int_{-\infty}^{\infty} U(\xi)h(x - t^2 - \xi, t)d\xi \tag{5}$$

satisfies

$$u_t + xu = u_{xx}. (6)$$

Given that U(x) is bounded and continuous everywhere on $-\infty \le x \le \infty$, establish that

$$\lim_{t \to 0} \int_{-\infty}^{\infty} U(\xi)h(x - \xi, t)d\xi = U(x)$$
 (7)

and show that $u(x,t)\to U(x)$ as $t\to 0$. (You may use the fact that $\int_0^\infty e^{-\xi^2}d\xi=\frac12\sqrt\pi$.)

4. Find the characteristics of the partial differential equation

$$xu_{xx} + (x - y)u_{xy} - yu_{yy} = 0, \quad x > 0, \quad y > 0,$$
 (8)

and then show that it can be transformed into the canonical form

$$(\xi^2 + 4\eta)u_{\xi\eta} + \xi u_{\eta} = 0 (9)$$

whence ξ and η are suitably chosen canonical coordinates. Use this to obtain the general solution in the form

$$u(\xi,\eta) = f(\xi) + \int^{\eta} \frac{g(\eta')d\eta'}{(\xi^2 + 4\eta')^{\frac{1}{2}}}$$
 (10)

where f and g are arbitrary functions of ξ and η .

5. State Parseval's relation for Fourier transforms. Find the Fourier transform $\hat{f}(\xi)$ of

$$f(x) = \begin{cases} e^{i\alpha x}/2\sqrt{\pi y}, & |x| \le y\\ 0, & |x| > y \end{cases}$$
 (11)

in which y and α are constants. Use this in Parseval's relation to show that

$$\int_{-\infty}^{\infty} \frac{\sin^2(\alpha - \xi)y}{(\alpha - \xi)^2} d\xi = \pi y.$$
 (12)

What does the transform $\hat{f}(\xi)$ become in the limit $y \to \infty$? Use Parseval's relation to show that

$$\frac{\sin(\alpha - \beta)y}{\alpha - \beta} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin(\alpha - \xi)y}{(\alpha - \xi)} \frac{\sin(\beta - \xi)y}{(\beta - \xi)} d\xi.$$
 (13)

6.(a) For the cubic equation

$$\varepsilon^3 x^3 - 2\varepsilon x^2 + 2x - 6 = 0 \tag{14}$$

write the solutions x in the asymptotic expansion $x = x_0 + \varepsilon x_1 + O(\varepsilon^2)$ as $\varepsilon \to 0$. Find the first two terms x_0 and x_1 for all solutions x. (b) For the ODE

$$u_t = u - \varepsilon u^3 \tag{15}$$

$$u_t = u - \varepsilon u^3$$

$$u(0) = 1$$

$$(15)$$

write $u = u_0(t) + \varepsilon u_1(t) + \varepsilon^2 u_2(t) + O(\varepsilon^3)$ as $\varepsilon \to 0$. Find the first three terms u_0 , u_1 and u_2 .