Ph.D Qualifying Exam APPLIED DIFFERENTIAL EQUATIONS Winter 2003

Do all eight problems.

1. For the ODE

$$u_{tt} = u^3 - u \tag{1}$$

find and analyze the type of the stationary points and draw the phase plane diagram. Identify any connections between the stationary points, and any regions of periodic orbits.

2. Let L be the second order differential operator $L = \Delta - a(x)$ in which $x = (x_1, x_2, x_3)$ is in the three-dimensional cube $C = \{0 < x_i < 1, i = 1, 2, 3\}$. Suppose that a > 0 in C. Consider the eigenvalue problem

$$Lu = \lambda u$$
 for $x \in C$
 $u = 0$ for $x \in \partial C$.

- a) Show that all eigenvalues are negative.
- b) If u and v are eigenfunctions for distinct eigenvalues λ and μ , show that u and v are orthogonal in the appropriate inner product.
- c) If $a(x) = a_1(x_1) + a_2(x_2) + a_3(x_3)$ find an expression for the eigenvalues and eigenvectors of L in terms of the eigenvalues and eigenvectors of a set of one-dimensional problems.
- 3. Let Ω be a smooth domain in three dimensions and consider the initial-boundary value problem for the heat equation

$$u_t = \Delta u + f$$
 for $x \in \Omega$, $t > 0$
 $\partial u / \partial n = 0$ for $x \in \partial \Omega$, $t > 0$
 $u = u_0$ for $x \in \Omega$, $t = 0$.

in which f and u_0 are known smooth functions with

$$\partial u_0/\partial n = 0$$
 for $x \in \partial \Omega$.

a) Find an approximate formula for u as $t \to \infty$.

- b) If $u_0 \ge 0$ and f > 0, show that u > 0 for all t > 0.
- 4. 4. Consider the PDE

$$u_t = u_x + u^4 \quad \text{for} \quad t > 0$$

$$u = u_0$$
 for $t = 0$

for $0 < x < 2\pi$. Define the set $A = \{u = u(x) : \hat{u}(k) = 0 \text{ if } k < 0\}$, in which $\{\hat{u}(k,t)\}_{-\infty}^{\infty}$ is the Fourier series of u in x on $[0,2\pi]$.

- a) If $u_0 \in A$, show that $u(t) \in A$.
- b) Find differential equations for $\hat{u}(0,t)$, $\hat{u}(1,t)$, and $\hat{u}(2,t)$.
- 5. Find a solution to $xu_x + (x + y)u_y = 1$ which satisfies u(1, y) = y for $0 \le y \le 1$. Find the region in $\{x \ge 0, y \ge 0\}$ where u is uniquely determined by these conditions.
- 6. Assume that u is a harmonic function in the half ball $D = \{(x, y, z) : x^2 + y^2 + z^2 < 1, z \ge 0\}$ which is continuously differentiable, and satisfies u(x, y, 0) = 0. Show that u can be extended to be a harmonic function in the whole ball. If you propose an explicit extension for u, be sure to explain why the extension is harmonic.
- 7. Under what conditions on g, continuous on [0, L], is there a solution of

$$\frac{d^2u}{dx^2} = g, \ u(0) = u(L/3) = u(L) = 0?$$

8. a) Consider the damped wave equation for high-speed waves (0 < ϵ << 1) in a bounded region D

$$\epsilon^2 u_{tt} + u_t = \Delta u$$

with the boundary condition u(x,t) = 0 on the boundary of D. Show that the energy functional

$$E(t) = \int_{D} \epsilon^{2} u_{t}^{2} + |\nabla u|^{2} dx$$

is nonincreasing on solutions of the boundary value problem.

b) Consider the solution to the boundary value problem in part a) with initial data $u^{\epsilon}(x,0) = 0$, $u^{\epsilon}_t(x,0) = \epsilon^{-\alpha}f(x)$, where f does not depend on ϵ and $\alpha < 1$. Use part a) to show that

$$\int_{D} |\nabla u^{\epsilon}(x,t)|^{2} dx \to 0$$

uniformly on $0 \le t \le T$ for any T as $\epsilon \to 0$.

c) Show that the result in part b) does not hold for $\alpha=1$. To do this consider the case where f is an eigenfunction of the Laplacian, i.e. $\Delta f + \lambda f = 0$ in D and f=0 on the boundary of D, and solve for u^{ϵ} explicitly.