Qualifying Examination on Applied Differential Equations
Wednesday, January 5 2005, 9.00 a.m.-1.00 p.m.

Solve all of the following 7 problems. In doing so, provide clear and concise argu-
ments. Draw a figure when necessary.

Problem 1. Consider the partial differential equation
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and initial conditions
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u(0,z) = e~ (wrcosmx + sinwx),
e Show that a separation of variables in (1) leads to an eigenvalue problem in the
variable x.

e Determine the eigenvalues and the eigenfunctions for the eigenvalue problem in
question.

e Determine a solution to (1) which satisfies the boundary and the initial condi-
tions.

Problem 2. Let ¢ € C'(R?). Solve the following Cauchy problem in R?,
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Problem 3. Let u(z) be harmonic in the unit disc |z| < 1 in R?, and assume that
u > 0. Prove the following Harnack’s inequality:
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Problem 4. Let u(z,t) € C*°(R*xR) solve the Cauchy problem for the wave equation
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with ¢(z) and (z) being smooth compactly supported functions on R®. Use an
explicit formula for the solution of (2) (the Kirchhoff’s formula), to show that there
exists a constant C' > 0 such that we have, uniformly in z € R?,

lu(z, t)| < t>0.
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Problem 5. Solve the inhomogeneous problem for the Laplace operator in the unit
disc D = {(z,y) € R* 2%+ y% < 1},

Au=2%2—-9* inD

u = 0 along 0D.

Problem 6. Find the Fourier transform of the integrable function z +— (sinz)?/z?.

Hint. Determine first the Fourier transform of z +— z7!sin z.

Problem 7. Consider an autonomous system in R", z/(t) = f(z(t)), where f =
(f1, f2,---, fn) is a smooth vector field, such that

Zn::rkfk(x) <0 forx#0.
k=1

Show that z(t) — 0 as t — oo, for each solution of the system, independently of the
initial condition z(0).




