Qualifying Exam APPLIED DIFFERENTIAL EQUATIONS Fall 2007

Please solve all 8 problems.

1. Let $\phi(x)$ be continuous and bounded in \mathbb{R}^n . Assume that $\lim_{|x|\to\infty} \phi(x) = \phi_0$. Consider the Cauchy problem

$$\frac{\partial u(x,t)}{\partial t} - \Delta u(x,t) = 0 \quad \text{for } 0 \le t, x \in \mathbb{R}^n$$
$$u(x,0) = \phi(x).$$

Prove that $\lim_{t\to\infty} u(x,t) = \phi_0$.

2. Let $A_i(x)$, i = 1, 2, be smooth functions in a bounded domain $\Omega \subset \mathbb{R}^n$ such that $A_1 = A_2$ on $\partial \Omega$. Assume that

$$\Delta A_1 + \sum_{j=1}^n \left(\frac{\partial A_1}{\partial x_j}\right)^2 = \Delta A_2 + \sum_{j=1}^n \left(\frac{\partial A_2}{\partial x_j}\right)^2$$

in Ω . Prove that $A_1(x) = A_2(x)$ in Ω .

- 3. Let S be a strip $\{0 < x_1 < a, -\infty < x_2 < \infty\}$. Let $u(x_1, x_2)$ be a smooth solution of $\Delta u + \lambda u = 0$ in S satisfying the boundary conditions $u(0, x_2) = 0$, $u(a, x_2) = 0$, $-\infty < x_2 < \infty\}$. Here λ is a real constant. Prove that if $\int_S |u(x_1, x_2)|^2 dx_1 dx_2 < \infty$, then $u(x_1, x_2) = 0$ in S.
- 4. Consider the initial boundary value problem:

$$\frac{\partial^2 u(x,t)}{\partial t^2} + 2 \frac{\partial^2 u(x,t)}{\partial x \partial t} - \frac{\partial^2 u(x,t)}{\partial x^2} + a(x,t) \frac{\partial u(x,t)}{\partial x} = 0$$
 (1)

for $0 \le t < \infty$, $-\infty < x < \infty$ with

$$u(x,0) = f(x), \ \frac{\partial u(x,0)}{\partial t} = g(x)$$
 (2)

for $-\infty < x < \infty$, where f(x), g(x) are smooth functions having compact supports and a is a smooth bounded function. Find an estimate for the solution of (1), (2) that will imply uniqueness.

5. Consider the initial value problem

$$du/dt = cu^{1+\alpha}$$
$$u(0) = u_0$$

in which c > 0 and $\alpha > 0$ are constants and $0 < u_0 < 1$.

- (a) Find the solution of this ODE.
- (b) Find the blowup time t_* at which $u \to \infty$.
- (c) Find the value of α that minimizes t_* for fixed values of c and u_0 .
- 6. Let $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ in which $\mathbf{u} \in \mathbb{R}^2$ and $\mathbf{x} \in \mathbb{R}^2$. Solve the following problem by the method of characteristics

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = \mathbf{u}$$
$$\mathbf{u}(\mathbf{x}, 0) = \mathbf{x}.$$

Note that the jth component of $\mathbf{u} \cdot \nabla \mathbf{u}$ is

$$(\mathbf{u} \cdot \nabla \mathbf{u})_j = \sum_{i=1}^2 u_i \partial_{x_i} u_j.$$

7. Let u and λ be the eigenfunction and eigenvalue of the two point boundary value problems on $0 \le x \le L$

$$u_{xx}(x) - a(x)u(x) = -\lambda u(x)$$

$$u(0) = u(L) = 0$$
(3)

in which λ and L are constants. Assume that λ is the lowest eigenvalue for this problem

- (a) Show that a > 0 implies $\lambda > 0$.
- (b) Find an example showing that a < 0 does not imply $\lambda < 0$.
- (c) Show that λ is a decreasing function of L.
- 8. For i=1,2 and $0 \le t \le T$, let $\Omega_i(t)$ be an open smooth bounded domain in R^2 for each t with $\Omega_1(0)=\Omega_2(0)$ and $\partial\Omega_1(t)\subset\Omega_2(t)$ for

 $0 < t \le T$ (i.e., $\Omega_1(t)$ is strictly contained in $\Omega_2(t)$ for t = 0). Let u_i for i = 1, 2 solve

$$\frac{\partial u_i}{\partial t} - \Delta u_i = 0 \quad \text{for } x \in \Omega_i(t) \text{ and } 0 \le t \le T$$

$$u_i(x,0) = f(x) \quad \text{for } x \in \Omega_i(0)$$

$$u_i(x,t) = 0 \quad \text{for } x \in \partial \Omega_i(t)$$

in which the initial data f is independent of i with f > 0 in $\Omega_i(0)$.

- (a) Show that $u_i > 0$ for $x \in \Omega_i(t)$ and $0 < t \le T$
- (b) Show that $u_1 < u_2$ for $x \in \Omega_1(t)$ and $0 < t \le T$.