Applied Differential Equations, 5PRIN 92007

Each problem below is worth 10 points, so there are 80 points possible on this examination. Please start each problem on a new page.

1. Consider a minimizer u of the energy functional

$$E(u) = \frac{1}{2} \int (f - u)^2 dx + \frac{\lambda}{2} \int (\Delta u)^2 dx$$

where both u and f are periodic on the 2-torus. The above energy represents a least squares fit to the data f while having a relatively small size for the 'bending' energy of u, represented by the L^2 norm of the Laplacian.

- (a) Show that the Euler-Lagrange equation for u is $-(f-u) + \lambda \Delta^2 u = 0$.
- (b) Compute a solution of this problem in terms of a Fourier series expansion.
- (c) Discuss how the high frequency modes depend on the value of λ which imparts some smoothing to u.

2. Find all solutions to the boundary value problem $\Delta u = x$ in $x^2 + y^2 < 1$, $\partial u/\partial r = y$ on $x^2 + y^2 = 1$. Polar coordinates are useful here. In polar coordinates

$$\Delta u = rac{1}{r}rac{\partial}{\partial r}(rrac{\partial u}{\partial r}) + rac{1}{r^2}rac{\partial^2 u}{\partial heta^2}.$$

3. Consider the system

$$\begin{pmatrix} u \\ v \end{pmatrix}_{t} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}_{x} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}_{y} \tag{*}$$

in the domain y > 0, $-\infty < x < \infty$, $-\infty < t < \infty$. Find

i) all boundary conditions of the form a(x)u(x,0)+b(x)v(x,0)=0 such that the energy

$$E(t) = \int_{\{y>0\}} u^2(x,y,t) + v^2(x,y,t) dx dy$$

remains constant for solutions of (*), and

- ii) find all boundary conditions of that form for which E(t) does not increase as $t \to \infty$.
- 4. Suppose that $\Delta u = 0$ in a bounded domain D and that $u \in C^3(\overline{D})$. Show that $|\nabla u|^2$ takes its maximum value in \overline{D} on the boundary of D. [Consider $\Delta(|\nabla u|^2)$.]
- 5. Consider the equation

$$u_t + (u^2)_x = au^2,$$

with a > 0 and with initial condition

$$u(x,0) = \begin{cases} 0 & \text{if } |x| > 1\\ 1+x & \text{if } -1 < x < 0\\ 1-x & \text{if } 0 < x < 1 \end{cases}$$

- (a) Solve this problem by the method of characteristics to get functions w(y,t) and x(y,t) such that the solution u(x,t) must satisfy u(x(y,t),t) = w(y,t). To really find u(x,t) you would have to solve x = x(y,t) for y(x,t), but do not attempt to do that.
- (b) The functions w(y,t) and x(y,t) will not exist for all $t \ge 0$ and $y \in \mathbb{R}$. Find t^* , the largest number such that w(y,t) is finite for $0 \le t < t^*$ for all $y \in \mathbb{R}$.
- (c) Will it be possible to solve x = x(y,t) for y(x,t) for all t in the interval $[0,t^*)$? Explain your answer.
- 6. Consider the fourth order ODE

$$-Cu' + (u^3 - u^2)' = -u''''. \tag{**}$$

- (a) We are looking for solutions to (**) which tend to limits u_l as $x \to -\infty$ and u_r as $x \to +\infty$ with $u_l \neq u_r$. Assuming that such a solution exists, find the value of C.
- (b) For solutions of the form described above, integrate the equation and write it as a third order equation. Determine the constant of integration in terms of u_l and u_r .
- (c) Write the solution of (b) as a first order system of three equations and identify all equilibria.
- (d) Determine the dimensions of the stable and unstable manifolds at the equilibria, i.e. find the dimensions of the sets of solutions near each equilibrium which converge to the equilibrium as $x \to \infty$ and $x \to -\infty$ respectively.
- 7. a) Suppose that $a(\alpha)$ is a smooth function (continuous derivatives of all orders) which vanishes for $|\alpha| > R$. If the derivative of $\phi(\alpha)$ does not vanish for $|\alpha| \le R$, show that

$$F(k) = \int_{\mathbb{R}} e^{ik\phi(\alpha)} a(\alpha) d\alpha$$

satisfies $|F(k)| \leq C_N k^{-N}$ for all N for some sequence of constants C_N .

b) Consider the solution to $\Delta u + k^2 u = 0$ given by

$$u(x,y,k) = \int e^{ik(x\sin\alpha - y\cos\alpha - \alpha)}a(\alpha)d\alpha,$$

where $a(\alpha)$ is as in part a). Show that $|u(x,y,k)| \leq C_N k^{-N}$ for all N on $x^2 + y^2 < 1$.

c) Suppose that $a(\alpha) = 0$ for $|\alpha| > \pi$. Show that

$$u(1,0,k) = \frac{a(0)}{k^{1/3}} \int_{\mathbb{P}} e^{-i\eta^3/6} d\eta + O(k^{-2/3})$$

as $k \to \infty$.

8. The porous media equation in \mathbb{R}^n is

$$u_t = \Delta u^m, \quad m > 1.$$

Consider a similarity solution of the form $t^{-\alpha}U(x/t^{\beta})$ where U is nonnegative.

- (a) Compute the values of α and β depending on the dimension of space (hint: the PDE conserves $\int u(x,t)dx$).
 - (b) Show that $U(\eta)$ satisfies an elliptic PDE of the form

$$C_1U + C_2\eta \cdot \nabla U + \Delta(U^m) = 0.$$

Compute C_1 and C_2 in terms of α and β .

- (c) Find a family of radially symmetric solutions of the PDE in (b). Use the fact that for radially symmetric f(r), $\nabla f = f_r \hat{r}$ and $\Delta f = f_{rr} + \frac{n-1}{r} f_r$, where \hat{r} is the unit vector pointing outward from the origin, and n is dimension of space.
 - (d) Find the special solution with unit mass, $\int u(x,t)dx = 1$.