Qualifying Exam on Applied Differential Equations

Tuesday, September 15, 2009, 2:00 p.m.-6:00 p.m.

Solve the following 8 problems. In doing so, provide clear and concise arguments. Draw a figure when necessary.

Problem 1. Let u(x) be harmonic in the open ball $\{x \in \mathbb{R}^n; |x| < R\}$. Assume that $u(x) \ge 0$. Show that the following *Harnack inequality* holds,

$$\frac{R^2 - |x|^2}{(R + |x|)^n} u(0) \le R^{2-n} u(x) \le \frac{R^2 - |x|^2}{(R - |x|)^n} u(0), \quad |x| < R.$$

Problem 2. Let $\Omega \subset \mathbf{R}^n$ be a bounded open set and let $V \in C(\overline{\Omega})$. Show that for $\varepsilon > 0$ small enough, the Dirichlet problem

$$(-\Delta + \varepsilon V)u = f$$
 in Ω , $u = 0$ along $\partial \Omega$

has a unique solution in the space $H_0^1(\Omega)$, for each $f \in L^2(\Omega)$.

Problem 3. Consider the equation (sometimes called the Beltrami equation)

$$\frac{\partial u}{\partial x_1} + i \frac{\partial u}{\partial x_2} - \mu \left(\frac{\partial u}{\partial x_1} - i \frac{\partial u}{\partial x_2} \right) = \frac{\partial g}{\partial x_1} + i \frac{\partial g}{\partial x_2}.$$

For each smooth function g of compact support this equation is supposed to determine a smooth square-integrable function u. Show that it does that provided that the complex number μ satisfies $|\mu| \neq 1$, and one has the estimate

$$||u||_{L^2(\mathbf{R}^2)} \le \frac{1}{||\mu|-1|}||g||_{L^2(\mathbf{R}^2)}.$$

Problem 4. Let $Lu = -u_{xx} + V(x)u$, where V(x) is real-valued, and $Au = 4u_{xxx} - 3((Vu)_x + Vu_x)$. A page of exciting computations shows that the commutator LA - AL is given by

$$(LA - AL)u = (6VV_x - V_{xxx})u.$$

Do not do that computation during this examination. Instead suppose that V depends on the parameter t as well as x, and is a solution of the evolution equation $V_t = 6VV_x - V_{xxx}$ (the Korteweg-De Vries equation). Suppose that u(x,t) satisfies

$$L(t)u = -u_{xx} + V(t)u = \lambda(t)u$$
 and $\int_{\mathbb{R}} u^2(x,t)dx \equiv 1$,

i.e. u(x,t) is a normalized eigenfunction for the operator L(t). Show that $\lambda(t)$ must be independent of t.

Problem 5. Solve the Hamilton-Jacobi equation,

$$\begin{cases} u_t + \frac{1}{2} (u_x)^2 - x = 0, \\ u(x, 0) = \alpha x, \quad \alpha \in \mathbf{R}. \end{cases}$$

The solution is linear in x, but we want you to use the method of characteristics to solve this problem. The linearity in x is a check on your answer.

Problem 6. Let x(t) be a nonnegative differentiable function such that

$$x'(t) \ge \frac{1}{1 + tx(t)} + t - 1, \quad t \ge 0.$$

Show that $x(t) \ge 1 - \exp(-t^2/2)$ for $t \ge 0$.

Hint. Derive a differential equation for the function $t \mapsto 1 - \exp(-t^2/2)$.

Problem 7. Let u(x,t) solve the wave equation

$$\begin{cases} (\partial_t^2 - \Delta) u(x,t) = 0, & (x,t) \in \mathbf{R}^n \times \mathbf{R}, \\ u(x,0) = \varphi \in C_0^{\infty}(\mathbf{R}^n), & \partial_t u(x,0) = 0. \end{cases}$$

Show that the function

$$\widetilde{u}(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-s^2/4t} u(x,s) \, ds, \quad t > 0$$

satisfies the initial value problem for the heat equation,

$$(\partial_t - \Delta) \, \widetilde{u}(x,t) = 0, \quad t > 0, \quad \widetilde{u}(x,0) = \varphi(x).$$

This is sometimes called the transmutation formula.

Problem 8. Consider a linear damped wave equation with a constant damping factor $a \in (0,1)$,

$$\begin{cases} (\partial_t^2 - \Delta_x + a\partial_t) u(x,t) = 0, \\ u(x,0) = 0, \quad \partial_t u(x,0) = f(x). \end{cases}$$

Here $t \geq 0$ and $x \in \mathbf{T}^2 = \mathbf{R}^2/2\pi\mathbf{Z}^2$. Assume also that $f \in C^{\infty}(\mathbf{T}^2)$.

- Find an explicit formula for the solution of this problem u(x,t) in terms of Fourier series.
- Show that the energy of the solution,

$$E(t) = \frac{1}{2} \int_{\mathbf{T}^2} \left(|\nabla_x u|^2 + |\partial_t u|^2 \right) dx, \quad t \ge 0$$

decreases at an exponential rate as $t \to \infty$. What is the rate of the exponential decay?