Applied Differential Equations – Fall 2010

1. Determine the constants A such that the differential equation

$$\frac{d^2u}{dx^2} + u = A + x$$

has a solution satisfying $u(0) = u(\pi) = 0$.

2. (a) Solve

$$\begin{pmatrix} u \\ v \end{pmatrix}_t = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}_x$$

with the initial data (u(x,0),v(x,0))=(f(x),g(x))

- (b) Find all boundary conditions of the form au(0,t) + bv(0,t) = 0 which make the initial value problem in part (a) well-posed in $x \ge 0$, $t \ge 0$.
- 3. Consider the competition with limited resources model

$$\dot{x} = (a_1 - b_1 x - c_1 y)x$$
 $\dot{y} = (a_2 - b_2 x - c_2 y)y$

Here a_i , b_i and c_i are positive constants with $c_1a_2 > a_1c_2$ and $b_2a_1 > b_1a_2$. Note that this implies $c_1b_2 > c_2b_1$.

- a) Find the equilibria of this system in the closed quarter plane $x \geq 0$, $y \geq 0$.
- b) Show that an equilibrium in the open quarter plane x > 0, y > 0 must be a saddle.
- c) Make a plausible phase plane diagram for trajectories in the closed quarter plane.
- 4. Use the method of characteristics to find a solution to

$$u_t + uu_x = -x, t \ge 0$$

with u(x,0) = f(x), $-\infty < x < \infty$. You will not be able to find u(x,t) explicitly. However, if $f'(x) \ge 0$, show that the solution will exist for $t \in [0, \pi/2)$.

5. Assume that $y = \phi(x)$ is a smooth, one-to-one mapping of the domain $D \subset \mathbb{R}^2$ onto the domain $\hat{D} \subset \mathbb{R}^2$. Let $\phi'(x)$ be the jacobian matrix of ϕ , and assume that $h(x) = |\det \phi'(x)| \neq 0$. Use the weak form of the equation to show that the boundary value problem

$$-\sum_{i=1}^{2} \frac{\partial}{\partial x_i} \left[\beta(x) \frac{\partial u}{\partial x_i} \right] = f \text{ in } D, \ u = 0 \text{ on } \partial D$$

is equivalent to

$$-\frac{1}{\hat{h}(y)}\sum_{i=1}^{2}\frac{\partial}{\partial y_{i}}\left[\sum_{j=1}^{2}\hat{h}(y)\hat{\beta}_{ij}(y)\frac{\partial\hat{u}}{\partial y_{j}}\right]=\hat{f} \text{ in } \hat{D}, \hat{u}=0 \text{ on } \partial\hat{D},$$

where $\hat{u}(\phi(x)) = u(x)$, $\hat{f}(\phi(x)) = f(x)$, $\hat{h}(\phi(x)) = h(x)$, and you need to find the matrix $(\beta_{ij})(y)$.

6. In this problem we have the domains in the (x_1, x_2) -plane

$$\Omega_{+}^{a} = \{|x - (1,0)| \le a\} \cap \{x_1 \ge 0\} \text{ and } \Omega_{-}^{a} = \{|x - (-1,0)| \le a\} \cap \{x_1 \le 0\},\$$

and set $\Omega^a = \Omega^a_- \cup \Omega^a_+$. Consider the Neumann problem

$$\Delta u = f, \ x \in \Omega^a, \ \frac{\partial u}{\partial n} = 0, \ x \in \partial \Omega^a,$$

where $\int_{\Omega_+^a} f dx = 1$ and $\int_{\Omega_-^a} f dx = -1$.

- (a) Prove the existence of a solution to this Neumann problem when a > 1 and the nonexistence of a solution when 0 < a < 1.
- (b) Show that $\max_{\Omega^a} |\nabla u| \to \infty$ as $a \downarrow 1$. Note that the length of the line segment $L = \Omega^a_- \cap \Omega^a_+$ goes to zero as $a \downarrow 1$.
- 7. Consider the heat equation, $u_t \Delta u = 0$, in a bounded domain D in \mathbb{R}^n with the initial condition u(x,0) = 0 and the boundary condition u(x,t) = f(x) on ∂D . Find an expansion for the solution to this problem in terms of eigenfunctions of Δ and the solution of the Dirichlet problem $\Delta w = 0$ in D, w = f on ∂D . What is leading term in the asymptotic expansion of u(x,t) w(x) as $t \to \infty$?
- 8. Let u(x,t) be the solution to

$$u_{tt} + a^2(x,t)u_t - \Delta u = 0$$
 in D , $u(x,t) = 0$ on ∂D

with $(u(x,0), u_t(x,0)) = (f(x), g(x))$. Prove that $\int_D u^2(x,t)dx$ is bounded for $t \in [0,\infty)$. You may assume that D is a bounded domain with smooth boundary, f and g are smooth functions vanishing on ∂D , and that g is a smooth function on $D \times [0,\infty)$