Qualifying Exam on Applied Differential Equations

Tuesday, March 23, 2010, 2PM-6PM.

Solve the following 8 problems. Provide clear and concise arguments. Draw a figure when necessary.

1. Consider the generalized eigenvalue problem

$$y'' - y = -\lambda x^2 y'$$
 for $0 < x < 1$, $y(0) = y(1) = 0$

Show that all eigenvalues λ must be bigger than 1.

2. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. Let u be a C^2 solution of the following problem

$$\left\{ \begin{array}{lll} u_t = \Delta u - u & \text{ in } & \Omega \times (0,\infty) \\ \\ u(x,0) = g(x) & \text{ in } & \Omega \\ \\ u(x,t) = 0 & \text{ on } & \partial \Omega \times (0,\infty). \end{array} \right.$$

Suppose g(x) is bounded and compactly supported in Ω .

Using an appropriate energy, show that there exists C > 0 such that $|u(x,t)| \leq C \exp^{-t}$ as $t \to \infty$.

3. Let Ω be a bounded region in \mathbb{R}^n with smooth boundary. Prove the uniqueness of C^2 solution for the following problem:

$$\begin{cases}
-\Delta u + a(x)u = 0 & \text{in} & \Omega \\
\frac{\partial u}{\partial \nu} = f(x) & \text{on} & \partial \Omega
\end{cases}$$

when $a(x) > 0, f(x) \in C^2(\bar{\Omega})$, and ν is the outward normal vector on $\partial \Omega$ with respect to Ω .

4. Let u solve the one-dimensional wave equation

$$u_{tt} - u_{xx} = -u \text{ in } \mathbb{R} \times (0, \infty),$$

with continuous initial data u(x,0) = g(x), $u_t(x,0) = h(x)$ which are both compactly supported.

- (a) Find an energy associated with u
- (b) Show that $u(\cdot,t)$ is compactly supported at each t>0.
- 5. Consider the conservation laws $(g(u))_t + (h(u))_x = 0$. Define the notion of integral solution and derive the jump (Rankine-Hugoniot) condition for a discontinuity (u-,u+) in an integral solution.

1

6. Solve:

$$u_x^2 + yu_y - u = 0, \ (x, y) \in \mathbb{R} \times (1, \infty)$$

$$u(x, 1) = \frac{x^2}{4} + 1.$$

7. Let $u:[0,1]\to\mathbb{R}$ be piecewise H^1 with a discontinuity at x_{Γ} . That is, if $u^-:[0,x_{\Gamma})\to\mathbb{R}$ with $u^-(x)=u(x)$ for $0\leq x< x_{\Gamma}$ and $u^+:(x_{\Gamma},1]\to\mathbb{R}$ with $u^+(x)=u(x)$ for $x_{\Gamma}< x\leq 1$, then $u^-\in H^1(0,x_{\Gamma})$ and $u^+\in H^1(x_{\Gamma},1)$. Furthermore, define the jump in u at x_{Γ} as

$$[u] = \lim_{x \to x_{\Gamma}^+} u(x) - \lim_{x \to x_{\Gamma}^-} u(x)$$

and \bar{u} as

$$ar{u} = rac{1}{2} \left(\lim_{x o x_\Gamma^+} u(x) + \lim_{x o x_\Gamma^-} u(x)
ight).$$

Show that if

$$\begin{split} \frac{\partial}{\partial x} \left(\beta(x) \frac{\partial u}{\partial x} \right) &= 0, \ x \in (0, x_{\Gamma}) \cup (x_{\Gamma}, 1), \\ [\beta \frac{\partial u}{\partial x}] &= \lim_{x \to x_{\Gamma}^{+}} \beta(x) \frac{\partial u}{\partial x}(x) - \lim_{x \to x_{\Gamma}^{-}} \beta(x) \frac{\partial u}{\partial x}(x) = b, \\ u(0) &= u(1) = 0 \text{ and } [u] = a \end{split}$$

(where β is piecewise C^{∞} but discontinuous at x_{Γ} and $\beta(x) \geq \epsilon > 0$) then $e(u) \leq e(v)$ for all piecewise H^1 functions v that also satisfy:

$$v(0) = v(1) = 0$$
 and $[v] = a$.

Here, e(u) is defined as

$$e(u) = \frac{1}{2} \left[\int_0^{x_\Gamma} \frac{\partial u}{\partial x}(x) \beta(x) \frac{\partial u}{\partial x}(x) dx + \int_{x_\Gamma}^1 \frac{\partial u}{\partial x}(x) \beta(x) \frac{\partial u}{\partial x}(x) dx \right] + \bar{u}b$$

8. Find a solution of the inhomogeneous initial value problem

$$u_t + au_x = f(x, t), x \in \mathbb{R}$$

 $u(x, 0) = \phi(x).$