Applied Differential Equations, Spring 2011.

Do all eight problems. They are each worth 10 points.

- 1. The equation of motion for a "nonlinear spring" is $y'' = -ky ay^3$, where k > 0 is the constant in Hooke's Law. Rewrite this equation as an equivalent first order system, and analyze the phase plane for it. Indicate the differences between a hard (a > 0) and a soft (a < 0) spring. Also explain what differences you would see if a damping term were added to the equation.
- 2. Consider the Cauchy problem for equation

$$\frac{\partial^2 u}{\partial x_1 \partial x_2} - 4 \frac{\partial^2 u}{\partial x_3^2} + \frac{\partial u}{\partial x_1} = 0$$

in the half-space $x_1 \cos \theta + x_2 \sin \theta \ge 0$, i.e. the problem of finding a solution to the equation in the half-space with prescribed values and normal derivative on the plane $x_1 \cos \theta + x_2 \sin \theta = 0$.

- (a) For what values of θ is this problem characteristic?
- (b) For what values of θ is this strictly hyperbolic (with respect to the normal to the plane)?
- 3. Let D be a bounded domain in \mathbb{R}^d with smooth boundary Γ , and assume that a(x) is a continuous function on \overline{D} . Show that solutions to $u_t = \Delta u + a(x)u$ vanishing on Γ with u(0,x) > 0 will be nonnegative for all t > 0.
- 4. Consider the Cauchy problem in the plane

$$\frac{\partial u}{\partial x}\frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}\frac{\partial u}{\partial y} = 1 \qquad u(x,0) = f(x),$$

where $f \in C^2(\mathbb{R})$. When will this be characteristic at $(x_0, 0)$? Assuming that it is not characteristic at $(x_0, 0)$, find a solution defined in a neighborhood of that point. The solution will be expressed in terms of f and the function r(x, y) defined near $(x_0, 0)$ by $y = (f'(r))^2(x - r - y)$. You should also show that $y = (f'(r))^2(x - r - y)$ has a unique local solution with $r(x_0, 0) = x_0$.

5. (a) Consider the boundary value problem $\Delta u = 0$ in the half-space $x_3 > 0$ in \mathbb{R}^3 with $\frac{\partial u}{\partial x_3} = f$ on $x_3 = 0$. Find the kernel P(x, y) such that for f continuous and vanishing for |x| large

$$u(x) = \int_{\mathbb{R}^2} P(x, y) f(y) dy$$

gives a solution to this problem which converges to zero as $|x| \to \infty$.

- (b) Show that boundary value problem in (a) can have at most one solution which converges to zero as $|x| \to \infty$.
 - (c) Suppose that $\int_{\mathbb{R}^2} f(y)dy = 0$. Show that $|u(x)| \leq C|x|^{-2}$.
- 6. (a) Assume that a < 1. Prove that the solution to the mixed problem

$$u_{tt} - \Delta u = 0$$
, in $\{(t, x) \text{ in } \mathbb{R} \times \mathbb{R}^3, x_3 > 0\}, u_{x_3} - au_t = 0 \text{ on } x_3 = 0$

with initial data u(0,x) = f(x), $u_t(0,x) = g(x)$ will vanish in the hemisphere |x| < R - |t|, $x_3 > 0$ when f and g vanish for |x| < R.

- (b) Explain why the result in part (a) is false when a = 1.
- 7. Show that the initial value problem for the nonlinear diffusion equation $u_t = u_{xx} + u^2$ has a solution for short time by completing the following argument. Let K(t,x) be the fundamental solution for the heat equation. You may assume the estimate

$$\sup_{x\in\mathbb{R}}|u(x,t)|\leq \sup_{x\in\mathbb{R}}|u(x,0)|, \ \text{ when } u(x,t)=\int_{\mathbb{R}}K(t,x-y)u(0,y)dy.$$

Given a bounded continuous function f(x), define the sequence of functions $\{u_n\}$ recursively as the solutions to the initial value problems

$$(u_n)_t - \Delta u_n = u_{n-1}^2, \qquad u_n(0, x) = f(x),$$

and show that, for T sufficiently small, this sequence converges uniformly to a solution to $u_t = \Delta u + u^2$ with u(0, x) = f on $\{0 \le t \le T\} \times \mathbb{R}_x$.

8. Find a similarity solution $v(t,x) = t^{\alpha}w(x/t^{\beta})$ to $v_t = v_{xx} + (v^2)_x$ First find values for α and β and the differential equation for w which lead to a nontrivial solution v for this equation. Then complete the construction by solving the equation for w.