Algebra Qualifying Exam

Fall 2000

Everyone must do two problems in each of the four sections. To pass at the PhD level, you must attempt at least three 20-point problems. On multiple part problems, do as many parts as you can; however, not all parts count equally.

Groups

- A1. (10 points) Let D_{2n} be the dihedral group of order 2n with n > 1. Determine the number of subgroups of D_{2n} of index 2, and justify your answer.
- A2. (15 points) A group of order a power of a prime p is called a p-group. Let G be a finite group. Prove that for any given prime p, there exists a unique normal subgroup N of G such that (i) G/N is a p-group and (ii) any homomorphism π of G into a p-group is trivial on N (that is, $\pi(N) = 1$).
- A3. (20 points) Let G be a finite group of order n. Suppose that G has a unique subgroup of order d for each positive divisor d of n. Prove that G is a cyclic group.

Rings

- B1. (10 points) Let M be a module over a commutative ring A. If every increasing (resp. decreasing) sequence of A-submodules of M terminates after finite steps, the A-module M is called noetherian (resp. artinian).
 - (a) Prove that the \mathbf{Z} -module \mathbf{Z} is noetherian and non-artinian.
 - (b) Prove that the **Z**-module $\bigcup_{n=1}^{\infty} (p^{-n}\mathbf{Z}/\mathbf{Z})$ is artinian and non-noetherian.
- B2. (15 points) Let A be a commutative ring with identity. Suppose that $a \in A$ is not nilpotent (that is, $a^n \neq 0$ for all n > 0).
 - (a) Prove that there exists a prime ideal $P \subset A$ such that $a \notin P$;
 - (b) Give an example of a ring A and a non-nilpotent $a \in A$ such that a is contained in M for all maximal ideals $M \subset A$. Justify your example.
- B3. (20 points) Let A be a commutative noetherian ring with identity $1 \neq 0$. Write $X(\mathfrak{a})$ for the set of prime ideals of A containing a given ideal \mathfrak{a} . Suppose that $X(0) = X(\mathfrak{a}) \cup X(\mathfrak{b})$ and $X(\mathfrak{a}) \cap X(\mathfrak{b}) = \emptyset$ for two ideals \mathfrak{a} and \mathfrak{b} . Prove the following facts:
 - (a) $A = \mathfrak{a} + \mathfrak{b};$
 - (b) $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b};$
 - (c) The ideal \mathfrak{ab} consists of nilpotent elements. Hint: You may use the assertion of B2 (a);
 - (d) There exists a positive integer n such that A is isomorphic to the product ring $(A/\mathfrak{a}^n) \times (A/\mathfrak{b}^n)$.

Fields

- C1. (10 points) Find the minimal polynomial of $\sqrt{2} + \sqrt[3]{3}$ over the field of rational numbers **Q**.
- C2. (15 points) Let a be a primitive 16-th root root of unity over the field F. Determine the dimension [F(a):F] when F is:
 - a) The field of 9 elements,
 - b) The field of 7 elements,
 - c) The field of 17 elements,
 - d) What can you say in the case p = 2?
- C3. (20 points) Let F be an infinite field of characteristic p > 0. Recall that a finite dimensional extension L/F is said to be simple if L = F(u) for some element $u \in L$.
 - a) Suppose L/F has a finite number of intermediate fields. Show that L/F is simple.
 - b) Let K be an intermediate field $F \subset K \subset L$, and suppose that L = F(u) with $x^r + a_1x^{r-1} + \cdots + a_r$ the monic irreducible polynomial of u over K, $a_i \in K$. Show that $K = F(a_1, a_2, \ldots, a_r)$.
 - c) Conclude that L/F is simple if and only if there are a finite number of intermediate fields.
 - d) Let E = F(x, y) where x and y are indeterminates, and set

$$M = E(x^{1/p}, y^{1/p})$$

Show that M/E has an infinite number of intermediate fields.

Linear Algebra

- D1. (10 points) Let V be a finite dimensional vector space over a field F and $T:V\to V$ a linear map whose characteristic polynomial has distinct roots, all in F. Show that T is diagonalizable.
- D2. (15 points) Describe all non-diagonalizable 4×4 matrices over \mathbf{Q} such that $A^5 + A^2 = 0$ up to similarity. Justify your answer.
- D3. (20 points) Let V be a complex vector space with positive definite inner product (,), and $T:V\to V$ a linear map. Recall that the adjoint T^* of T is defined by:

$$(T(x), y) = (x, T^*(y))$$

for all $x, y \in V$, and that T is called *normal* if T and T^* commute. Suppose that $T^3 = TT^*$. Let U be the kernel of T and W the orthogonal complement of U in V.

- (a) Show that W is T^* -invariant.
- (b) Show that U is T^* -invariant.
- (c) Conclude that W is T invariant.
- (d) Show that the restrictions of T and T^* to W commute.
- (e) Show that T is normal.