Algebra Qualifying Exam

Fall 2001

Everyone must do two problems in each of the four sections.

To pass at the Ph.D. level, you must attempt at least three 20-point problems. On multiple part problems, do as many parts as you can; however, not all parts count equally.

Groups

G1. (10 points) Let G be a finite group whose center has index n. Show that every conjugacy class in G has at most n elements.

G2. (15 points) Let G be a subgroup of S_n that acts transitively on the set $\{1, 2, \ldots, n\}$. Let H be the stabilizer in G of an element $x \in \{1, 2, \ldots, n\}$. Prove that

$$\bigcap_{g\in G}gHg^{-1}=\{e\}$$

G3. (20 points) Let G be the group of matrices of the form

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

where $a \in (\mathbb{Z}/p)^*$ and $a \in \mathbb{Z}/p$. Describe all normal subgroups of G. Hint: find a convenient normal subgroup of order p.

Rings

R1. (10 points) Let R be a commutative ring, $I \subset R$ a nonzero ideal. Prove that if I is a free R-module then I = aR for an element $a \in R$ which is not a zero divisor in R. Hint: consider the rank of I.

R2. (15 points) (a) Give an example of prime ideal in a commutative ring that is not maximal.

(b) Let R be a commutative ring with identity. Suppose for every element $x \in R$ there exists an integer n = n(x) > 1 such that $x^n = x$. Show that every prime ideal in R is maximal.

R3. (20 points) Let R be a ring.

(a) Prove that if a is a nilpotent element in a ring R with identity, then the element 1 + a is invertible.

In the next two parts, let $f(X) = a_0 + a_1 X + \cdots + a_n X^n$ be a polynomial in R[X] of degree n, that is, $a_n \neq 0$.

- (b) Show that if R is an integral domain, then f(X) is invertible in R[X] if and only if n = 0.
- (c) Show that if R is a commutative ring, f(X) is invertible in R[X] if and only if all a_0 is invertible and a_i are nilpotent in R for every $i \geq 1$.

Fields

F1. (10 points) Let $f(x) = x^3 - 2x - 2$.

(a) Show that f(x) is irreducible over \mathbb{Q} .

(b) Let θ be a complex root of f(x). Express θ^{-1} as a polynomial in θ with coefficients in \mathbb{Q} .

F2. (15 points) Let $f(x) = x^3 + nx + 2$ where n is an integer. Determine the (infinitely many) values of n for which f is irreducible over \mathbb{Q} .

F3. (20 points) Let G be the Galois group of $x^p - 2$ over \mathbb{Q} where p is a prime. Show that G is isomorphic to the group of matrices of the form

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

where $a \in (\mathbb{Z}/p)^*$ and $a \in \mathbb{Z}/p$.

Linear Algebra

- **LA1.** (10 points) Let T be a linear operator on a finite-dimensional vector space V such that Im(T) and $\text{Im}(T^2)$ have the same dimension. Show that $\ker T \cap \text{Im}(T) = 0$.
- **LA2.** (15 points) Find all similarity classes of 4×4 matrices A over \mathbb{Q} such that $A^2 \neq \pm A$ and $A^2 \neq I$ but $A^3 = A$ (I is the identity 4×4 matrix).
- **LA3.** (20 points) Let V be a vector space over a field k. A bilinear form $f: V \times V \to k$ is called skew-symmetric if f(u,v) = -f(v,u) for all $v,u \in V$ and is called alternating if f(v,v) = 0 for all $v \in V$.
- (a) Prove that every alternating form is skew-symmetric.
- (b) Give an example of a skew-symmetric form which is not alternating. Hint: choose k of characteristic 2.
- (c) Show that all alternating forms on V form a vector space Alt(V) and find $\dim Alt(V)$ if $\dim V = n$.