Algebra Qualifying Exam

Fall 2006

Test Instructions: Everyone must do two problems in each of the four sections. If three problems of a section are tried, only the two problems of highest score count (the lowest is ignored). For multiple part problems, do as many parts as you can; however, not all parts count equally.

Groups

G1. List all finite groups G whose automorphism group has prime order. Justify your answer.

G2. Let G be a finite group and H be a non-normal subgroup of G of index n > 1.

(a) Show that if |H| is divisible by a prime $p \geq n$, then H cannot be a simple group;

(b) Show that there is no simple group of order $504 = 2^3 \cdot 3^2 \cdot 7$. (Hint: Choose a good prime ℓ , and let G act on the set of Sylow ℓ -subgroups getting an embedding of G into a permutation group, and apply (a). You may use the fact that the alternating group A_n is simple if $n \geq 5$.)

G3. Let

$$SL_2(\mathbb{Z}/p\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}/p\mathbb{Z}, \ ad - bc = 1 \right\},$$

where p is an odd prime.

(a) Prove that any subgroup of a cyclic group is cyclic.

(b) Compute the order of G.

(c) Prove that for any odd prime ℓ , the Sylow ℓ -subgroup of G is cyclic. (Hint: You may use the fact that the multiplicative group F^{\times} of a finite field F is cyclic).

Rings

R1. Determine all prime ideals in the polynomial ring $\mathbb{Z}[x]$. Justify your work.

R2. Let R be a noetherian domain. A non-zero element x in R is called a *prime element* if (x) is a prime ideal. Prove all of the following:

(a) Every nonzero non-unit in R is a product of irreducible elements.

(b) Every nonzero ideal $I \neq R$ in R contains a (finite) product of non-zero prime ideals.

(c) If every nonzero prime ideal in R contains a prime element then every irreducible element in R is a prime element.

[You may not use theorems about UFD's]

R3. Let R be a commutative ring and M a finitely generated Rmodule. Suppose there exists a positive integer n and a surjective R-module homomorphism $\varphi: M \to R^n$. Show that $\ker \varphi$ is also a finitely generated R-module.

Fields

F1. Let F be a finite field of positive characteristic p. Show that the unit group $F \setminus \{0\}$ of F is a cyclic group and that F is a Galois extension of $\mathbb{Z}/p\mathbb{Z}$.

F2. Let f(x) be the polynomial $x^6 + 3$ over \mathbb{Q} (the field of rational numbers). Determine the Galois group of f(x), i.e., the Galois

group of K/\mathbb{Q} where K is a splitting field of f(x).

F3. Let f(x) be an irreducible polynomial over F and K/F a normal extension. Show that f(x) factors into irreducible polynomials over K all of the same degree.

Linear Algebra

L1. Let V be an n-dimensional vector space over a field F (for finite n) and $\sigma: F \to F$ be a field homomorphism (sending 1 to 1). We regard $V \otimes_{F,\sigma} F$ as an F-vector space via the F-multiplication given by $a(v \otimes \alpha) = (av) \otimes \alpha$ for $a, \alpha \in F$ and $v \in V$.

(a) Compute the formula of $\dim_F(V \otimes_{F,\sigma} F)$ if F is a finite extension of a field k fixed by σ , where $V \otimes_{F,\sigma} F$ is the tensor product over F regarding F as F-module via σ .

(b) Let p be a prime. If $F = \mathbb{F}_p(x_1, \ldots, x_m)$ ($\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$) and $\sigma(\phi) = \phi^p$ for all $\phi \in F$, compute the formula of $\dim_F(V \otimes_{F,\sigma} F)$. Here $\mathbb{F}_p(x_1, \ldots, x_m)$ is the field of fractions of the polynomial ring $\mathbb{F}_p[x_1, \ldots, x_m]$ of m variables.

(c) Give an example of a field F of characteristic 3 and a homomorphism $\sigma: F \to F$ such that $\dim_F V \otimes_{F,\sigma} F = 2 \dim_F V$,

and justify your example.

L2. Let V be a finite dimensional vector space over the rational number field $\mathbb Q$ and $I:V\times V\to \mathbb Q$ be an alternating bilinear map (that is, I(x,y)=-I(y,x) for all $x,y\in V$). We call I degenerate if there exists nonzero $x\in V$ such that I(x,V)=0, and I is non-degenerate if I is not degenerate.

(a) Show that if V is two dimensional and I is non-degenerate then there exists a basis x, y such that I(x, y) = 1.

(b) Show that I is degenerate if $\dim_{\mathbb{Q}} V$ is odd.

(c) If $\dim_{\mathbb{Q}} V = 2m$ is even and I and I' are two nondegenerate alternating forms on V, show that there exists an invertible linear transformation $T:V\to V$ such that I'(x,y)=I(Tx,Ty) for all $x,y\in V$.

L3. Let $T: V \to V$ be a linear transformation on an n-dimensional vector space V over $\mathbb C$ with $n \geq 1$. Suppose that $T^n = 0$ but $T^{n-1} \neq 0$.

(a) Compute dim $Ker(T^{101})$.

(b) If $S: V \to V$ is a linear transformation with ST = TS and $\dim S(V) = n - 2$, compute $\dim S^{101}(V)$.