ALGEBRA QUALIFYING EXAM: Spring 2009

TEST INSTRUCTIONS All problems are worth 20 points. You are expected to do 2 problems from each of the four sections. Your total score will be computed by taking the two best-scoring problems in each section. In problems where arguments must be given, you will lose points if you fail to state clearly the basic results that you use.

GROUPS

- G1. Let N be a normal subgroup of a finite group G and P a Sylow p-subgroup of G. Prove that $P \cap N$ is a Sylow p-subgroup of N.
- G2. Let A be an abelian group generated by n elements. Prove that any subgroup of A can be generated by n elements.
- G3. Let G be a finite group and $H \subset G$ a subgroup of index n. Suppose that $xH \cap Hy \neq \emptyset$ for any elements $x, y \in G \setminus H$. Prove that $|G| \geq n^2 n$. (Hint: consider an action of G on $(G/H) \times (G/H)$.)

RINGS

- R1. Show the the ring $\mathbf{Z}[2i]$ consisting of all complex numbers a+2bi with $a,b\in\mathbf{Z}$ is not a PID.
- R2. Let $M_n(F)$ be a the matrix ring of $n \times n$ matrices over a field F. Suppose that there is a subring of $M_n(F)$ isomorphic to $M_m(F)$ for some m. Prove that m divides n.
- R3. Two polynomials $f, g \in R[t]$ over a commutative ring R are called *coprime over* R if f and g generate the unit ideal in R[t]. Let $f, g \in \mathbf{Z}[t]$ be two polynomials such that f and g are coprime over \mathbf{Q} and the residues of f and g in $(\mathbf{Z}/p\mathbf{Z})[t]$ are coprime for every prime integer p. Prove that f and g are coprime over \mathbf{Z} .

LINEAR ALGEBRA

LA1. A matrix N is said to be **nilpotent of order** k if $N^k = 0$, but $N^{k-1} \neq 0$. If N is nilpotent of order k, prove that

$$k = \min\{m \mid \ker(N^m) = \ker(N^{m+1})\}.$$

LA2. Consider the matrix

$$A = \begin{pmatrix} 0 & 2 & -2 \\ -2 & 0 & 1 \\ 2 & -1 & 0 \end{pmatrix}$$

- (A) Prove that $(I A)(I + A)^{-1}$ is an orthogonal matrix.
- (B) Compute e^{At} as a function of t.

LA3. Let $\pi \in S_n$ be a permutation of n elements. Let P_{π} be the $n \times n$ matrix taking the standard basis vector $e_i \mapsto e_{\pi(i)}$ for all i. Describe the eigenvalues over \mathbf{C} of P_{π} in terms of the cyclic decomposition of π .

FIELDS

- F1. Let $p(x) \in K[x]$ be a monic irreducible polynomial of degree n whose discriminant $D \neq 0$, where K has characteristic $\neq 2$. Prove that the Galois group of p is contained in the alternating group A_n if and only in $\sqrt{D} \in K$.
- F2. Let α be transcendental over \mathbf{Q} . What is the minimal polynomial of α over $\mathbf{Q}(\frac{\alpha^2+1}{\alpha-1})$?
- F3. (A) Which roots of unity are contained in quadratic extensions of \mathbf{Q} , and which extensions are these?
- (B) If K/\mathbb{Q} is any field extension that contains a primitive n'th root of unity, and n is odd, then prove K contains a primitive 2n'th root of unity.