ALGEBRA QUALIFYING EXAM FALL 2011

Do all the following 10 problems (see reverse). Good luck!

- **Problem 1.** For a finite field \mathbb{F} , prove that the order of the group $\mathrm{SL}_2(\mathbb{F})$, of 2×2 matrices with determinant 1, is divisible by 6.
- **Problem 2.** Let G be a non-trivial finite group and p a prime. If every subgroup $H \neq G$ has index divisible by p, prove that the center of G has order divisible by p.
- **Problem 3.** Let R be a local UFD of Krull dimension 2 (meaning that the maximal integer m for which there exist strict inclusions of prime ideals $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_m$ in R is exactly 2). Let $\pi \in R$ be neither zero nor a unit. Prove that $R[\frac{1}{\pi}]$ is a PID.
- **Problem 4.** Let p be a prime. Prove that the nilradical of the ring $\mathbb{F}_p[X] \otimes_{\mathbb{F}_p[X^p]} \mathbb{F}_p[X]$ is a principal ideal.
- **Problem 5.** Let \mathbb{F} be a finite field and $\overline{\mathbb{F}}$ be an algebraic closure of \mathbb{F} . Let K be a subfield of $\overline{\mathbb{F}}$ generated by all roots of unity over \mathbb{F} . Show that any simple K-algebra of finite dimension over K is isomorphic to the matrix algebra $M_n(K)$ for a positive integer n.
- **Problem 6.** Let R be a commutative ring and let M be a finitely generated R-module. Let $f: M \to M$ be R-linear such that $f \otimes \mathrm{id}: M \otimes_R R[T] \to M \otimes_R R[T]$ is surjective. Prove that f is an isomorphism.
- **Problem 7.** Let \mathcal{C} be the category of semi-symplectic topological quantum paramonoids of Rice-Paddy type, satisfying the Mussolini-Rostropovich equations at infinity. Let X,Y be objects of \mathcal{C} such that the functors $\mathrm{Mor}_{\mathcal{C}}(X,-)$ and $\mathrm{Mor}_{\mathcal{C}}(Y,-)$ are isomorphic, as covariant functors from \mathcal{C} to sets. Show that X and Y are isomorphic in \mathcal{C} .
- **Problem 8.** Let Γ be the Galois group of the polynomial X^5-9X+3 over \mathbb{Q} . Determine Γ . [Hint: Show that Γ contains an element of order 5 and that Γ contains a transposition, in a sense to be made precise.]

Problem 9. (We denote by $\mathbb{F}G$ the group algebra of G.)

- (a) Is there a group G with $\mathbb{C}G$ isomorphic to $\mathbb{C}\times\mathbb{C}\times M_2(\mathbb{C})$?
- (b) Is there a group G with $\mathbb{Q}G$ isomorphic to $\mathbb{Q} \times \mathbb{Q} \times M_3(\mathbb{Q})$?

Problem 10. Let K/k be an extension of finite fields. Show that the norm $N_{K/k}: K \to k$ is surjective.