Algebra Qualifying Exam, Fall 2015

Please do the following ten problems. Write your UID number ONLY, not your name.

- (1) Show that the inclusion map $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is an epimorphism in the category of rings with multiplicative identity.
 - (2) Let R be a principal ideal domain with field of fractions K.
 - (a) Let S be a non-empty multiplicatively closed subset of $R \setminus \{0\}$. Show that $R[S^{-1}]$ is a principal ideal domain.
 - (b) Show that any subring of K containing R is of the form $R[S^{-1}]$ for some multiplicatively closed subset S of $R \setminus \{0\}$.
 - (3) Let k be a field and define $A = k[X, Y]/(X^2, XY, Y^2)$.
 - (a) What are the principal ideals of A?
 - (b) What are the ideals of A?
- (4) Let K be a field and let L be the field K(X) of rational functions over K.
 - (a) Show that there are two unique K-automorphisms f and g of the field L = K(X) such that $f(X) = X^{-1}$ and g(X) = 1 X. Let G be the subgroup of the group of K-automorphisms of L generated by f and g. Show that |G| > 3.
 - (b) Let $E = L^G$. Show that

$$P = \frac{(X^2 - X + 1)^3}{X^2(X - 1)^2} \in E.$$

- (c) Show that L/K(P) is a finite extension of degree 6.
- (d) Deduce that E = K(P) and that G is isomorphic to the symmetric group S_3 .

(5)

- (a) Let G be a group of order $p^e v$ with v and e positive integers, p prime, p > v, and v not a multiple of p. Show that G has a normal Sylow p-subgroup.
- (b) Show that a nontrivial finite p-group has nontrivial center.

(6) Let F be a field of characteristic not 2. Let a and b be nonzero elements of F. Let R be the F-algebra

$$R = F\langle i, j \rangle / (i^2 - a, j^2 - b, ij + ji),$$

the quotient of the free associative algebra on 2 generators by the given two-sided ideal.

- (a) Let \overline{F} be an algebraic closure of F. Show that $R \otimes_F \overline{F}$ is isomorphic as an \overline{F} -algebra to the matrix algebra $M_2(\overline{F})$.
- (b) Give a basis for R as an F-vector space, justifying your answer. (You may use (a).)
- (7) Show that the symmetric group S_4 has exactly two isomorphism classes of irreducible complex representations of dimension 3. Compute the characters of these two representations.
- (8) Let F be a field. Show that the group SL(2, F) is generated by the matrices $\begin{pmatrix} 1 & e \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ e & 1 \end{pmatrix}$ for elements e in F.

(9)

- (a) Let R be a finite-dimensional associative algebra over a field F. Show that every element of the Jacobson radical of R is nilpotent.
- (b) Let R be a ring. Is an element of the Jacobson radical of R always nilpotent? Is a nilpotent element of R always in the Jacobson radical? Justify your answers.
- (10) Let p be a prime number. For each abelian group K of order p^2 , how many subgroups H of \mathbb{Z}^3 are there with \mathbb{Z}^3/H isomorphic to K?