# ANALYSIS QUALIFYING EXAMINATION SEPTEMBER 18, WEDNESDAY, 2002 2:00 - 6:00 PM ROOM: MS 5200

## Instructions

Work any 10 problems, but must include 2 problems each from Part I, Part II and Part III respectively. All problems are worth 10 points.

### Part I

- 1. Let f, g be two absolutely continuous functions on the interval [0, 1] which are everywhere positive. Show that the pointwise quotient f/g is also absolutely continuous on [0, 1]. [Hint: Is g bounded from below?]
- 2. Let  $(X, \mathcal{M}, \mu)$  be a measure space, and let f be a real-valued function in  $L^1(X, \mathcal{M}, \mu)$ . Show that there exists a non-negative function  $f^* \in L^1([0, \infty))$  which is monotone non-increasing (i.e.  $f^*(x) \leq f^*(y)$  for all  $x \geq y \geq 0$ ), and such that

$$\int_X |f|^p \mathrm{d}\mu = \int_0^\infty f^*(x)^p \, \mathrm{d}x$$

for all  $0 . [Hint: Choose <math>f^*$  so that  $\mu(\{x \in X : |f(x)| \ge \lambda\}) = m(\{y \in [0, \infty) : f^*(y) \ge \lambda\})$  for all  $\lambda > 0$ , where m is Lebesgue measure.]

- 3. Let  $(X, \mathcal{M}, \mu)$  be a finite measure space, and let  $1 \leq p < \infty$ . Let  $f_1, f_2, \ldots$  be a sequence of functions in  $L^p(X, \mathcal{M}, \mu)$  which converge pointwise  $\mu$ -a.e. to a function  $f \in L^p(X, \mathcal{M}, \mu)$ . Show that  $\lim_{n \to \infty} \|f_n f\|_p = 0$  if and only if  $\lim_{n \to \infty} \|f_n\|_p = \|f\|_p$ .
- 4. Let E and F be two Lebesgue measurable sets of the real line of finite measure, and let  $\chi_E$  and  $\chi_F$  be their respective characteristic functions.
  - (a) Show that the convolution  $\chi_E * \chi_F$ , defined by

$$\chi_E * \chi_F(x) = \int_{\mathbf{R}} \chi_E(y) \chi_F(x-y) \ dy$$

is a continuous function.

- (b) Show that  $\chi_E * \chi_F$  lies in  $L^p$  for every  $1 \le p \le \infty$ .
- 5. Let  $0 < \alpha < 1$ . A function  $f \in C([0,1])$  is said to be Hölder continuous of order  $\alpha$  if there exists a constant C such that

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

for all  $x, y \in [0, 1]$ .

Show that for every  $0 < \alpha < 1$ , the function

$$f(x) = \sum_{n=1}^{\infty} 2^{-n\alpha} \cos(2^n x)$$

is Hölder continuous of order  $\alpha$  but is nowhere differentiable on [0,1].

6. Let n > 1 be an integer, and let  $B = \{x \in \mathbf{R}^n : |x| < 1\}$  be the open unit ball in  $\mathbf{R}^n$ . Show that there exists a constant  $0 < C < \infty$  depending only on n, such that

$$\int_{B} |u(x)|^{2} dx \le C \int_{B} |\nabla u(x)|^{2} dx$$

for all smooth, compactly supported real-valued functions  $u: B \to \mathbf{R}$ .

#### Part II

- 7. Show that for every Hilbert space H and every closed convex subset  $\Omega \subset H$ , there exists a unique element  $x \in \Omega$  of minimal norm, i.e.,  $||x|| \le ||y||$  for all  $y \in \Omega$ .
- 8. Show that the set

$$\Omega = \left\{ f \in C([-1, 1]) : \int_{-1}^{1} f(x) signum(x) \, dx = 1 \right\}$$

is a close convex set  $\Omega$  in the Banach space C([-1,1]) which does not contain any element of minimal norm. Here signum(x) is the function which equals +1 for positive x, -1 for negative x, and 0 for x = 0.

[Hint: If C([-1,1]) were replaced by the larger space  $L^{\infty}([-1,1])$ , what would be the element of minimal norm?]

9. Let  $T: L^2([0,1]) \to L^2([0,1])$  be the operator

$$Tf(x) = \int_0^x f(y) \, \mathrm{d}y.$$

(a) Show that the Fourier coefficients

$$\widehat{Tf}(n) = \int_0^1 e^{-2\pi i nx} Tf(x) \, \mathrm{d}x$$

of Tf obey the bound

$$|\widehat{Tf}(n)| \le \frac{C||f||_{L^2([0,1])}}{n}$$

for all non-zero n, all  $f \in L^2([0,1])$ , and some constant  $0 < C < \infty$ .

- (b) Show that T is a continuous, compact operator (i.e. the image of the closed unit ball is compact). [Hint: use (a)].
- (c) Show that for any complex non-zero  $\lambda$ , the operator  $T \lambda$  has no kernel (i.e. there is no non-zero  $f \in L^2([0,1])$  such that  $(T \lambda)f = 0$ ).
- (d) Show that the operator  $T \lambda$  is invertible on  $L^2([0,1])$  for all complex non-zero  $\lambda$ . [Hint: Use (b) and (c)].

#### Part III

10. Let  $(X, \mathcal{M}, \mu)$  be a measure space, and let  $f_1, f_2, \ldots$  be sequence of complex-valued functions in  $L^1(X, \mathcal{M}, \mu)$  such that

$$||f_n||_{L^1(X,\mathcal{M},\mu)} \le 2^{-n}$$

and

$$||f_n||_{L^{\infty}(X,\mathcal{M},\mu)} \le 1/2$$

for all  $n = 1, 2, \ldots$  Show that the infinite product

$$\prod_{n=1}^{\infty} (1 + f_n(x))$$

is convergent for  $\mu$ -a.e. x, and that the product is a measurable function. [Hint: You may need to compare |1+z| and  $\exp(|z|)$  in the disk  $|z| \le 1/2$ .]

- 11. Find the linear fractional tranformation  $f: \mathbb{C} \to \mathbb{C}$  such that f(0) = 1, f(1) = 0, and  $f(\infty) = i$ . What is the image of the line  $\{z : \operatorname{Re}(z) = 1\}$  under f?
- 12. Suppose the function f(z) is continuous on the closed unit disk  $\{|z| \leq 1\}$  and analytic on the open disk  $\{|z| < 1\}$ . Assume f(z) = 0 for all z in the semi-circle  $\{z : |z| = 1, \text{Im}(z) > 0\}$ . Prove that f(z) = 0 on the closed disk.
- 13. Let  $U_n(z)$  be a sequence of *positive* harmonic functions on a *connected* open set  $\Omega$  containing the origin. Show that if

$$\lim_{n\to\infty} U_n(0) = 0,$$

then

$$\lim_{n\to\infty} \|U_n\|_{L^{\infty}(K)} = 0$$

for all compact subsets  $K \subset \Omega$ .

14. Evaluate the integral

$$\lim_{N\to\infty}\int_0^N\cos(x^2)\mathrm{d}x;$$

justify your reasoning.

15. Let  $1 \leq p < \infty$  and let U(z) be a harmonic function on the entire plane  ${\bf C}$  such that

$$\int \int_{\mathbf{C}} |U(z)|^p \mathrm{d}x \mathrm{d}y < \infty.$$

Prove U(z) = 0 for all z.